Displaying publications 61 - 80 of 305 in total

Abstract:
Sort:
  1. Lean SS, Yeo CC, Suhaili Z, Thong KL
    Int J Antimicrob Agents, 2015 Feb;45(2):178-82.
    PMID: 25481460 DOI: 10.1016/j.ijantimicag.2014.10.015
    Acinetobacter baumannii has emerged as an important nosocomial pathogen owing to its increasing resistance to most, if not all, antibiotics in clinical use. We recently reported the occurrence of extensively drug-resistant (XDR) A. baumannii isolates in a Malaysian tertiary hospital. The genome of one of these XDR isolates (A. baumannii AC12) was completely sequenced and comparative genome analyses were performed to elucidate the genetic basis of its antimicrobial resistance. The A. baumannii AC12 genome consists of a 3.8 Mbp circular chromosome and an 8731 bp cryptic plasmid, pAC12. It belongs to the ST195 lineage and is most closely related to A. baumannii BJAB0715 as well as other strains of the international clone III (IC-III) group. Two antibiotic resistance islands (RIs), designated AC12-RI1 and AC12-RI2, were found in the AC12 chromosome along with a 7 kb Tn1548::armA island conferring resistance to aminoglycosides and macrolides. The 22.8 kb AC12-RI1 interrupts the comM gene and harbours the carbapenem resistance gene blaOXA-23 flanked by ISAba1 within a Tn2006-like structure. AC12-RI1 also harbours resistance determinants for aminoglycosides, tetracyclines and sulphonamides. The 10.3 kb IS26-flanked AC12-RI2 is a derivative of AbGRI2-1, containing aphA1b and blaTEM genes (conferring aminoglycoside and β-lactam resistance, respectively). The presence of numerous genes mediating resistance to various antibiotics in novel RI structures as well as other genes encoding drug transporters and efflux pumps in A. baumannii AC12 most likely contributed to its XDR characteristics.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics*
  2. Ng HF, Tan JL, Zin T, Yap SF, Ngeow YF
    J Med Microbiol, 2018 Dec;67(12):1676-1681.
    PMID: 30351265 DOI: 10.1099/jmm.0.000857
    In this study, we characterized 7C, a spontaneous mutant selected from tigecycline-susceptible Mycobacterium abscessus ATCC 19977. Whole-genome sequencing (WGS) was used to identify possible resistance determinants in this mutant. Compared to the wild-type, 7C demonstrated resistance to tigecycline as well as cross-resistance to imipenem, and had a slightly retarded growth rate. WGS and subsequent biological verifications showed that these phenotypes were caused by a point mutation in MAB_3542c, which encodes an RshA-like protein. In Mycobacterium tuberculosis, RshA is an anti-sigma factor that negatively regulates the heat/oxidative stress response mechanisms. The MAB_3542c mutation may represent a novel determinant of tigecycline resistance. We hypothesize that this mutation may dysregulate the stress-response pathways which have been shown to be linked to antibiotic resistance in previous studies.
    Matched MeSH terms: Drug Resistance, Bacterial*
  3. Ahmad N, Nawi S, Rajasekaran G, Maning N, Aziz MN, Husin A, et al.
    J Med Microbiol, 2010 Dec;59(Pt 12):1530-1532.
    PMID: 20724515 DOI: 10.1099/jmm.0.022079-0
    Matched MeSH terms: Drug Resistance, Bacterial*
  4. Lau HJ, Lim CH, Foo SC, Tan HS
    Curr Genet, 2021 Jun;67(3):421-429.
    PMID: 33585980 DOI: 10.1007/s00294-021-01156-5
    Antimicrobial resistance (AMR) in bacteria is a global health crisis due to the rapid emergence of multidrug-resistant bacteria and the lengthy development of new antimicrobials. In light of this, artificial intelligence in the form of machine learning has been viewed as a potential counter to delay the spread of AMR. With the aid of AI, there are possibilities to predict and identify AMR in bacteria efficiently. Furthermore, a combination of machine learning algorithms and lab testing can help to accelerate the process of discovering new antimicrobials. To date, many machine learning algorithms for antimicrobial-resistance discovery had been created and vigorously validated. Most of these algorithms produced accurate results and outperformed the traditional methods which relied on sequence comparison within a database. This mini-review will provide an updated overview of antimicrobial design workflow using the latest machine-learning antimicrobial discovery algorithms in the last 5 years. With this review, we hope to improve upon the current AMR identification and antimicrobial development techniques by introducing the use of AI into the mix, including how the algorithms could be made more effective.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics*
  5. Sadiq MB, Syed-Hussain SS, Ramanoon SZ, Saharee AA, Ahmad NI, Mohd Zin N, et al.
    Prev Vet Med, 2018 Aug 01;156:76-83.
