Displaying publications 61 - 80 of 102 in total

Abstract:
Sort:
  1. Nasution AK, Murni NS, Sing NB, Idris MH, Hermawan H
    J Biomed Mater Res B Appl Biomater, 2015 Jan;103(1):31-8.
    PMID: 24757071 DOI: 10.1002/jbm.b.33174
    This article describes the development of a partially degradable metal bone pin, proposed to minimize the occurrence of bone refracture by avoiding the creation of holes in the bone after pin removal procedure. The pin was made by friction welding and composed of two parts: the degradable part that remains in the bone and the nondegradable part that will be removed as usual. Rods of stainless steel 316L (nondegradable) and pure iron (degradable) were friction welded at the optimum parameters: forging pressure = 33.2 kPa, friction time = 25 s, burn-off length = 15 mm, and heat input = 4.58 J/s. The optimum tensile strength and elongation was registered at 666 MPa and 13%, respectively. A spiral defect formation was identified as the cause for the ductile fracture of the weld joint. A 40-µm wide intermetallic zone was identified along the fusion line having a distinct composition of Cr, Ni, and Mo. The corrosion rate of the pin gradually decreased from the undeformed zone of pure iron to the undeformed zone of stainless steel 316L. All metallurgical zones of the pin showed no toxic effect toward normal human osteoblast cells, confirming the ppb level of released Cr and Ni detected in the cell media were tolerable.
    Matched MeSH terms: Corrosion
  2. Nur Alia Atiqah Alias, Nabilah Syakirah Zolkifli, Mimi Wahidah Mohd Radzi, Nur Nadia Dzulkifli
    MyJurnal
    Mild steel plays an essential part in many construction industries due to its low cost and excellent mechanical properties. However, the use of strong acid in pickling, construction, and oil refining processes adds to a serious corrosion problem for mild steel. Two Cu(II) dithiocarbamate (DTC) complexes were successfully synthesised, namely Cu(II) ethyl-benzyl DTC (Cu[EtBenzdtc]2) and Cu(II) butyl-methyl DTC (Cu[BuMedtc]2) complexes, by a condensation reaction and subsequently used to scrutinise the corrosion resistance activity towards mild steel in acidic media. The proposed structures of complexes were characterised by using the Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopies. The melting point for Cu[EtBenzdtc]2 was found around 362–375°C, and 389–392°C for Cu[BuMedtc]2. The percentages of Cu(II) found in Cu[EtBenzdtc]2 and Cu[BuMedtc]2 were 7.6% and 7.5%, respectively. Both complexes were non-electrolyte based on the molar conductivity analysis. Their corrosion inhibition performances were tested by using a weight loss measurement. Cu[BuMedtc]2 showed a good result as a corrosion inhibitor compared to Cu[EtBenzdtc]2. The complexes showed good effectiveness in sulfuric acid (H2SO4) compared to hydrochloric acid (HCl) solution. Furthermore, Cu[BuMedtc]2 showed a good result as a corrosion inhibitor compared to Cu[EtBenzdtc]2 with the highest percentage of corrosion inhibition recorded at 91.8%. Meanwhile, the highest percentage of corrosion inhibition shown by Cu[EtBenzdtc]2 was only 86.9%. The lowest corrosion rate shown for Cu[BuMedtc]2 was 8.1944×10-4 cm-1 h-1. Meanwhile, the Cu[EtBenzdtc]2 showed the lowest corrosion rate only at 1.3194×10-3 cm-1 h-1. This implies that Cu[BuMedtc]2 showed lower corrosion rate but higher inhibition efficiency compared to Cu[EtBenzdtc]2.
    Matched MeSH terms: Corrosion
  3. Venugopal A, Mohammad R, Koslan MFS, Sayd Bakar SR, Ali A
    Materials (Basel), 2021 May 06;14(9).
