Displaying publications 61 - 80 of 197 in total

Abstract:
Sort:
  1. Pandey P, Chellappan DK, Tambuwala MM, Bakshi HA, Dua K, Dureja H
    Int J Biol Macromol, 2019 Dec 01;141:596-610.
    PMID: 31494160 DOI: 10.1016/j.ijbiomac.2019.09.023
    The most common cause of deaths due to cancers nowadays is lung cancer. The objective of this study was to prepare erlotinib loaded chitosan nanoparticles for their anticancer potential. To study the effect of formulation variables on prepared nanoparticles using central composite design. Erlotinib loaded chitosan nanoparticles were prepared by ionic gelation method using probe sonication technique. It was found that batch NP-7 has a maximum loading capacity and entrapment efficiency with a particle size (138.5 nm) which is ideal for targeting solid tumors. Analysis of variance was applied to the particle size, entrapment efficiency and percent cumulative drug release to study the fitting and the significance of the model. The batch NP-7 showed 91.57% and 39.78% drug release after 24 h in 0.1 N hydrochloric acid and Phosphate Buffer (PB) pH 6.8, respectively. The IC50 value of NP-7 evaluated on A549 Lung cancer cells was found to be 6.36 μM. The XRD of NP-7 displayed the existence of erlotinib in the amorphous pattern. The optimized batch released erlotinib slowly in comparison to the marketed tablet formulation. Erlotinib loaded chitosan nanoparticles were prepared successfully using sonication technique with suitable particle size, entrapment efficiency and drug release. The formulated nanoparticles can be utilized for the treatment of lung cancer.
    Matched MeSH terms: Chitosan/chemistry*
  2. Rozman NAS, Tong WY, Leong CR, Tan WN, Hasanolbasori MA, Abdullah SZ
    J Microbiol Biotechnol, 2019 Jul 28;29(7):1009-1013.
    PMID: 31288302 DOI: 10.4014/jmb.1904.04065
    Polymeric nanoparticles are widely used for drug delivery due to their biodegradability property. Among the wide array of polymers, chitosan has received growing interest among researchers. It was widely used as a vehicle in polymeric nanoparticles for drug targeting. This review explored the current research on the antimicrobial activity of chitosan nanoparticles (ChNP) and the impact on the clinical applications. The antimicrobial activities of ChNP were widely reported against bacteria, fungi, yeasts and algae, in both in vivo and in vitro studies. For pharmaceutical applications, ChNP were used as antimicrobial coating for promoting wound healing, preventing infections and combating the rise of infectious disease. Besides, ChNP also exhibited significant inhibitory on foodborne microorganisms, particularly on fruits and vegetables. It is noteworthy that ChNP can be also applied to deliver antimicrobial drugs, which further enhance the efficiency and stability of the antimicrobial agent. The present review addresses the potential antimicrobial applications of ChNP from these few aspects.
    Matched MeSH terms: Chitosan/chemistry*
  3. Nair RS, Morris A, Billa N, Leong CO
    AAPS PharmSciTech, 2019 Jan 10;20(2):69.
    PMID: 30631984 DOI: 10.1208/s12249-018-1279-6
    Curcumin-loaded chitosan nanoparticles were synthesised and evaluated in vitro for enhanced transdermal delivery. Zetasizer® characterisation of three different formulations of curcumin nanoparticles (Cu-NPs) showed the size ranged from 167.3 ± 3.8 nm to 251.5 ± 5.8 nm, the polydispersity index (PDI) values were between 0.26 and 0.46 and the zeta potential values were positive (+ 18.1 to + 20.2 mV). Scanning electron microscopy (SEM) images supported this size data and confirmed the spherical shape of the nanoparticles. All the formulations showed excellent entrapment efficiency above 80%. FTIR results demonstrate the interaction between chitosan and sodium tripolyphosphate (TPP) and confirm the presence of curcumin in the nanoparticle. Differential scanning calorimetry (DSC) studies of Cu-NPs indicate the presence of curcumin in a disordered crystalline or amorphous state, suggesting the interaction between the drug and the polymer. Drug release studies showed an improved drug release at pH 5.0 than in pH 7.4 and followed a zero order kinetics. The in vitro permeation studies through Strat-M® membrane demonstrated an enhanced permeation of Cu-NPs compared to aqueous curcumin solution (p ˂ 0.05) having a flux of 0.54 ± 0.03 μg cm-2 h-1 and 0.44 ± 0.03 μg cm-2 h-1 corresponding to formulations 5:1 and 3:1, respectively. The cytotoxicity assay on human keratinocyte (HaCat) cells showed enhanced percentage cell viability of Cu-NPs compared to curcumin solution. Cu-NPs developed in this study exhibit superior drug release and enhanced transdermal permeation of curcumin and superior percentage cell viability. Further ex vivo and in vivo evaluations will be conducted to support these findings.