    PMID: 29891148 DOI: 10.1016/j.prevetmed.2018.04.013
    The increasing public health problem of antimicrobial resistance (AMR) has been linked to the extensive antimicrobial use (AMU) in food animals. We conducted a survey among ruminant farmers in Selangor, Malaysia to assess their level of awareness on AMR, attitudes towards AMU, and determinants that influence their practices. The survey was developed in English and Malay, validated, and administered to ruminant farmers in Selangor. A total of 84 farmers (response rate of 55%) completed the structured questionnaire. They appeared to be little aware of AMR and the impact on animals and public health. Indications of inappropriate AMU include their misconception on conditions requiring antibiotic therapy and easy accessibility to antibiotics. More than 70% (60/84) of the respondents believed that all sick animals need to be given antimicrobials. Half of the farmers especially those involved in the production of small and large ruminants; namely mixed ruminant farmers (MRF) (63%, 31/49) indicated that antimicrobials do not have any side effects in animals. Sixty-four percent (54/84) of the farmers have stored antimicrobials in their farms of which the practice was more common (P = 0.02) among the MRF compared to the single ruminant farmers (SRF). Although most of the farmers felt good farm biosecurity will help reduce AMU, they were indifferent regarding using antimicrobials only when prescribed by a veterinarian and non-storage of antimicrobials for later uses. Farmers with larger herd size (>100 animals/herd) and few years of farming experience agreed more to the suggestions about their role and that of veterinarians respectively in reducing the drivers of AMR. These areas might need to be considered by advisors to inform ruminant farmers on AMR and to encourage them for prudent AMU in food-producing animals.
    Matched MeSH terms: Drug Resistance, Bacterial*
  6. Iskandar K, Sartelli M, Tabbal M, Ansaloni L, Baiocchi GL, Catena F, et al.
    World J Emerg Surg, 2019;14:50.
    PMID: 31832084 DOI: 10.1186/s13017-019-0266-x
    Antibiotics are the pillar of surgery from prophylaxis to treatment; any failure is potentially a leading cause for increased morbidity and mortality. Robust data on the burden of SSI especially those due to antimicrobial resistance (AMR) show variable rates between countries and geographical regions but accurate estimates of the incidence of surgical site infections (SSI) due to AMR and its related global economic impact are yet to be determined. Quantifying the burden of SSI treatment is an incentive to sensitize governments, healthcare systems, and the society to invest in quality improvement and sustainable development. However in the absence of a unified epidemiologically sound infection definition of SSI and a well-designed global surveillance system, the end result is a lack of accurate and reliable data that limits the comparability of estimates between countries and the possibility of tracking changes to inform healthcare professionals about the appropriateness of implemented infection prevention and control strategies. This review aims to highlight the reported gaps in surveillance methods, epidemiologic data, and evidence-based SSI prevention practices and in the methodologies undertaken for the evaluation of the economic burden of SSI associated with AMR bacteria. If efforts to tackle this problem are taken in isolation without a global alliance and data is still lacking generalizability and comparability, we may see the future as a race between the global research efforts for the advancement in surgery and the global alarming reports of the increased incidence of antimicrobial-resistant pathogens threatening to undermine any achievement.
    Matched MeSH terms: Drug Resistance, Bacterial*
  7. Ciraj AM, Vinod P, Sreejith G, Rajani K
    Indian J Pathol Microbiol, 2009 1 13;52(1):49-51.
    PMID: 19136780
    INTRODUCTION: Clinical failure of clindamycin therapy has been reported due to multiple mechanisms that confer resistance to macrolide, lincosamide and streptogramin antibiotics. This study was undertaken to detect the presence of inducible clindamycin resistance among clinical isolates of staphylococci.

    MATERIALS AND METHODS: The detection of inducible clindamycin resistance was performed by D-test using erythromycin and clindamycin discs as per CDC guidelines.

