Displaying publications 61 - 80 of 1559 in total

Abstract:
Sort:
  1. Ong WD, Okubo-Kurihara E, Kurihara Y, Shimada S, Makita Y, Kawashima M, et al.
    Plant Cell Physiol, 2017 01 01;58(1):95-105.
    PMID: 28011868 DOI: 10.1093/pcp/pcw181
    Plants have a remarkable ability to perceive and respond to various wavelengths of light and initiate regulation of different cascades of light signaling and molecular components. While the perception of red light and the mechanisms of its signaling involving phytochromes are largely known, knowledge of the mechanisms of blue light signaling is still limited. Chemical genetics involves the use of diverse small active or synthetic molecules to evaluate biological processes. By combining chemicals and analyzing the effects they have on plant morphology, we identified a chemical, 3-bromo-7-nitroindazole (3B7N), that promotes hypocotyl elongation of wild-type Arabidopsis only under continuous blue light. Further evaluation with loss-of-function mutants confirmed that 3B7N inhibits photomorphogenesis through cryptochrome-mediated light signaling. Microarray analysis demonstrated that the effect of 3B7N treatment on gene expression in cry1cry2 is considerably smaller than that in the wild type, indicating that 3B7N specifically interrupts cryptochrome function in the control of seedling development in a light-dependent manner. We demonstrated that 3B7N directly binds to CRY1 protein using an in vitro binding assay. These results suggest that 3B7N is a novel chemical that directly inhibits plant cryptochrome function by physical binding. The application of 3B7N can be used on other plants to study further the blue light mechanism and the genetic control of cryptochromes in the growth and development of plant species.
    Matched MeSH terms: Gene Expression Regulation, Plant/drug effects; Gene Expression Regulation, Plant/radiation effects; Gene Expression Regulation, Developmental/drug effects; Gene Expression Regulation, Developmental/radiation effects; Gene Expression Profiling/methods
  2. Moorthy K, Jaber AN, Ismail MA, Ernawan F, Mohamad MS, Deris S
    Methods Mol Biol, 2019;1986:255-266.
    PMID: 31115893 DOI: 10.1007/978-1-4939-9442-7_12
    In gene expression studies, missing values are a common problem with important consequences for the interpretation of the final data (Satija et al., Nat Biotechnol 33(5):495, 2015). Numerous bioinformatics examination tools are used for cancer prediction, including the data set matrix (Bailey et al., Cell 173(2):371-385, 2018); thus, it is necessary to resolve the problem of missing-values imputation. This chapter presents a review of the research on missing-values imputation approaches for gene expression data. By using local and global correlation of the data, we were able to focus mostly on the differences between the algorithms. We classified the algorithms as global, hybrid, local, or knowledge-based techniques. Additionally, this chapter presents suitable assessments of the different approaches. The purpose of this review is to focus on developments in the current techniques for scientists rather than applying different or newly developed algorithms with identical functional goals. The aim was to adapt the algorithms to the characteristics of the data.
    Matched MeSH terms: Gene Expression Profiling*
  3. Reza Etemadi M, Ling KH, Zainal Abidin S, Chee HY, Sekawi Z
    PLoS One, 2017;12(5):e0176947.
    PMID: 28558071 DOI: 10.1371/journal.pone.0176947
    Human rhinovirus (HRV) is the common virus that causes acute respiratory infection (ARI) and is frequently associated with lower respiratory tract infections (LRTIs). We aimed to investigate whether HRV infection induces a specific gene expression pattern in airway epithelial cells. Alveolar epithelial cell monolayers were infected with HRV species B (HRV-B). RNA was extracted from both supernatants and infected monolayer cells at 6, 12, 24 and 48 hours post infection (hpi) and transcriptional profile was analyzed using Affymetrix GeneChip and the results were subsequently validated using quantitative Real-time PCR method. HRV-B infects alveolar epithelial cells which supports implication of the virus with LRTIs. In total 991 genes were found differentially expressed during the course of infection. Of these, 459 genes were up-regulated whereas 532 genes were down-regulated. Differential gene expression at 6 hpi (187 genes up-regulated vs. 156 down-regulated) were significantly represented by gene ontologies related to the chemokines and inflammatory molecules indicating characteristic of viral infection. The 75 up-regulated genes surpassed the down-regulated genes (35) at 12 hpi and their enriched ontologies fell into discrete functional entities such as regulation of apoptosis, anti-apoptosis, and wound healing. At later time points of 24 and 48 hpi, predominated down-regulated genes were enriched for extracellular matrix proteins and airway remodeling events. Our data provides a comprehensive image of host response to HRV infection. The study suggests the underlying molecular regulatory networks genes which might be involved in pathogenicity of the HRV-B and potential targets for further validations and development of effective treatment.
    Matched MeSH terms: Gene Expression Profiling*
  4. Chin KCJ, Taylor TD, Hebrard M, Anbalagan K, Dashti MG, Phua KK
    BMC Genomics, 2017 Oct 31;18(1):836.
    PMID: 29089020 DOI: 10.1186/s12864-017-4212-6
    BACKGROUND: Typhoid fever is an acute systemic infection of humans caused by Salmonella enterica subspecies enterica serovar Typhi (S. Typhi). In chronic carriers, the bacteria survive the harsh environment of the gallbladder by producing biofilm. The phenotype of S. Typhi biofilm cells is significantly different from the free-swimming planktonic cells, and studies have shown that they are associated with antibiotic resistance, immune system evasion, and bacterial persistence. However, the mechanism of this transition and the events leading to biofilm formation are unknown. High throughput sequencing was performed to identify the genes involved in biofilm formation and to postulate the mechanism of action.