    Matched MeSH terms: Chitosan/chemistry
  4. Al-Jbour ND, Beg MD, Gimbun J, Alam AKMM
    Curr Drug Deliv, 2019;16(4):272-294.
    PMID: 30674256 DOI: 10.2174/1567201816666190123121425
    Chitosan is a polycationic natural polymer which is abundant in nature. Chitosan has gained much attention as natural polymer in the biomedical field. The up to date drug delivery as well as the nanotechnology in controlled release of drugs from chitosan nanofibers are focused in this review. Electrospinning is one of the most established and widely used techniques for preparing nanofibers. This method is versatile and efficient for the production of continuous nanofibers. The chitosan-based nanofibers are emerging materials in the arena of biomaterials. Recent studies revealed that various drugs such as antibiotics, chemotherapeutic agents, proteins and anti-inflammatory analgesic drugs were successfully loaded onto electrospun nanofibers. Chitosan nanofibers have several outstanding properties for different significant pharmaceutical applications such as wound dressing, tissue engineering, enzyme immobilization, and drug delivery systems. This review highlights different issues of chitosan nanofibers in drug delivery applications, starting from the preparation of chitosan nanofibers, followed by giving an idea about the biocompatibility and degradation of chitosan nanofibers, then describing how to load the drug into the nanofibers. Finally, the major applications of chitosan nanofibers in drug delivery systems.
    Matched MeSH terms: Chitosan/chemistry*
  5. Yusof NH, Foo KY, Hameed BH, Hussin MH, Lee HK, Sabar S
    Int J Biol Macromol, 2020 Aug 15;157:648-658.
    PMID: 31790734 DOI: 10.1016/j.ijbiomac.2019.11.218
    Chitosan-polyethyleneimine with calcium chloride as ionic cross-linker (CsPC) was synthesized as a new kind of adsorbent using a simple, green and cost-effective technique. The adsorption properties of the adsorbent for Acid Red 88 (AR88) dye, as a model analyte, were investigated in a batch system as the function of solution pH (pH 3-12), initial AR88 concentration (50-500 mg L-1), contact time (0-24 h), and temperature (30-50 °C). Results showed that the adsorption process obeyed the pseudo-first order kinetic model and the adsorption rate was governed by both intra-particle and liquid-film mechanism. Equilibrium data were well correlated with the Freundlich isotherm model, with the calculated maximum adsorption capacity (qm) of 1000 mg g-1 at 30 °C. The findings underlined CsPC to be an effective and efficient adsorbent, which can be easily synthesized via one-step process with promising prospects for the removal of AR88 or any other similar dyes from the aqueous solutions.
    Matched MeSH terms: Chitosan/chemistry*
  6. Aziz SB, Brza MA, Hamsan EMADMH, Hadi JM, Kadir MFZ, Abdulwahid RT
    Molecules, 2020 Oct 01;25(19).