    RESULTS: Among the 244 clinical isolates of staphylococci studied, 32 (13.1%) showed inducible clindamycin resistance and belonged to the MLSBi phenotype. Among the MLS B i phenotypes, 10 isolates were methicillin-resistant Staphylococcus aureus (38.4% of the total MRSA), 16 were methicillin-sensitive Staphylococcus aureus (12.9% of the total MSSA) and 6 were coagulase-negative staphylococci (6.3% of the total CONS).

    CONCLUSION: The test for inducible resistance to clindamycin should be included in the routine antibiotic susceptibility testing, as it will help in guiding therapy.

    Matched MeSH terms: Drug Resistance, Bacterial*
  8. Lye YL, Bong CW, Lee CW, Zhang RJ, Zhang G, Suzuki S, et al.
    Sci Total Environ, 2019 Oct 20;688:1335-1347.
    PMID: 31726563 DOI: 10.1016/j.scitotenv.2019.06.304
    The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMXr) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L-1 with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMXr-bacteria (107 CFU mL-1) and SRGs (10-1/16S copies mL-1). Pearson correlation showed only positive correlation between the PO4 and SMXr-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMXr-bacteria and SRGs in the river.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics*
  9. Wen X, Mi J, Wang Y, Ma B, Zou Y, Liao X, et al.
    Ecotoxicol Environ Saf, 2019 May 30;173:96-102.
    PMID: 30769208 DOI: 10.1016/j.ecoenv.2019.02.023
    Livestock farms are commonly regarded as the main sources of antibiotic resistance genes (ARGs), emerging pollutants with potential implications for human health, in the environment. This study investigated the occurrence and contamination profiles of nine ARGs of three types from swine manure to receiving environments (soil and water) in Guangdong Province, southern China. All ARGs occurred in 100% of swine manure samples. Moreover, the absolute concentration of total ARGs varied from 3.01 × 108 to 7.18 × 1014 copies/g, which was significantly higher than that in wastewater and manured soil (p  0.05). However, the number of ARGs (ermB, qnrS, acc(6')-Ib, tetM, tetO and tetQ) decreased but were not eliminated by wastewater treatment components (p 
    Matched MeSH terms: Drug Resistance, Bacterial/genetics*
  10. Thornber K, Huso D, Rahman MM, Biswas H, Rahman MH, Brum E, et al.
    Glob Health Action, 2019;12(sup1):1734735.
    PMID: 32153258 DOI: 10.1080/16549716.2020.1734735
    One of the key strategic objectives of the World Health Organisation's global antimicrobial resistance (AMR) action plan is to improve public awareness and understanding of this issue. Very few AMR awareness campaigns have targeted the animal production sector, particularly in low- and middle-income countries (LMICs) where rural communities can be geographically difficult to access via traditional face-to-face community engagement methods. Aquaculture is a major food production industry in Bangladesh and across Asia, an area which poses a significant risk to global AMR dissemination. In this pilot study, we sought to investigate the potential for digital communication materials to rapidly and effectively communicate AMR messages to rural aquaculture farmers in Bangladesh. Working with stakeholders from the Bangladesh aquaculture industry, we developed a 4-minute digital animation designed specifically for this audience and assessed its capacity to engage and communicate AMR messages to farmers. We then conducted a small-scale social media campaign, to determine the potential for rapidly disseminating AMR awareness materials to a large audience across Bangladesh, where there is an extensive 4 G internet network and an ever-increasing proportion of the population (57% as of December 2019) have mobile internet access. Thirty-six farmers were surveyed: all of them liked this method of communication and 97% said it would change the way they use antibiotics in the future. Through the social media campaign, the animation received 9,100 views in the first 2 weeks alone. Although preliminary, these results demonstrate the huge potential for digital communication methods for the rapid and widespread communication of AMR awareness materials to rural aquaculture communities in Bangladesh and across Asia. Our results support the need for more research into the most appropriate and effective content of AMR awareness campaigns for aquaculture communities and question the need for explaining the science underlying AMR in such communication materials.
    Matched MeSH terms: Drug Resistance, Bacterial*
  11. AlMatar M, Makky EA, Var I, Kayar B, Köksal F
    Pharmacol Rep, 2018 Apr;70(2):217-226.