    PMID: 34066461 DOI: 10.3390/ma14092414
    The environmental condition in which the Royal Malaysian Airforce is currently operating its aircraft is prone to corrosion. This is due to the high relative humidity and temperature. With most of its aircraft being in the legacy aircraft era, the aircraft's main construction consists of the aluminium 2024 material. However, this material is prone to corrosion, thus reducing fatigue life and leading to fatigue failure. Using the concept of either Safe Life or Damage Tolerance as its fatigue design philosophy, the RMAF adopts the Aircraft Structure Integrity Program (ASIP) to monitor its structural integrity. With the current problem of not having the structural limitation on corrosion-damaged structure, the RMAF has embarked on its fatigue testing method. Finite Element (FE) studies and flight tests were conducted, and the outcome is summarized. The conclusion is that the longeron tested on the aircraft can withstand the operational load, and its yield strength is below the ultimate yield strength of the material. These research outcomes will also enhance the ASIP for other aircraft platforms in the RMAF fleet for its structure life assessment or service life extension program.
    Matched MeSH terms: Corrosion
  4. Ahmed A. Ahmed Al-Dulaimi, Shahrir Hashim, Mohammed Ilyas Khan
    MyJurnal
    Polyaniline (PANI) and polyaniline composites with aluminium oxide (Al2O3) were prepared using the in situ polymerization method. The composites were then blended with acrylic paint and applied to carbon steel panels. The coated steel panels were evaluated for corrosion using the immersion test technique. The results revealed that the steel panels coated with polyaniline composites and with Al2O3 containing coatings had small corrosion as compared to the bare sample and the samples coated with polyaniline and paint alone. The samples were characterized by Fourier transform infrared (FTIR) and X-ray diffraction(XRD). In addition, the morphology of the finished samples was observed using the scanning electron microscopy (SEM). This novel composite was used as a paint pigment for enhancing the barrier properties and the paint protectable against aggressive ions. Meanwhile, corrosion was evaluated through visual monitoring using a digital camera after 60 days of fully immersion test in 5% NaCl. The weight loss method was also used to evaluate corrosion.
    Matched MeSH terms: Corrosion
  5. Hosseini S, Han SJ, Arponwichanop A, Yonezawa T, Kheawhom S
    Sci Rep, 2018 Jul 26;8(1):11273.
    PMID: 30050161 DOI: 10.1038/s41598-018-29630-0
    Zinc-air flow batteries exhibit high energy density and offer several appealing advantages. However, their low efficiency of zinc utilization resulted from passivation and corrosion of the zinc anodes has limited their broad application. In this work, ethanol, which is considered as an environmentally friendly solvent, is examined as an electrolyte additive to potassium hydroxide (KOH) aqueous electrolyte to improve electrochemical performance of the batteries. Besides, the effects of adding different percentages of ethanol (0-50% v/v) to 8 M KOH aqueous electrolyte were investigated and discussed. Cyclic voltammograms revealed that the presence of 5-10% v/v ethanol is attributed to the enhancement of zinc dissolution and the hindrance of zinc anode passivation. Also, potentiodynamic polarization and electrochemical impedance spectroscopy confirmed that adding 5-10% v/v ethanol could effectively suppress the formation of passivating layers on the active surface of the zinc anodes. Though the addition of ethanol increased solution resistance and hence slightly decreased the discharge potential of the batteries, a significant enhancement of discharge capacity and energy density could be sought. Also, galvanostatic discharge results indicated that the battery using 10% v/v ethanol electrolyte exhibited the highest electrochemical performance with 30% increase in discharge capacity and 16% increase in specific energy over that of KOH electrolyte without ethanol.
    Matched MeSH terms: Corrosion
  6. Hosseini S, Lao-Atiman W, Han SJ, Arpornwichanop A, Yonezawa T, Kheawhom S
    Sci Rep, 2018 Oct 08;8(1):14909.
    PMID: 30297883 DOI: 10.1038/s41598-018-32806-3
    Zinc-air batteries are a promising technology for large-scale electricity storage. However, their practical deployment has been hindered by some issues related to corrosion and passivation of the zinc anode in an alkaline electrolyte. In this work, anionic surfactant sodium dodecyl sulfate (SDS) and nonionic surfactant Pluronic F-127 (P127) are examined their applicability to enhance the battery performances. Pristine zinc granules in 7 M KOH, pristine zinc granules in 0-8 mM SDS/7 M KOH, pristine zinc granules in 0-1000 ppm P127/7 M KOH, and SDS coated zinc granules in 7 M KOH were examined. Cyclic voltammograms, potentiodynamic polarization, and electrochemical impedance spectroscopy confirmed that using 0.2 mM SDS or 100 ppm P127 effectively suppressed the anode corrosion and passivation. Nevertheless, direct coating SDS on the zinc anode showed adverse effects because the thick layer of SDS coating acted as a passivating film and blocked the removal of the anode oxidation product from the zinc surface. Furthermore, the performances of the zinc-air flow batteries were studied. Galvanostatic discharge results indicated that the improvement of discharge capacity and energy density could be sought by the introduction of the surfactants to the KOH electrolyte. The enhancement of specific discharge capacity for 30% and 24% was observed in the electrolyte containing 100 ppm P127 and 0.2 mM SDS, respectively.