    PMID: 33019618 DOI: 10.3390/molecules25194503
    Plasticized magnesium ion conducting polymer blend electrolytes based on chitosan (CS): polyvinyl alcohol (PVA) was synthesized with a casting technique. The source of ions is magnesium triflate Mg(CF3SO3)2, and glycerol was used as a plasticizer. The electrical and electrochemical characteristics were examined. The outcome from X-ray diffraction (XRD) examination illustrates that the electrolyte with highest conductivity exhibits the minimum degree of crystallinity. The study of the dielectric relaxation has shown that the peak appearance obeys the non-Debye type of relaxation process. An enhancement in conductivity of ions of the electrolyte system was achieved by insertion of glycerol. The total conductivity is essentially ascribed to ions instead of electrons. The maximum DC ionic conductivity was measured to be 1.016 × 10-5 S cm-1 when 42 wt.% of plasticizer was added. Potential stability of the highest conducting electrolyte was found to be 2.4 V. The cyclic voltammetry (CV) response shows the behavior of the capacitor is non-Faradaic where no redox peaks appear. The shape of the CV response and EDLC specific capacitance are influenced by the scan rate. The specific capacitance values were 7.41 F/g and 32.69 F/g at 100 mV/s and 10 mV/s, respectively. Finally, the electrolyte with maximum conductivity value is obtained and used as electrodes separator in the electrochemical double-layer capacitor (EDLC) applications. The role of lattice energy of magnesium salts in energy storage performance is discussed in detail.
    Matched MeSH terms: Chitosan/chemistry*
  7. Show PL, Ooi CW, Lee XJ, Yang CL, Liu BL, Chang YK
    Int J Biol Macromol, 2020 Nov 01;162:1711-1724.
    PMID: 32805284 DOI: 10.1016/j.ijbiomac.2020.08.065
    Adsorption of lysozyme on the dye-affinity nanofiber membranes was investigated in batch and dynamic modes. The membrane matrix was made of electrospun polyacrylonitrile nanofibers that were grafted with ethylene diamine (EDA) and/or chitosan (CS) for the coupling of Reactive Blue 49 dye. The physicochemical properties of these dye-immobilized nanofiber membranes (P-EDA-Dye and P-CS-Dye) were characterized microscopically, spectroscopically and thermogravimetrically. The capacities of lysozyme adsorption by the dye-affinity nanofiber membranes were evaluated under various conditions, namely pH, dye immobilized density, and loading flow rate. The adsorption of lysozyme to the dye-affinity nanofiber membranes was well fitted by Langmuir isotherm and pseudo-second kinetic models. P-CS-Dye nanofiber membrane had a better performance in the dynamic adsorption of lysozyme from complex chicken egg white solution. It was observed that after five cycles of adsorption-desorption, the dye-affinity nanofiber membrane did not show a significant loss in its capacity for lysozyme adsorption. The robustness as well as high dynamic adsorption capability of P-CS-Dye nanofiber membrane are promising for the efficient recovery of lysozyme from complex feedstock via nanofiber membrane chromatography.
    Matched MeSH terms: Chitosan/chemistry*
  8. Ng SW, Selvarajah GT, Hussein MZ, Yeap SK, Omar AR
    Biomed Res Int, 2020;2020:3012198.
    PMID: 32596292 DOI: 10.1155/2020/3012198
    Feline infectious peritonitis (FIP) is an important feline viral disease, causing an overridden inflammatory response that results in a high mortality rate, primarily in young cats. Curcumin is notable for its biological activities against various viral diseases; however, its poor bioavailability has hindered its potential in therapeutic application. In this study, curcumin was encapsulated in chitosan nanoparticles to improve its bioavailability. Curcumin-encapsulated chitosan (Cur-CS) nanoparticles were synthesised based on the ionic gelation technique and were spherical and cuboidal in shape, with an average particle size of 330 nm and +42 mV in zeta potential. The nanoparticles exerted lower toxicity in Crandell-Rees feline kidney (CrFK) cells and enhanced antiviral activities with a selective index (SI) value three times higher than that of curcumin. Feline-specific bead-based multiplex immunoassay and qPCR were used to examine their modulatory effects on proinflammatory cytokines, including tumour necrosis factor (TNF)α, interleukin- (IL-) 6, and IL-1β. There were significant decrements in IL-1β, IL-6, and TNFα expression in both curcumin and Cur-CS nanoparticles. Based on the multiplex immunoassay, curcumin and the Cur-CS nanoparticles could lower the immune-related proteins in FIP virus (FIPV) infection. The single- and multiple-dose pharmacokinetics profiles of curcumin and the Cur-CS nanoparticles were determined by high-performance liquid chromatography (HPLC). Oral delivery of the Cur-CS nanoparticles to cats showed enhanced bioavailability with a maximum plasma concentration (Cmax) value of 621.5 ng/mL. Incorporating chitosan nanoparticles to deliver curcumin improved the oral bioavailability and antiviral effects of curcumin against FIPV infection. This study provides evidence for the potential of Cur-CS nanoparticles as a supplementary treatment of FIP.