    PMID: 29475004 DOI: 10.1016/j.pharep.2017.09.001
    Tuberculosis (TB) is described as lethal disease in the world. Resistant to TB drugs is the main reason to have unfavourable outcomes in the treatment of TB. Therefore, new agents to replace existing drugs are urgently needed. Previous reports suggested that InhA inhibitors, an enoyl-ACP-reductase, might provide auspicious candidates which can be developed into novel antitubercular agents. In this review, we explain the role of InhA in the resistance of isoniazid. Furthermore, five classes of InhA inhibitors, which display novel binding modes and deliver evidence of their prosperous target engagement, have been debated.
    Matched MeSH terms: Drug Resistance, Bacterial/drug effects
  12. AlMatar M, Albarri O, Makky EA, Köksal F
    Pharmacol Rep, 2021 Feb;73(1):1-16.
    PMID: 32946075 DOI: 10.1007/s43440-020-00160-9
    The discovery of antibiotics ought to have ended the issue of bacterial infections, but this was not the case as it has led to the evolution of various mechanisms of bacterial resistance against various antibiotics. The efflux pump remains one of the mechanisms through which organisms develop resistance against antibiotics; this is because organisms can extrude most of the clinically relevant antibiotics from the interior cell environment to the exterior environment via the efflux pumps. Efflux pumps are thought to contribute significantly to biofilm formation as highlighted by various studies. Therefore, the inhibition of these efflux pumps can be a potential way of improving the activity of antibiotics, particularly now that the discovery of novel antibiotics is becoming tedious. Efflux pump inhibitors (EPIs) are molecules that can inhibit efflux pumps; they have been considered potential therapeutic agents for rejuvenating the activity of antibiotics that have already lost their activity against bacteria. However, studies are yet to determine the specific substrates for such pumps; the effect of altered efflux activity of these pumps on biofilm formation is still being investigated. A clear knowledge of the involvement of efflux pumps in biofilm development could aid in developing new agents that can interfere with their function and help to prevent biofilms formation; thereby, improving the outcome of treatment strategies. This review focuses on the novel update of EPIs and discusses the evidence of the roles of efflux pumps in biofilm formation; the potential approaches towards overcoming the increasing problem of biofilm-based infections are also discussed.
    Matched MeSH terms: Drug Resistance, Bacterial/drug effects*
  13. Jindal HM, Ramanathan B, Le CF, Gudimella R, Razali R, Manikam R, et al.
    J Biomed Sci, 2018 Feb 15;25(1):15.
    PMID: 29448938 DOI: 10.1186/s12929-018-0414-8
    BACKGROUND: Streptococcus pneumoniae or pneumococcus is a leading cause of morbidity and mortality worldwide, specifically in relation to community-acquired pneumonia. Due to the overuse of antibiotics, S. pneumoniae has developed a high degree of resistance to a wide range of antibacterial drugs.

    METHODS: In this study, whole genome sequencing (WGS) was performed for 10 clinical strains of S. pneumoniae with different levels of sensitivity to standard antibiotics. The main objective was to investigate genetic changes associated with antibiotic resistance in S. pneumoniae.

    RESULTS: Our results showed that resistant isolates contain a higher number of non-synonymous single nucleotide polymorphisms (SNPs) as compared to susceptible isolates. We were able to identify SNPs that alter a single amino acid in many genes involved in virulence and capsular polysaccharide synthesis. In addition, 90 SNPs were only presented in the resistant isolates, and 31 SNPs were unique and had not been previously reported, suggesting that these unique SNPs could play a key role in altering the level of resistance to different antibiotics.

    CONCLUSION: Whole genome sequencing is a powerful tool for comparing the full genome of multiple isolates, especially those closely related, and for analysing the variations found within antibiotic resistance genes that lead to differences in antibiotic sensitivity. We were able to identify specific mutations within virulence genes related to resistant isolates. These findings could provide insights into understanding the role of single nucleotide mutants in conferring drug resistance.

    Study site: University Malaya Medical Centre (UMMC)
    Matched MeSH terms: Drug Resistance, Bacterial/genetics*
  14. Yap PS, Cheng WH, Chang SK, Lim SE, Lai KS
    Cells, 2022 Sep 26;11(19).