    Matched MeSH terms: Corrosion
  7. Agi A, Junin R, Rasol M, Gbadamosi A, Gunaji R
    PLoS One, 2018;13(8):e0200595.
    PMID: 30089104 DOI: 10.1371/journal.pone.0200595
    Treated Rhizopora mucronata tannin (RMT) as a corrosion inhibitor for carbon steel and copper in oil and gas facilities was investigated. Corrosion rate of carbon-steel and copper in 3wt% NaCl solution by RMT was studied using chemical (weight loss method) and spectroscopic (FTIR) techniques at various temperatures in the ranges of 26-90°C. The weight loss data was compared to the electrochemical by the application of Faraday's law for the conversion of corrosion rate data from one system to another. The inhibitive efficiency of RMT was compared with commercial inhibitor sodium benzotriazole (BTA-S). The best concentration of RMT was 20% (w/v), increase in concentration of RMT decreased the corrosion rate and increased the inhibitive efficiency. Increase in temperature increased the corrosion rate and decreased the inhibitive efficiency but, the rate of corrosion was mild with RMT. The FTIR result shows the presence of hydroxyl group, aromatic group, esters and the substituted benzene group indicating the purity of the tannin. The trend of RMT was similar to that of BTA-S, but its inhibitive efficiency for carbon-steel was poor (6%) compared to RMT (59%). BTA-S was efficient for copper (76%) compared to RMT (74%) at 40% (w/v) and 20% (w/v) concentration respectively. RMT was efficient even at low concentration therefore, the use of RMT as a cost effective and environmentally friendly corrosion inhibiting agent for carbon steel and copper is herein proposed.
    Matched MeSH terms: Corrosion
  8. YAHYA S, OTHMAN N, DAUD A, JALAR A
    Sains Malaysiana, 2013;42:1793-1798.
    The effect of corrosion inhibition of low carbon steel in water based medium containing lignin was investigated via weight loss method. The evolution of surface morphology has been carried out for 7 to 42 days via optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron microscopy (XPS). Immersion of metal specimen without lignin shows that significant increase in the surface roughness. The longer the immersion time, the more the oxide crust formed. The surface degradation of metal specimen was well protected by immersion in lignin solution. A protective layer containing of lignin was formed on the surface of metal specimens after 7 and 21 days immersion. The corrosion inhibition gives about 13 and 53% inhibition for both 7 and 21 days immersion, respectively. The protective layers were spalling and separated from the metal surface after 42 days immersion in lignin solution possibly due to the increase in corrosion attack after long time immersion according to the increase in dissolved oxygen and may also due to the thermal mismatch between oxide and substrate. The adsorption of protective layer containing lignin was temporary adsorbed on the surface.
    Matched MeSH terms: Corrosion
  9. Nurul Atikah Shariff, Azman Jalar, Muhamad Izhar Sahri, Norinsan Kamil Othman
    Sains Malaysiana, 2014;43:1069-1075.
    Austenitic stainless steels of grade 304 were exposed to dry (Ar-75%CO2) and wet (Ar-75%CO2-12%H2O) environments at 700oC. This experimental setup involved horizontal tube furnace connected to CO2 gas and water vapour facilities. X-ray diffraction (XRD) technique, variable pressure-scanning electron microscope (VP-SEM) and optical microscope techniques were used to characterize the products of corrosion. The results of XRD showed that the phase of oxide layers consists of Cr2O3 and NiCr2O4 in dry CO2, meanwhile Fe2O3, Cr2O3, Fe0.56Ni0.34, Fe3O4 were identified in wet condition after 50 h. Adding 12%H2O in Ar-75%CO2 leads significantly in weight change occurred at 10 h exposure. However, after 20 h, the weight gain was decreased due to spallation of the oxide scale. The addition of water vapour accelerates the oxidation rate on the steel than that in dry condition. Morphologies and growth kinetics of these oxides vary with reaction condition. The oxidation behaviour at different times of exposure and the effect of water vapour were discussed in correlation with the microstructure of the oxides.