    Matched MeSH terms: Chitosan/chemistry*
  9. Shi W, Ching YC, Chuah CH
    Int J Biol Macromol, 2021 Feb 15;170:751-767.
    PMID: 33412201 DOI: 10.1016/j.ijbiomac.2020.12.214
    Spherical aerogels are not easily broken during use and are easier to transport and store which can be used as templates for drug delivery. This review summarizes the possible approaches for the preparation of aerogel beads and microspheres based on chitosan and cellulose, an overview to the methods of manufacturing droplets is presented, afterwards, the transition mechanisms from sol to a spherical gel are reviewed in detail followed by different drying processes to obtain spherical aerogels with porous structures. Additionally, a specific focus is given to aerogel beads and microspheres to be regarded as drug delivery carriers. Furthermore, a core/shell architecture of aerogel beads and microspheres for controlled drug release is described and subjected to inspire readers to create novel drug release system. Finally, the conclusions and outlooks of aerogel beads and microspheres for drug delivery are summarized.
    Matched MeSH terms: Chitosan/chemistry*
  10. Md Rasib SZ, Md Akil H, Khan A, Abdul Hamid ZA
    Int J Biol Macromol, 2019 May 01;128:531-536.
    PMID: 30708001 DOI: 10.1016/j.ijbiomac.2019.01.190
    An earlier study showed that the behaviour of chitosan-poly(methacrylic acid‑co‑N‑isopropylacrylamide) [chitosan‑p(MAA‑co‑NIPAM)] hydrogels synthesized at different reaction times are affected with regard to their pH and temperature sensitivities. The study was continued in this paper to identify the effects of different reaction times on the degradation, efficiency of rifampicin (Rif) loading and the Rif release profile under two different pH conditions (acidic and basic). The results that were obtained showed that the hydrogel had a faster degradation rate in the acidic condition than in the basic condition, where there was a loss of approximately 50% and 20%, respectively in its original weight within two weeks. The Rif loading efficiency was within 50% and the drug release was controlled by characteristics that were developed beyond the polymerization stages of the synthesis. Therefore, the reaction time for the synthesis of the hydrogel can be considered as a way to control the behaviour of the hydrogel as well as to modify the drug release profile in the chitosan‑p(MAA‑co‑NIPAM) hydrogel.
    Matched MeSH terms: Chitosan/chemistry*
  11. Sutirman ZA, Sanagi MM, Abd Karim KJ, Abu Naim A, Wan Ibrahim WA
    Int J Biol Macromol, 2019 Jul 15;133:1260-1267.
    PMID: 31047925 DOI: 10.1016/j.ijbiomac.2019.04.188
    Grafting of crosslinked chitosan with monomer, N-vinyl-2-pyrrolidone, has been carried out to investigate its adsorption capacity toward Orange G (OG) from aqueous solutions. The adsorption performance of modified chitosan (cts(x)-g-PNVP) was examined and compared with that of the unmodified chitosan. The effects of initial pH, contact time and initial dye concentration were investigated in a batch system. The experimental data were correlated with the Langmuir and Freundlich isotherm models. The maximum adsorption capacity of cts(x)-g-PNVP (63.7mgg-1) based on Langmuir equation was relatively higher than that of the unmodified chitosan (1.7mgg-1). The kinetic studies showed that the adsorption process was consistent with the pseudo-second order kinetic model. Interaction mechanisms between OG and cts(x)-g-PNVP were also proposed. The overall results suggested that the prepared cts(x)-g-PNVP stands a good candidate as adsorbent for removal of anionic dye from aqueous solutions.
