Displaying publications 61 - 80 of 472 in total

Abstract:
Sort:
  1. Wearn OR, Carbone C, Rowcliffe JM, Bernard H, Ewers RM
    Ecol Appl, 2016 Jul;26(5):1409-1420.
    PMID: 27755763 DOI: 10.1890/15-1363
    Diversity responses to land-use change are poorly understood at local scales, hindering our ability to make forecasts and management recommendations at scales which are of practical relevance. A key barrier in this has been the underappreciation of grain-dependent diversity responses and the role that β-diversity (variation in community composition across space) plays in this. Decisions about the most effective spatial arrangement of conservation set-aside, for example high conservation value areas, have also neglected β-diversity, despite its role in determining the complementarity of sites. We examined local-scale mammalian species richness and β-diversity across old-growth forest, logged forest, and oil palm plantations in Borneo, using intensive camera- and live-trapping. For the first time, we were able to investigate diversity responses, as well as β-diversity, at multiple spatial grains, and across the whole terrestrial mammal community (large and small mammals); β-diversity was quantified by comparing observed β-diversity with that obtained under a null model, in order to control for sampling effects, and we refer to this as the β-diversity signal. Community responses to land use were grain dependent, with large mammals showing reduced richness in logged forest compared to old-growth forest at the grain of individual sampling points, but no change at the overall land-use level. Responses varied with species group, however, with small mammals increasing in richness at all grains in logged forest compared to old-growth forest. Both species groups were significantly depauperate in oil palm. Large mammal communities in old-growth forest became more heterogeneous at coarser spatial grains and small mammal communities became more homogeneous, while this pattern was reversed in logged forest. Both groups, however, showed a significant β-diversity signal at the finest grain in logged forest, likely due to logging-induced environmental heterogeneity. The β-diversity signal in oil palm was weak, but heterogeneity at the coarsest spatial grain was still evident, likely due to variation in landscape forest cover. Our findings suggest that the most effective spatial arrangement of set-aside will involve trade-offs between conserving large and small mammals. Greater consideration in the conservation and management of tropical landscapes needs to be given to β-diversity at a range of spatial grains.
    Matched MeSH terms: Conservation of Natural Resources/methods*
  2. Gray REJ, Ewers RM, Boyle MJW, Chung AYC, Gill RJ
    Sci Rep, 2018 03 23;8(1):5131.
    PMID: 29572517 DOI: 10.1038/s41598-018-23272-y
    Understanding how anthropogenic disturbance influences patterns of community composition and the reinforcing interactive processes that structure communities is important to mitigate threats to biodiversity. Competition is considered a primary reinforcing process, yet little is known concerning disturbance effects on competitive interaction networks. We examined how differences in ant community composition between undisturbed and disturbed Bornean rainforest, is potentially reflected by changes in competitive interactions over a food resource. Comparing 10 primary forest sites to 10 in selectively-logged forest, we found higher genus richness and diversity in the primary forest, with 18.5% and 13.0% of genera endemic to primary and logged respectively. From 180 hours of filming bait cards, we assessed ant-ant interactions, finding that despite considered aggression over food sources, the majority of ant interactions were neutral. Proportion of competitive interactions at bait cards did not differ between forest type, however, the rate and per capita number of competitive interactions was significantly lower in logged forest. Furthermore, the majority of genera showed large changes in aggression-score with often inverse relationships to their occupancy rank. This provides evidence of a shuffled competitive network, and these unexpected changes in aggressive relationships could be considered a type of competitive network re-wiring after disturbance.
    Matched MeSH terms: Conservation of Natural Resources*
  3. Wijedasa LS, Sloan S, Page SE, Clements GR, Lupascu M, Evans TA
    Glob Chang Biol, 2018 10;24(10):4598-4613.