    Matched MeSH terms: Corrosion
  10. Mohd Nazri Idris, Abdul Razak Daud, Nur Akma Mahat, Mohd Hafizuddin Ab Ghani, Norinsan Kamil Othman, Fathul Karim Sahrani
    Sains Malaysiana, 2015;44:1593-1598.
    The performance of pipeline system used in petroleum industry is crucially declined by natural microbial activities and
    demanding extra operational cost. Requirement on high capability of functional substances is attracting worldwide
    research interest. The aim of this paper was to study the effectiveness of benzyltriethylammonium chloride (BTC) on
    reducing the activity of a consortium bacteria consisting of sulfate-reducing bacteria (C-SRB). C-SRB was isolated from
    tropical crude oil and enumeration of this consortium was measured by viable cell count technique. The effectiveness of
    BTC was calculated from potentiodynamic polarization method and biofilm analysis was performed by scanning electron
    microscope. The viable cell count technique indicated that the maximum growth of C-SRB was approximately 160 trillion
    CFU/mL at 7 days incubation period. BTC was capable of reducing biocorrosion activity due to adsorption process and
    mitigating SRB species. Biofilm analysis has proven that C-SRB activity is minimized due to less presence of bacterial
    growth, extracellular polymeric substances and corrosion product. In conclusion, BTC is capable to inhibit C-SRB activity
    on biocorrosion of carbon steel pipeline.
    Matched MeSH terms: Corrosion
  11. Al-Dulaimi AA, Shahrir Hashim, Khan M
    Sains Malaysiana, 2011;40:1179-1186.
    Two inorganic pigments (TiO2 and SiO2) were used to prepare composites with polyaniline (PANI) by situ polymerization method. PANI and PANI composites with SiO2 and TiO2 were characterized using Fourier transform infrared spectroscopy and X-ray diffraction. The morphology of the synthesized pigments (PANI , PANI-SiO2 and PANI-TiO2) was examined using scanning electron microscopy. Samples were then used as pigments through blending them with acrylic paint and applied on the surface of carbon steel panels. Corrosion was evaluated for coating of carbon steel panels through full immersion test up to standard ASTMG 31. Mass loss was calculated after they have been exposed in acidic media. A digital camera was also used for monitoring corrosion visually on the surface of carbon steel specimens. The results revealed that acrylic paint pigmented by PANI-SiO2 composite was more efficient in corrosion protection for carbon steel compared with the other synthesized pigments.
    Matched MeSH terms: Corrosion
  12. Azani NFSM, Haafiz MKM, Zahari A, Poinsignon S, Brosse N, Hussin MH
    Int J Biol Macromol, 2020 Jun 15;153:385-398.
    PMID: 32145234 DOI: 10.1016/j.ijbiomac.2020.03.020
    Oil palm frond (OPF) is one of largest contributions to the biomass waste from oil palm plantation. In this work, OPF has been successfully utilized to prepare cellulose nanocrystal (OPF-CNC) by acid hydrolysis. OPF was initially treated with autohydrolysis treatment. The obtained OPF-CNC was characterized via complementary analyses. The produced OPF-CNC showed a high crystallinity index value (60%) and high BET surface area (26.10 m2 g-1) as compared to α-cellulose (crystallinity index: 54% and BET surface area:7.14 m2g-1). The surface analyses via scanning electron microscope (SEM) and transmission electron microscopy (TEM) demonstrated that the OPF-CNC has a smooth surface with a needle-like shape, where the average length and diameter are 95.09 nm and 6.81 nm, respectively. The corrosion analyses via electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PD) illustrate that the coated mild steel with the inclusion of 0.5 wt% OPF-CNC has managed to sharply reduce the corrosion (99%). The coated mild steel with the inclusion of 0.5 wt% OPF-CNC showed the highest hydrophobicity (100.5 ± 0.7°) and has lowest amount of O via water contact angle and energy dispersive X-ray spectroscopy (EDX) analyses respectively, indicating lowest corrosion rate.