    Matched MeSH terms: Chitosan/chemistry*
  12. Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Maznah Z, Idris AS, et al.
    Sci Rep, 2020 12 18;10(1):22323.
    PMID: 33339951 DOI: 10.1038/s41598-020-79335-6
    The nanoformulations of pesticides have shown great interest from many parties due to their slow release capability and site-specific delivery. Hence, in this work, a new nanoformulation of a fungicide, namely chitosan-hexaconazole nanoparticles with a mean diameter size of 18 nm was subjected to the residual analysis on oil palm tissue, leaf and palm oil (crude palm oil and crude palm kernel oil) using a quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with the gas chromatography-micro electron capture detector (GC-µECD). The chitosan-hexaconazole nanoparticles were applied using the trunk injection method at 4.5 g a.i./palm (standard single dose) and 9.0 g a.i./palm (double dose). The fungicide residue was analyzed at 0 (6 h after application), 1, 3, 7, 14, 30, 60, 90, and 120 days after treatment. The palm oil matrices; the crude palm oil (CPO) and crude palm kernel oil (CPKO) were found to be residue-free. However, it was observed that high accumulation of the fungicide in the stem tissue and leaf after the treatment using the chitosan-hexaconazole nanoparticles, which is good for better bioavailability for the treatment of the fungi, Ganoderma boninense. The dissipation kinetic at double dose treatment in the tissue and leaf was found to govern by the second-order kinetic with half-lives (t1/2) of 383 and 515 days, respectively.
    Matched MeSH terms: Chitosan/chemistry
  13. Vejan P, Abdullah R, Khadiran T, Ismail S
    Lett Appl Microbiol, 2019 Jan;68(1):56-63.
    PMID: 30339728 DOI: 10.1111/lam.13088
    Sustainable crop production for a rapidly growing human population is one of the current challenges faced by the agricultural sector. However, many of the chemical agents used in agriculture can be hazardous to humans, non-targeted organism and environment. Plant growth promoting rhizobacteria have demonstrated a role in promoting plant growth and health under various stress conditions including disease. Unfortunately, bacterial viability degrades due to temperature and other environmental factors (Bashan et al., Plant Soil 378: 1-33, 2014). Encapsulation of bacteria into core-shell biopolymers is one of the promising techniques to overcome the problem. This study deals with the encapsulation of Bacillus salmalaya 139SI using simple double coating biopolymer technique which consist of brown rice protein/alginate and 0·5% low molecular weight chitosan of pH 4 and 6. The influence of biopolymer to bacteria mass ratio and the chitosan pH on the encapsulation process, physic-chemical, morphology and bioactivity properties of encapsulated B. salmalaya 139SI have been studied systematically. Based on the analysis of physico-chemical, morphology and bioactivity properties, B. salmalaya 139S1 encapsulated using double coating encapsulation technology has promising viability pre- and postfreeze-drying with excellent encapsulation yields of 99·7 and 89·3% respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: The need of a simple yet effective way of encapsulating plant growth promoting rhizobacteria is crucial to further improve their benefits to global sustainable agriculture practice. Effective encapsulation allows for protection, controlled release and function of the micro-organism, as well as providing a longer shelf life for the product. This research report offers an innovative yet simple way of encapsulating using double coating technology with environmentally friendly biopolymers that could degrade and provide nutrients when in soil. Importantly, the bioactivity of the bacteria is maintained upon encapsulation.
    Matched MeSH terms: Chitosan/chemistry
  14. Lusiana RA, Sangkota VDA, Sasongko NA, Gunawan G, Wijaya AR, Santosa SJ, et al.
    Int J Biol Macromol, 2020 Jun 01;152:633-644.