    PMID: 29855120 DOI: 10.1111/gcb.14340
    Carbon emissions from drained peatlands converted to agriculture in South-East Asia (i.e., Peninsular Malaysia, Sumatra and Borneo) are globally significant and increasing. Here, we map the growth of South-East Asian peatland agriculture and estimate CO2 emissions due to peat drainage in relation to official land-use plans with a focus on the reducing emissions from deforestation and degradation (REDD+)-related Indonesian moratorium on granting new concession licences for industrial agriculture and logging. We find that, prior to 2010, 35% of South-East Asian peatlands had been converted to agriculture, principally by smallholder farmers (15% of original peat extent) and industrial oil palm plantations (14%). These conversions resulted in 1.46-6.43 GtCO2 of emissions between 1990 and 2010. This legacy of historical clearances on deep-peat areas will contribute 51% (4.43-11.45 GtCO2 ) of projected future peatland CO2 emissions over the period 2010-2130. In Indonesia, which hosts most of the region's peatland and where concession maps are publicly available, 70% of peatland conversion to agriculture occurred outside of known concessions for industrial plantation development, with smallholders accounting for 60% and industrial oil palm accounting for 34%. Of the remaining Indonesian peat swamp forest (PSF), 45% is not protected, and its conversion would amount to CO2 emissions equivalent to 0.7%-2.3% (5.14-14.93 Gt) of global fossil fuel and cement emissions released between 1990 and 2010. Of the peatland extent included in the moratorium, 48% was no longer forested, and of the PSF included, 40%-48% is likely to be affected by drainage impacts from agricultural areas and will emit CO2 over time. We suggest that recent legislation and policy in Indonesia could provide a means of meaningful emission reductions if focused on revised land-use planning, PSF conservation both inside and outside agricultural concessions, and the development of agricultural practices based on rehabilitating peatland hydrological function.
    Matched MeSH terms: Conservation of Natural Resources*
  4. Boakes EH, Isaac NJB, Fuller RA, Mace GM, McGowan PJK
    Conserv Biol, 2018 02;32(1):229-239.
    PMID: 28678438 DOI: 10.1111/cobi.12979
    Over half of globally threatened animal species have experienced rapid geographic range loss. Identifying the parts of species' distributions most vulnerable to local extinction would benefit conservation planning. However, previous studies give little consensus on whether ranges decline to the core or edge. We built on previous work by using empirical data to examine the position of recent local extinctions within species' geographic ranges, address range position as a continuum, and explore the influence of environmental factors. We aggregated point-locality data for 125 Galliform species from across the Palearctic and Indo-Malaya into equal-area half-degree grid cells and used a multispecies dynamic Bayesian occupancy model to estimate rates of local extinctions. Our model provides a novel approach to identify loss of populations from within species ranges. We investigated the relationship between extinction rates and distance from range edge by examining whether patterns were consistent across biogeographic realm and different categories of land use. In the Palearctic, local extinctions occurred closer to the range edge than range core in both unconverted and human-dominated landscapes. In Indo-Malaya, no pattern was found for unconverted landscapes, but in human-dominated landscapes extinctions tended to occur closer to the core than the edge. Our results suggest that local and regional factors override general spatial patterns of recent local extinction within species' ranges and highlight the difficulty of predicting the parts of a species' distribution most vulnerable to threat.
    Matched MeSH terms: Conservation of Natural Resources*
  5. Rajasegaran P, Shazali N, Khan FAA
    Zoolog Sci, 2018 12 04;35(6):521-527.