    PMID: 36230959 DOI: 10.3390/cells11192995
    There has been a resurgence in the clinical use of polymyxin antibiotics such as colistin due to the limited treatment options for infections caused by carbapenem-resistant Enterobacterales (CRE). However, this last-resort antibiotic is currently confronted with challenges which include the emergence of chromosomal and plasmid-borne colistin resistance. Colistin resistance in Klebsiella pneumoniae is commonly caused by the mutations in the chromosomal gene mgrB. MgrB spans the inner membrane and negatively regulates PhoP phosphorylation, which is essential for bacterial outer membrane lipid biosynthesis. The present review intends to draw attention to the role of mgrB chromosomal mutations in membrane permeability in K. pneumoniae that confer colistin resistance. With growing concern regarding the global emergence of colistin resistance, deciphering physical changes of the resistant membrane mediated by mgrB inactivation may provide new insights for the discovery of novel antimicrobials that are highly effective at membrane penetration, in addition to finding out how this can help in alleviating the resistance situation.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics
  15. Klayut W, Rudeeaneksin J, Srisungngam S, Bunchoo S, Bhakdeenuan P, Phetsuksiri B, et al.
    Trop Biomed, 2022 Dec 01;39(4):483-488.
    PMID: 36602205 DOI: 10.47665/tb.39.4.001
    Tuberculosis (TB) continues to be a major public health problem in Thailand and many countries. Endemic TB and outbreaks of TB drug resistance in the borderlands are particularly important. The Thailand-Myanmar border has extensive cross-border travel that may accelerate TB's spread. This cross-sectional study aimed to determine the frequency and factors associated with TB, and rifampicinresistant TB (RR-TB) among presumptive tuberculosis patients in Mae Sot Hospital. Sputum was processed by microscopic examination and Xpert MTB/RIF assay. Laboratory results and socio-demographic characteristics were collected and analyzed. Univariate and multivariate analyses were performed to assess the association of the risk factors with TB and RR-TB. The significant variables at p-values < 0.05 in univariate analysis were selected for multivariate analysis. Of 365 presumptive patients enrolled, 244 (66.85%) were males and 199 (54.52%) were Burmese. Of these, 314 (86.03%) were registered as new cases and 183 (50.14%) worked as laborers. Sputum microscopy was positive in 132 (36.16%) cases. Based on Xpert MTB/RIF, the frequency of TB was 136 (37.26%) and RR-TB was 15 (11.03%). TB was more common in males than females. The majority of the cases belonged to the 26-50-year-old age group and migrant workers. In RR-TB detection, the rpoB mutations covered by probe E were the most frequently observed. Sequencing showed that the most highly mutated codon was codon 531 and Ser531Thr was the most common mutation. For risk factor analysis, working as laborers was significantly (p-value < 0.05) associated with TB (aOR 2.83; 95% CI 1.43-5.63) and previously treated cases were significantly associated with RR-TB (aOR 12.33; 95% CI 2.29-66.49). The high frequency of TB and RR-TB in migrants highlights the problem and factors associated with TB at the border and the need for efforts in TB control programs in this setting.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics
  16. Harbarth S, Tuan Soh S, Horner C, Wilcox MH
    J Hosp Infect, 2014 Aug;87(4):194-202.
    PMID: 24996517 DOI: 10.1016/j.jhin.2014.04.012
    Given the breadth and depth of antiseptic use, it is surprising how few large-scale studies have been undertaken into the consequences of their use, particularly in clinical practice. Depending on your point of view, this may either reflect an assurance that reduced susceptibility to antiseptics, and notably whether this confers cross-resistance to systemically administered antimicrobial agents, is not an issue of concern, or relative ignorance about the potential threat.
    Matched MeSH terms: Drug Resistance, Bacterial*
  17. Lemlem M, Aklilu E, Mohammed M, Kamaruzzaman F, Zakaria Z, Harun A, et al.
    PLoS One, 2023;18(5):e0285743.