    Matched MeSH terms: Corrosion
  13. Nur Azida Che Lah, Muhamad Hellmy Hussin
    MyJurnal
    Titanium (Ti) and Ti-based alloys presence the most widely applied as advanced biomaterials
    in biomedical implant applications. Moreover, these alloys are known to be the most
    valuable metallic materials including spinal cord surgical treatment. It becomes an interest
    due to its advantages compared to others, including its bio compatibility and corrosion
    resistant. However, an issue arises when it comes for permanent implant application as
    the alloy has a possible toxic effect produced from chemical reaction between body fluid
    environments with alloys chemical compositions. It also relies on the performance of
    neighbouring bone tissue to integrate with the implant surface. Abnormalities usually
    happen when surrounding tissue shows poor responses and rejection of implants that would
    leads to body inflammation. These cause an increase in foreign body reaction leading to
    severe body tissue response and thus, loosening of the implant. Corrosion effects and
    biocompatibility behaviour of implantation usage also become one of the reasons of
    implant damage. Here, this paper reviews the importance of using Ti and Ti-based alloys
    in biomedical implantation, especially in orthopaedic spinal cord injury. It also reviews the
    basic aspects of corrosion effects that lead to implant mechanical damage, poor response
    of body rejection and biocompatibility behaviour of implantation usage.
    Matched MeSH terms: Corrosion
  14. Thi S, Lee KM
    Bioresour Technol, 2019 Jun;282:525-529.
    PMID: 30898410 DOI: 10.1016/j.biortech.2019.03.065
    In this work, a novel solvent, deep eutectic solvent (DES) was applied to examine its effectiveness in pretreating OPEFB. Three types of DESs, i.e. choline chloride-lactic acid (ChCl-LA), choline chloride-urea (ChCl-U) and choline chloride-glycerol (ChCl-G) were investigated. The pretreatment performance was based on cellulose digestibility, structural and morphology changes. At molar ratio of 1:2, ChCl-LA attained the highest reducing sugars yield of 20.7%, followed by ChCl-G (20.0%) and ChCl-U (16.9%). FT-IR and SEM results further confirmed the outstanding ability of ChCl-LA due of its ability in cellulose, hemicellulose and lignin disruption, exposing its cellulose fraction to enzymatic hydrolysis. ChCl-LA is also more favorable compare to acid and alkaline solvents as it could prevent sugars loss, use of expensive corrosion resistant equipment and ease products separation.
    Matched MeSH terms: Corrosion
  15. Norinsan Kamil Othman, Solhan Yahya, Denni Asra Awizar
    Sains Malaysiana, 2016;45:1253-1258.
    Anticorrosive properties of nano silicate from paddy husk in salt medium was investigated via weight loss method, Tafel
    polarization and impedance techniques. Prior to the corrosion test, the silica powder was obtained from burning the
    rice husk and extended with a chemical treatment process. The size of silica powder was characterized via zeta sizer and
    showed the amount of micro silica particle appear more than the nano size particle. Nano silica powder was produced
    from the refluxing process of micro silica to enhance the good properties of silica particle. The corrosion inhibition
    efficiency of nano silicate showed good inhibition with increased in inhibitor concentrations. Weight loss test exhibits
    high inhibition as more than 80% even, immersed in the corrosive medium until 14 days. The nano silicate inhibitor
    affected the anodic reaction as showed by Tafel plot analysis. Impedance results also correlated with other test as shown
    by the large size of Nyquist semicircle which represents as high resistance of charge transfer. The surface morphology
    of inhibited specimen showed a smooth surface after nano silicate inhibitor applied in the NaCl medium as observed
    through scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX).
    Matched MeSH terms: Corrosion
  16. Fayeka M, Haseeb A, Fazal MA
    Sains Malaysiana, 2017;46:295-302.