    PMID: 32112845 DOI: 10.1016/j.ijbiomac.2020.02.290
    In this study, improvement of urea and creatinine permeability of polyethersulfone (PES) membrane by coating with synthesized tripolyphosphate-crosslinked chitosan (TPP-CS) has been conducted. Original and modified membranes, e.g. pristine PES, polyethersulfone-polyethylene glycol (PES-PEG) and PES-PEG/TPP-CS membranes were characterized using FTIR, DTG, SEM, AFM, water uptake, contact angles, porosity measurement, tensile strength test and permeation tests against urea and creatinine. The results show that the PES modification by TPP-CS coating has been successfully carried out. The water uptake ability, hydrophilicity and porosity of the modified membranes increase significantly to a greater degree. All modified membranes have good thermal stability and tensile strength and their permeation ability towards urea and creatinine increase with the increasing concentration of TPP-CS. PES membrane has urea clearance ability of 7.36 mg/dL and creatinine of 0.014 mg/dL; membrane PES-PEG shows urea clearance of 11.87 mg/dL and creatinine of 0.32 mg/dL; while PES-PEG/TPP-CS membrane gives urea clearance of 20.87-36.40 mg/dL and creatinine in the range of 0.52-0.78 mg/dL. These results suggest that the PES-PEG membrane coated with TPP-CS is superior and can be used as potential material for hemodialysis membrane.
    Matched MeSH terms: Chitosan/chemistry*
  15. Rizal S, Saharudin NI, Olaiya NG, Khalil HPSA, Haafiz MKM, Ikramullah I, et al.
    Molecules, 2021 Apr 01;26(7).
    PMID: 33916094 DOI: 10.3390/molecules26072008
    The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.
    Matched MeSH terms: Chitosan/chemistry*
  16. Elias N, Wahab RA, Chandren S, Abdul Razak FI, Jamalis J
    Enzyme Microb Technol, 2019 Nov;130:109367.
    PMID: 31421729 DOI: 10.1016/j.enzmictec.2019.109367
    Currently, the chemically-assisted esterification to manufacture butyl butyrate employs corrosive homogeneous acid catalyst and liberates enormous quantities of hazardous by-products which complicate downstream treatment processes. This study aimed to identify the optimized esterification conditions, and the kinetic aspects of the enzyme-assisted synthesis of butyl butyrate using immobilized Candida rugosa lipase activated by chitosan-reinforced nanocellulose derived from raw oil palm leaves (CRL/CS-NC). The best process variables that gave the maximum conversion degree of butyl butyrate by CRL/CS-NC (90.2%) in just 3 h, as compared to free CRL (62.9%) are as follows: 50 °C, 1:2 M ratio of acid/alcohol, stirring rate of 200 rpm and a 3 mg/mL enzyme load. The enzymatic esterification followed the ping pong bi-bi mechanism with substrate inhibition, revealing a ˜1.1-fold higher Ki for CRL/CS-NC (55.55 mM) over free CRL (50.68 mM). This indicated that CRL/CS-NC was less inhibited by the substrates. Butanol was preferred over butyric acid as reflected by the higher apparent Michaelis-Menten constant of CRL/CS-NC for butanol (137 mM) than butyric acid (142.7 mM). Thus, the kinetics data conclusively showed that CRL/CS-NC (Vmax 0.48 mM min-1, Keff 0.07 min-1 mM-1) was catalytically more efficient than free CRL (Vmax 0.35 mM min-1, Keff 0.06 min-1 mM-1).
    Matched MeSH terms: Chitosan/chemistry*
  17. Manan FMA, Attan N, Zakaria Z, Keyon ASA, Wahab RA
    Enzyme Microb Technol, 2018 Jan;108:42-52.