    PMID: 37205716 DOI: 10.1371/journal.pone.0285743
    Antimicrobial resistance is one of the major public health threats globally. This challenge has been aggravated with the overuse and misuse of antibiotics in food animals and humans. The present study aimed to investigate the prevalence of Extended-Spectrum β-lactamase (ESBL) genes in Escherichia coli (E. coli) isolated from broiler chickens in Kelantan, Malaysia. A total of 320 cloacal swabs were collected from farms in different districts of Kelantan and were analyzed using routine bacteriology, antimicrobial susceptibility test, and molecular techniques for further identification and characterization of ESBL encoding genes. Based on PCR detection for the E. coli species-specific Pho gene, 30.3% (97/320) of isolates were confirmed as E. coli, and 84.5% (82/97) of the isolates were positive for at least one ESBL gene. Majority of the isolates, 62.9% (61/97) were harboring blaCTX-M followed by 45.4% (44/97) of blaTEM genes, while 16.5% (16/97) of the isolates were positive for both mcr-1 and ESBL genes. Overall, 93.8% (90/97) of the E. coli were resistant to three or more antimicrobials; indicating that the isolates were multi-drug resistance. 90.7% of multiple antibiotic resistance (MAR) index value greater than 0.2, would also suggest the isolates were from high-risk sources of contamination. The MLST result shows that the isolates are widely diverse. Our findings provide insight into the alarmingly high distribution of antimicrobial resistant bacteria, mainly ESBL producing E. coli in apparently healthy chickens indicating the role of food animals in the emergence and spread of antimicrobial resistance, and the potential public health threats it may pose.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics
  18. Shahimi S, Elias A, Abd Mutalib S, Salami M, Fauzi F, Mohd Zaini NA, et al.
    Environ Sci Pollut Res Int, 2021 Aug;28(32):44002-44013.
    PMID: 33846919 DOI: 10.1007/s11356-021-13665-4
    A total of 24 strains of Vibrio alginolyticus were isolated from cockles (Anadara granosa) and identified for VibA and gyrB genes. All V. alginolyticus isolates were then tested against nine different antibiotics. In this study, the highest percentage of antibiotic resistance was obtained against penicillin (37.50%), followed by ampicillin, vancomycin (12.50%) and erythromycin (8.33%). All of V. alginolyticus isolates were susceptible against streptomycin, kanamycin, tetracycline, chloramphenicol and sulfamethoxazole. Polymerase chain reaction (PCR) assay has confirmed the presence of four antibiotic resistance genes of penicillin (pbp2a), ampicillin (blaOXA), erythromycin (ermB) and vancomycin (vanB). Out of 24 V. alginolyticus isolates, 2 isolates possessed the tdh-related hemolysin (trh) (strains VA15 and VA16) and none for the thermostable direct hemolysin (tdh) gene. Both strains of the tdh-related hemolysin (trh) were susceptible to all antibiotics tested. The multiple antibiotic resistance (MAR) index ranging between 0.2 and 0.3 with 5 antibiograms (A1-A5) was observed. Combination of enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and antibiotic resistance indicated 18 genome types which showed genetic heterogeneity of those V. alginolyticus isolates. The results demonstrated the presence of V. alginolyticus strain found in cockles can be a potential risk to consumers and can contribute to the deterioration of human health in the study area. Thus, it is essential for local authority to provide the preventive measures in ensuring the cockles are safe for consumption.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics
  19. Jamil A, Noor NM, Osman AS, Baseri MM, Muthupalaniappen L
    Indian J Dermatol Venereol Leprol, 2013 Jul-Aug;79(4):527-9.
    PMID: 23760326 DOI: 10.4103/0378-6323.113096
    Matched MeSH terms: Drug Resistance, Bacterial/drug effects; Drug Resistance, Bacterial/physiology
  20. Dhabaan GN, AbuBakar S, Cerqueira GM, Al-Haroni M, Pang SP, Hassan H
    Antimicrob Agents Chemother, 2015 Dec 14;60(3):1370-6.
    PMID: 26666943 DOI: 10.1128/AAC.01696-15
    Acinetobacter baumannii has emerged as a notorious multidrug-resistant pathogen, and development of novel control measures is of the utmost importance. Understanding the factors that play a role in drug resistance may contribute to the identification of novel therapeutic targets. Pili are essential for A. baumannii adherence to and biofilm formation on abiotic surfaces as well as virulence. In the present study, we found that biofilm formation was significantly induced in an imipenem-resistant (Imp(r)) strain treated with a subinhibitory concentration of antibiotic compared to that in an untreated control and an imipenem-susceptible (Imp(s)) isolate. Using microarray and quantitative PCR analyses, we observed that several genes responsible for the synthesis of type IV pili were significantly upregulated in the Imp(r) but not in the Imp(s) isolate. Notably, this finding is corroborated by an increase in the motility of the Imp(r) strain. Our results suggest that the ability to overproduce colonization factors in response to imipenem treatment confers biological advantage to A. baumannii and may contribute to clinical success.
    Matched MeSH terms: Drug Resistance, Bacterial/drug effects; Drug Resistance, Bacterial/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links