    PMID: 30520355 DOI: 10.2108/zs170144
    Bats play crucial ecological and economic roles. However, this group of mammals is largely threatened due to anthropogenic activities inside or around their caves. In the present study, we investigate the effects of cave microclimate and physiological parameters on bat roost preference in Fairy Cave Nature Reserve (Fairy Cave NR). The microclimate and physiological parameters including temperature (°C), relative humidity (RH), light intensity (lux), air flow, passage dimension (m), roost height (m) and distance of roost from nearest entrance (m) were measured. Results showed that Emballonura monticola, Hipposideros diadema, Hipposideros larvatus and Penthetor lucasi roost in Fairy Cave NR. These bats can be distinguished by their colony size, roost posture, spatial arrangement and position of their roost. Penthetor lucasi makes up the largest colony in the bright zone, whereas E. monticola has the smallest colony, occupying the twilight zone throughout the cave. Members from the family Hipposideridae roost in the dark portion of the cave with zero light intensity. Emballonura monticola utilizes the hottest roost in the cave compared to the other microbats, whereas H. diadema inhabits the coolest roost. Physiological parameters such as light intensity, passage dimension, and distance from nearest entrance are significant parameters in roosting preferences. These parameters should be monitored to ensure the sustainability of not only the aforementioned species, but also other species that roost in nearby caves of Bau limestone (Wind Cave Nature Reserve: with 13 recorded species).
    Matched MeSH terms: Conservation of Natural Resources*
  6. Williams SH, Scriven SA, Burslem DFRP, Hill JK, Reynolds G, Agama AL, et al.
    Conserv Biol, 2020 08;34(4):934-942.
    PMID: 31840279 DOI: 10.1111/cobi.13450
    Conservation planning tends to focus on protecting species' ranges or landscape connectivity but seldom both-particularly in the case of diverse taxonomic assemblages and multiple planning goals. Therefore, information on potential trade-offs between maintaining landscape connectivity and achieving other conservation objectives is lacking. We developed an optimization approach to prioritize the maximal protection of species' ranges, ecosystem types, and forest carbon stocks, while also including habitat connectivity for range-shifting species and dispersal corridors to link protected area. We applied our approach to Sabah, Malaysia, where the state government mandated an increase in protected-area coverage of approximately 305,000 ha but did not specify where new protected areas should be. Compared with a conservation planning approach that did not incorporate the 2 connectivity features, our approach increased the protection of dispersal corridors and elevational connectivity by 13% and 21%, respectively. Coverage of vertebrate and plant species' ranges and forest types were the same whether connectivity was included or excluded. Our approach protected 2% less forest carbon and 3% less butterfly range than when connectivity features were not included. Hence, the inclusion of connectivity into conservation planning can generate large increases in the protection of landscape connectivity with minimal loss of representation of other conservation targets.
    Matched MeSH terms: Conservation of Natural Resources*
  7. Ahmed K, Jeffree MS, Hughes T, Daszak P
    Ecohealth, 2019 12;16(4):585-586.
    PMID: 31811598 DOI: 10.1007/s10393-019-01462-y
    Matched MeSH terms: Conservation of Natural Resources*
  8. Shevade VS, Loboda TV
    PLoS One, 2019;14(2):e0210628.
    PMID: 30785883 DOI: 10.1371/journal.pone.0210628
    Agricultural expansion is one of the leading causes of deforestation in the tropics and in Southeast Asia it is predominantly driven by large-scale production for international trade. Peninsular Malaysia has a long history of plantation agriculture and has been a predominantly resource-based economy where expanding plantations like those of oil palm continue to replace natural forests. Habitat loss from deforestation and expanding plantations threatens Malaysian biodiversity. Expanding industrial plantations have also been responsible for drainage and conversions of peatland forests resulting in release of large amounts of carbon dioxide. The demand for palm oil is expected to increase further and result in greater pressures on tropical forests. Given Malaysia's high biophysical suitability for oil palm cultivation, it is important to understand patterns of oil palm expansion to better predict forest areas that are vulnerable to future expansion. We study natural forest conversion to industrial oil palm in Peninsular Malaysia between 1988 and 2012 to identify determinants of recent oil palm expansion using logistic regression and hierarchical partitioning. Using maps of recent conversions and remaining forests, we characterize agro-environmental suitability and accessibility for the past and future conversions. We find that accessibility to previously existing plantations is the strongest determinant of oil palm expansion and is significant throughout the study period. Almost all (> 99%) of the forest loss between 1988 and 2012 that has been converted to industrial oil palm plantations is within 1 km from oil palm plantations that have been established earlier. Although most forest conversions to industrial oil palm have been in areas of high biophysical suitability, there has been an increase in converted area in regions with low oil palm suitability since 2006. We find that reduced suitability does not necessarily restrict conversions to industrial oil palm in the region; however, lack of access to established plantations does.