    Sn-Ag based solder alloy seems to be a promising lead-free solder for the application on electronic assembly. The corrosion behavior of different lead free solder alloys such as Sn-3.0Ag, Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu was investigated in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to characterize the samples after the tests. The results showed that the addition of 0.5 wt. % copper with Sn-3.0 Ag solder alloy led to a better corrosion resistance while lowering of Ag content from 3.0 to 1.0 wt. % decreased the resistance. Sn-3.0Ag-0.5Cu exhibits a better corrosion resistance in terms of increased charge transfer resistance and impedance values as well as the lowest capacitance. These characteristics signify its suitability for the application in electronic packaging.
    Matched MeSH terms: Corrosion
  17. Samantaray MR, Mondal AK, Murugadoss G, Pitchaimuthu S, Das S, Bahru R, et al.
    Materials (Basel), 2020 Jun 19;13(12).
    PMID: 32575516 DOI: 10.3390/ma13122779
    This article provides an overview of the structural and physicochemical properties of stable carbon-based nanomaterials and their applications as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). The research community has long sought to harvest highly efficient third-generation DSSCs by developing carbon-based CEs, which are among the most important components of DSSCs. Since the initial introduction of DSSCs, Pt-based electrodes have been commonly used as CEs owing to their high-electrocatalytic activities, thus, accelerating the redox couple at the electrode/electrolyte interface to complete the circuit. However, Pt-based electrodes have several limitations due to their cost, abundance, complicated facility, and low corrosion resistance in a liquid electrolyte, which further restricts the large-area applications of DSSCs. Although carbon-based nanostructures showed the best potential to replace Pt-CE of DSSC, several new properties and characteristics of carbon-CE have been reported for future enhancements in this field. In this review, we discuss the detailed synthesis, properties, and performances of various carbonaceous materials proposed for DSSC-CE. These nano-carbon materials include carbon nanoparticles, activated carbon, carbon nanofibers, carbon nanotube, two-dimensional graphene, and hybrid carbon material composites. Among the CE materials currently available, carbon-carbon hybridized electrodes show the best performance efficiency (up to 10.05%) with a high fill factor (83%). Indeed, up to 8.23% improvements in cell efficiency may be achieved by a carbon-metal hybrid material under sun condition. This review then provides guidance on how to choose appropriate carbon nanomaterials to improve the performance of CEs used in DSSCs.
    Matched MeSH terms: Corrosion
  18. Lee HS, Park JH, Singh JK, Ismail MA
    Materials (Basel), 2016 Sep 03;9(9).
    PMID: 28773875 DOI: 10.3390/ma9090753
    Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance-a mixture of Cr3+ enriched with Cr₂O₃ and Cr-hydroxide in inner and Fe3+ oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions.
    Matched MeSH terms: Corrosion
  19. Al-Amiery AA, Kadhum AAH, Kadihum A, Mohamad AB, How CK, Junaedi S
    Materials (Basel), 2014 Jan 28;7(2):787-804.
    PMID: 28788488 DOI: 10.3390/ma7020787
    The efficiency of Schiff base derived from 4-aminoantipyrine, namely 2-(1,5-dimethyl-4-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene) hydrazinecarbothioamide as a corrosion inhibitor on mild steel in 1.0 M H2SO4 was investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PD) and electrochemical frequently modulation (EFM) in addition to the adsorption isotherm, corrosion kinetic parameters and scanning electron microscopy (SEM). The results showed that this inhibitor behaved as a good corrosion inhibitor, even at low concentration, with a mean efficiency of 93% and, also, a reduction of the inhibition efficiency as the solution temperature increases. A polarization technique and EIS were tested for different concentrations and different temperatures to reveal that this compound is adsorbed on the mild steel, therefore blocking the active sites, and the adsorption follows the Langmuir adsorption isotherm model. The excellent inhibition effectiveness of 2-(1,5-dimethyl-4-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene)hydrazinecarbothioamide was also verified by scanning electron microscope (SEM).
    Matched MeSH terms: Corrosion
  20. Kadhum AAH, Mohamad AB, Hammed LA, Al-Amiery AA, San NH, Musa AY
    Materials (Basel), 2014 Jun 05;7(6):4335-4348.
    PMID: 28788680 DOI: 10.3390/ma7064335
    A new coumarin derivative, N,N'-((2E,2'E)-2,2'-(1,4-phenylenebis (methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, (1)H-NMR and carbon-13 nuclear magnetic resonance (13)C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH.
    Matched MeSH terms: Corrosion
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links