    PMID: 29108626 DOI: 10.1016/j.enzmictec.2017.09.004
    A biotechnological route via enzymatic esterification was proposed as an alternative way to synthesize the problematic anti-oxidant eugenyl benzoate. The new method overcomes the well-known drawbacks of the chemical route in favor of a more sustainable reaction process. The present work reports a Box-Behnken design (BBD) optimization process to synthesize eugenyl benzoate by esterification of eugenol and benzoic acid catalyzed by the chitosan-chitin nanowhiskers supported Rhizomucor miehei lipase (RML-CS/CNWs). Effects of four reaction parameters: reaction time, temperature, substrate molar ratio of eugenol: benzoic acid and enzyme loading were assessed. Under optimum conditions, a maximum conversion yield as high as 66% at 50°C in 5h using 3mg/mL of RML-CS/CNWs, and a substrate molar ratio (eugenol: benzoic acid) of 3:1. Kinetic assessments revealed the RML-CS/CNWs catalyzed the reaction via a ping-pong bi-bi mechanism with eugenol inhibition, characterized by a Vmax of 3.83mMmin-1. The Michaelis-Menten constants for benzoic acid (Km,A) and eugenol (Km,B) were 34.04 and 138.28mM, respectively. The inhibition constant for eugenol (Ki,B) was 438.6mM while the turnover number (kcat) for the RML-CS/CNWs-catalyzed esterification reaction was 40.39min-1. RML-CS/CNWs were reusable up to 8 esterification cycles and showed higher thermal stability than free RML.
    Matched MeSH terms: Chitosan/chemistry
  18. Tan HW, Misran M
    Int J Pharm, 2013 Jan 30;441(1-2):414-23.
    PMID: 23174410 DOI: 10.1016/j.ijpharm.2012.11.013
    In this study, the preparation of N-pamitoyl chitosan (ChP) anchored oleic acid (OA) liposome was demonstrated. Two different types of water-soluble ChPs with different degrees of acylation (DA) were selected for this study. The presence of ChPs on the surface of OA liposome was confirmed with their micrographs and physicochemical properties. The "peeling off" effect on the surface of the ChP-anchored OA (OAChP) liposomes was observed on the atomic force microscope micrographs and confirmed the presence of the ChPs layer on the liposome surface. The surface tension of the OAChPs liposome solution was found to be higher than that of the OA liposome solution. This result indicated the removal of OA monomer by ChPs from the air-water interface. The increase in the minimum area per headgroup (A(min)) of the OA with the presence of ChPs has further proved the interaction between OA monomer and the hydrophobic moieties of the ChPs. The ChPs anchored onto the OA monolayer increased the curvature of the OAChP liposomes monolayer and reduced the liposome size. The size of the OAChP liposomes was reduced by 30 nm as compared with the unmodified OA liposome. Results revealed that the anchored ChPs can improve the integrity and rigidity of the OA liposome.
    Matched MeSH terms: Chitosan/chemistry
  19. Sutirman ZA, Sanagi MM, Abd Karim KJ, Wan Ibrahim WA
    Carbohydr Polym, 2016 Oct 20;151:1091-1099.
    PMID: 27474659 DOI: 10.1016/j.carbpol.2016.06.076
    A new poly(methacrylamide) grafted crosslinked chitosan was prepared for removal of lead, Pb(II) ion from aqueous solution. Crosslinked chitosan, in beads form, was grafted with methacrylamide (MAm) using ammonium persulfate (APS) as free radical initiator. Evidence of grafting was determined by comparing FTIR, TGA, SEM and (13)C NMR analyses of chitosan and graft copolymer. The optimal conditions for grafting reaction were as follow: crosslinked chitosan beads (1g), MAm (17.62×10(-1)M), APS (2.63×10(-1)M), reaction time (3h) and temperature (60°C). The modified chitosan bead was then used in laboratory batch experiments to evaluate the removal of Pb(II) ion from water samples. The Langmuir and Freundlich adsorption models were also applied to describe the equilibrium isotherms. The results revealed that the adsorption of Pb(II) ions onto the beads fitted very well with the Langmuir model with the maximum capacity (qmax) of 250mgg(-1).
    Matched MeSH terms: Chitosan/chemistry*
  20. Ong TH, Chitra E, Ramamurthy S, Siddalingam RP, Yuen KH, Ambu SP, et al.
    PLoS One, 2017;12(3):e0174888.
    PMID: 28362873 DOI: 10.1371/journal.pone.0174888
    Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections.
    Matched MeSH terms: Chitosan/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links