    Matched MeSH terms: Conservation of Natural Resources*
  9. Matsuzawa T
    Primates, 2019 11;60(6):477-483.
    PMID: 31679101 DOI: 10.1007/s10329-019-00771-8
    Matched MeSH terms: Conservation of Natural Resources*
  10. Yue L, Xue D, Draz MU, Ahmad F, Li J, Shahzad F, et al.
    PMID: 31936543 DOI: 10.3390/ijerph17020446
    Urbanization has made tremendous contributions to China's economic development since its economic reforms and opening up. At the same time, population agglomeration has aggravated environmental pollution and posed serious challenges to China's environment. This article empirically investigates the impacts of China's urbanization on eco-efficiency, comprehensively reflecting economic growth, resource input, and waste discharge. We first measured the provincial eco-efficiency in China from 2005 to 2015 using the Super Slack-Based model (Super-SBM). We then constructed a spatial model to empirically analyze the effects of urbanization on eco-efficiency at the national level, and at four regional levels. The results indicated that the regional eco-efficiency in China has fluctuated, but is generally improving, and that a gap between regions was evident, with a trend toward further gap expansion. We observed an effect of spatial spillover in eco-efficiency, which was significant and positive for the whole country, except for the western region. The influence of urbanization on China's eco-efficiency exhibited a U-curve relationship. The changing trend in the eastern, central, and western regions was the same as that in the whole country; however, the trend exhibited an inverted U-curve relationship in the northeastern region. To the best of our knowledge, covering a time period of 2005-2015, this article is the first of its kind to study the impact of urbanization on eco-efficiency in China at both the national and regional levels. This study may help policy-makers to create sustainable policies that could be helpful in balancing urbanization and the ecological environment.
    Matched MeSH terms: Conservation of Natural Resources*
  11. Ahmed F, Al-Amin AQ, Masud MM, Kari F, Mohamad Z
    An Acad Bras Cienc, 2015 Sep;87(3):1887-902.
    PMID: 26221988 DOI: 10.1590/0001-3765201520130368
    The significance of Science Framework (SF) to date is receiving more acceptances all over the world to address agricultural sustainability. The professional views, however, advocate that the SF known as Mega Science Framework (MSF) in the transitional economies is not converging effectively in many ways for the agricultural sustainability. Specially, MSF in transitional economies is mostly incapable to identify barriers in agricultural research, inadequate to frame policy gaps with the goal of strategizing the desired sustainability in agricultural technology and innovation, inconsistent in finding to identify the inequities, and incompleteness to rebuild decisions. Therefore, this study critically evaluates the components of MSF in transitional economies and appraises the significance, dispute and illegitimate issue to achieve successful sustainable development. A sound and an effective MSF can be developed when there is an inter-linkage within principal components such as of (a) national priorities, (b) specific research on agricultural sustainability, (c) adequate agricultural research and innovation, and (d) alternative policy alteration. This maiden piece of research which is first its kind has been conducted in order to outline the policy direction to have an effective science framework for agricultural sustainability.
    Matched MeSH terms: Conservation of Natural Resources*
  12. Hojo A, Tsuji N, Kasuga T, Osaki M
    Environ Monit Assess, 2021 Nov 12;193(12):793.
    PMID: 34767121 DOI: 10.1007/s10661-021-09434-y
    We have pragmatically but accurately evaluated the natural capital of a small northern town, Shimokawa, Hokkaido, Japan. The key industries are forestry, wood manufacturing, and agriculture. From an environmental perspective, Shimokawa was nominated as a Japanese FutureCity. Consequently, the total natural capital value (NCV) of the forest and agricultural lands was calculated to be 1.326 billion USD/year (or 24,161 USD/ha/year) and 44 million USD/year (or 19,692 USD/ha/year), respectively, in 2012. The sum of these NCVs was more than 7 times greater than the yearly gross production of the town, although the forest had a higher NCV because of the larger area (54,862 ha for forest area), compared with 2953 ha for agricultural area. This substantial NCV is mainly generated by sustainable forest management. The timber account showed that the annual tree growth was greater than the annual harvest of trees. The CO2 account derived from a one-year calculation showed that the town served as a CO2 sink at 107,249 t-CO2/year due to the large amount of annual tree growth and CO2 storage in the harvested wood products even if CO2 was emitted from industries and households. The forestry and wood manufacturing industries, as well as agriculture, created socioeconomic effects for the townspeople, ranging from job creation, study tours, and social welfare. This NCV accounting for Shimokawa town ensures the sustainable use of valuable environmental assets and will help other communities recognize their own NCV accounts.
    Matched MeSH terms: Conservation of Natural Resources*
  13. Brooks CM, Ainley DG, Jacquet J, Chown SL, Pertierra LR, Francis E, et al.
    Science, 2022 Nov 04;378(6619):477-479.
    PMID: 36264826 DOI: 10.1126/science.add9480
    Climate change and fishing present dual threats.
    Matched MeSH terms: Conservation of Natural Resources*
  14. Roll U, Feldman A, Novosolov M, Allison A, Bauer AM, Bernard R, et al.
    Nat Ecol Evol, 2017 Nov;1(11):1677-1682.
    PMID: 28993667 DOI: 10.1038/s41559-017-0332-2
    The distributions of amphibians, birds and mammals have underpinned global and local conservation priorities, and have been fundamental to our understanding of the determinants of global biodiversity. In contrast, the global distributions of reptiles, representing a third of terrestrial vertebrate diversity, have been unavailable. This prevented the incorporation of reptiles into conservation planning and biased our understanding of the underlying processes governing global vertebrate biodiversity. Here, we present and analyse the global distribution of 10,064 reptile species (99% of extant terrestrial species). We show that richness patterns of the other three tetrapod classes are good spatial surrogates for species richness of all reptiles combined and of snakes, but characterize diversity patterns of lizards and turtles poorly. Hotspots of total and endemic lizard richness overlap very little with those of other taxa. Moreover, existing protected areas, sites of biodiversity significance and global conservation schemes represent birds and mammals better than reptiles. We show that additional conservation actions are needed to effectively protect reptiles, particularly lizards and turtles. Adding reptile knowledge to a global complementarity conservation priority scheme identifies many locations that consequently become important. Notably, investing resources in some of the world's arid, grassland and savannah habitats might be necessary to represent all terrestrial vertebrates efficiently.
    Matched MeSH terms: Conservation of Natural Resources*
  15. Linkie M, Guillera-Arroita G, Smith J, Rayan DM
    Integr Zool, 2010 Dec;5(4):342-350.
    PMID: 21392352 DOI: 10.1111/j.1749-4877.2010.00215.x
    With only 5% of the world's wild tigers (Panthera tigris Linnaeus, 1758) remaining since the last century, conservationists urgently need to know whether or not the management strategies currently being employed are effectively protecting these tigers. This knowledge is contingent on the ability to reliably monitor tiger populations, or subsets, over space and time. In the this paper, we focus on the 2 seminal methodologies (camera trap and occupancy surveys) that have enabled the monitoring of tiger populations with greater confidence. Specifically, we: (i) describe their statistical theory and application in the field; (ii) discuss issues associated with their survey designs and state variable modeling; and, (iii) discuss their future directions. These methods have had an unprecedented influence on increasing statistical rigor within tiger surveys and, also, surveys of other carnivore species. Nevertheless, only 2 published camera trap studies have gone beyond single baseline assessments and actually monitored population trends. For low density tiger populations (e.g. <1 adult tiger/100 km(2)) obtaining sufficient precision for state variable estimates from camera trapping remains a challenge because of insufficient detection probabilities and/or sample sizes. Occupancy surveys have overcome this problem by redefining the sampling unit (e.g. grid cells and not individual tigers). Current research is focusing on developing spatially explicit capture-mark-recapture models and estimating abundance indices from landscape-scale occupancy surveys, as well as the use of genetic information for identifying and monitoring tigers. The widespread application of these monitoring methods in the field now enables complementary studies on the impact of the different threats to tiger populations and their response to varying management intervention.
    Matched MeSH terms: Conservation of Natural Resources/methods*
  16. Takeuchi Y, Soda R, Diway B, Kuda TA, Nakagawa M, Nagamasu H, et al.
    PLoS One, 2017;12(11):e0187273.
    PMID: 29186138 DOI: 10.1371/journal.pone.0187273
    This study explored the conservation values of communally reserved forests (CRFs), which local indigenous communities deliberately preserve within their area of shifting cultivation. In the current landscape of rural Borneo, CRFs are the only option for conservation because other forested areas have already been logged or transformed into plantations. By analyzing their alpha and beta diversity, we investigated how these forests can contribute to restore regional biodiversity. Although CRFs were fragmented and some had been disturbed in the past, their tree species diversity was high and equivalent to that of primary forests. The species composition of intact forests and forests disturbed in the past did not differ clearly, which indicates that past logging was not intensive. All CRFs contained unique and endangered species, which are on the IUCN Red List, Sarawak protected plants, or both. On the other hand, the forest size structure differed between disturbed and intact CRFs, with the disturbed CRFs consisting of relatively smaller trees. Although the beta diversity among CRFs was also high, we found a high contribution of species replacement (turnover), but not of richness difference, in the total beta diversity. This suggests that all CRFs have a conservation value for restoring the overall regional biodiversity. Therefore, for maintaining the regional species diversity and endangered species, it would be suitable to design a conservation target into all CRFs.
    Matched MeSH terms: Conservation of Natural Resources*
  17. Janssen J, Chng SCL
    Conserv Biol, 2018 02;32(1):18-25.
    PMID: 28671308 DOI: 10.1111/cobi.12978
    The commercial captive breeding of wildlife is often seen as a potential conservation tool to relieve pressure on wild populations, but laundering of wild-sourced specimens as captive bred can seriously undermine conservation efforts and provide a false sense of sustainability. Indonesia is at the center of such controversy; therefore, we examined Indonesia's captive-breeding production plan (CBPP) for 2016. We compared the biological parameters used in the CBPP with parameters in the literature and with parameters suggested by experts on each species and identified shortcomings of the CBPP. Production quotas for 99 out of 129 species were based on inaccurate or unrealistic biological parameters and production quotas deviated more than 10% from what parameters in the literature allow for. For 38 species, the quota exceeded the number of animals that can be bred based on the biological parameters (range 100-540%) calculated with equations in the CBPP. We calculated a lower reproductive output for 88 species based on published biological parameters compared with the parameters used in the CBPP. The equations used in the production plan did not appear to account for other factors (e.g., different survival rate for juveniles compared to adult animals) involved in breeding the proposed large numbers of specimens. We recommend the CBPP be adjusted so that realistic published biological parameters are applied and captive-breeding quotas are not allocated to species if their captive breeding is unlikely to be successful or no breeding stock is available. The shortcomings in the current CBPP create loopholes that mean mammals, reptiles, and amphibians from Indonesia declared captive bred may have been sourced from the wild.
    Matched MeSH terms: Conservation of Natural Resources*
  18. Lechner AM, Chan FKS, Campos-Arceiz A
    Nat Ecol Evol, 2018 03;2(3):408-409.
    PMID: 29335571 DOI: 10.1038/s41559-017-0452-8
    Matched MeSH terms: Conservation of Natural Resources*
  19. Bombieri G, Penteriani V, Almasieh K, Ambarlı H, Ashrafzadeh MR, Das CS, et al.
    PLoS Biol, 2023 Jan;21(1):e3001946.
    PMID: 36719873 DOI: 10.1371/journal.pbio.3001946
    Large carnivores have long fascinated human societies and have profound influences on ecosystems. However, their conservation represents one of the greatest challenges of our time, particularly where attacks on humans occur. Where human recreational and/or livelihood activities overlap with large carnivore ranges, conflicts can become particularly serious. Two different scenarios are responsible for such overlap: In some regions of the world, increasing human populations lead to extended encroachment into large carnivore ranges, which are subject to increasing contraction, fragmentation, and degradation. In other regions, human and large carnivore populations are expanding, thus exacerbating conflicts, especially in those areas where these species were extirpated and are now returning. We thus face the problem of learning how to live with species that can pose serious threats to humans. We collected a total of 5,440 large carnivore (Felidae, Canidae, and Ursidae; 12 species) attacks worldwide between 1950 and 2019. The number of reported attacks increased over time, especially in lower-income countries. Most attacks (68%) resulted in human injuries, whereas 32% were fatal. Although attack scenarios varied greatly within and among species, as well as in different areas of the world, factors triggering large carnivore attacks on humans largely depend on the socioeconomic context, with people being at risk mainly during recreational activities in high-income countries and during livelihood activities in low-income countries. The specific combination of local socioeconomic and ecological factors is thus a risky mix triggering large carnivore attacks on humans, whose circumstances and frequencies cannot only be ascribed to the animal species. This also implies that effective measures to reduce large carnivore attacks must also consider the diverse local ecological and social contexts.
    Matched MeSH terms: Conservation of Natural Resources/methods
  20. Jamaludin NA, Jamaluddin JAF, Rahim MA, Mohammed Akib NA, Ratmuangkhwang S, Mohd Arshaad W, et al.
    PeerJ, 2022;10:e13706.
    PMID: 35860045 DOI: 10.7717/peerj.13706
    The spotted sardinella, Amblygaster sirm (Walbaum, 1792), is a commercial sardine commonly caught in Malaysia. Lack of management of these marine species in Malaysian waters could lead to overfishing and potentially declining fish stock populations. Therefore, sustainable management of this species is of paramount importance to ensure its longevity. As such, molecular information is vital in determining the A. sirm population structure and management strategy. In the present study, mitochondrial DNA Cytochrome b was sequenced from 10 A. sirm populations: the Andaman Sea (AS) (two), South China Sea (SCS) (six), Sulu Sea (SS) (one), and Celebes Sea (CS) (one). Accordingly, the intra-population haplotype diversity (Hd) was high (0.91-1.00), and nucleotide diversity (π) was low (0.002-0.009), which suggests a population bottleneck followed by rapid population growth. Based on the phylogenetic trees, minimum spanning network (MSN), population pairwise comparison, and F ST,and supported by analysis of molecular variance (AMOVA) and spatial analysis of molecular variance (SAMOVA) tests, distinct genetic structures were observed (7.2% to 7.6% genetic divergence) between populations in the SCS and its neighboring waters, versus those in the AS. Furthermore, the results defined A. sirm stock boundaries and evolutionary between the west and east coast (which shares the same waters as western Borneo) of Peninsular Malaysia. In addition, genetic homogeneity was revealed throughout the SCS, SS, and CS based on the non-significant F STpairwise comparisons. Based on the molecular evidence, separate management strategies may be required for A. sirm of the AS and the SCS, including its neighboring waters.
    Matched MeSH terms: Conservation of Natural Resources*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links