    RESULTS: Planktonic S. Typhi cells were cultured using standard nutrient broth whereas biofilm cells were cultured in a stressful environment using high shearing-force and bile to mimic the gallbladder. Sequencing libraries were prepared from S. Typhi planktonic cells and mature biofilm cells using the Illumina HiSeq 2500 platform, and the transcriptome data obtained were processed using Cufflinks bioinformatics suite of programs to investigate differential gene expression between the two phenotypes. A total of 35 up-regulated and 29 down-regulated genes were identified. The identities of the differentially expressed genes were confirmed using NCBI BLAST and their functions were analyzed. The results showed that the genes associated with metabolic processes and biofilm regulations were down-regulated while those associated with the membrane matrix and antibiotic resistance were highly up-regulated.

    CONCLUSIONS: It is proposed that the biofilm phenotype of S. Typhi allows the bacteria to increase production of the membrane matrix in order to serve as a physical shield and to adhere to surfaces, and enter an energy conservation state in response to the stressful environment. Conversely, the planktonic phenotype allows the bacteria to produce flagella and increase metabolic activity to enable the bacteria to migrate and form new colonies of infection. This data provide a basis for further studies to uncover the mechanism of biofilm formation in S. Typhi and to discover novel genes or pathways associated with the development of the typhoid carrier state.

    Matched MeSH terms: Gene Expression Regulation, Bacterial*
  5. Sim EU, Ng KL, Lee CW, Narayanan K
    Biomed Res Int, 2017;2017:4876954.
    PMID: 28791303 DOI: 10.1155/2017/4876954
    The association of ribosomal proteins with carcinogenesis of nasopharyngeal carcinoma (NPC) has been established in a limited subset of ribosomal protein genes. To date, three ribosomal protein genes, eL27 (L27), eL41 (L41), and eL43 (L37a), have been found to be differentially expressed in cell lines derived from NPC tumors. This raises the possibility of more ribosomal protein genes that could be associated with NPC. In this study, we investigated the expression profiles of eight ribosomal protein genes, uS8 (S8), uS4 (S9), eS31 (S27a), eL6 (L6), eL18 (L18), uL14 (L23), eL24 (L24), and eL30 (L30), in six NPC-derived cell lines (HONE-1, SUNE1, HK1, TW01, TW04, and C666-1). Their expression levels were compared with that of a nonmalignant nasopharyngeal epithelial cell line (NP69) using quantitative real-time PCR (RT-qPCR) assay. Of the eight genes studied, the expressions of four ribosomal protein genes uS8 (S8), uS4 (S9), eS31 (S27a), and uL14 (L23) were found to be significantly downregulated in NPC cell lines relative to NP69. Our findings provide novel empirical evidence of these four ribosomal protein genes as NPC-associated genetic factors and reinforce the relevance of ribosomal proteins in the carcinogenesis of nasopharyngeal cancer.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic*
  6. Nadarajah K, Kumar IS
    Int J Mol Sci, 2019 Aug 01;20(15).
    PMID: 31374851 DOI: 10.3390/ijms20153766
    As a semi-aquatic plant, rice requires water for proper growth, development, and orientation of physiological processes. Stress is induced at the cellular and molecular level when rice is exposed to drought or periods of low water availability. Plants have existing defense mechanisms in planta that respond to stress. In this review we examine the role played by miRNAs in the regulation and control of drought stress in rice through a summary of molecular studies conducted on miRNAs with emphasis on their contribution to drought regulatory networks in comparison to other plant systems. The interaction between miRNAs, target genes, transcription factors and their respective roles in drought-induced stresses is elaborated. The cross talk involved in controlling drought stress responses through the up and down regulation of targets encoding regulatory and functional proteins is highlighted. The information contained herein can further be explored to identify targets for crop improvement in the future.
    Matched MeSH terms: Gene Expression Regulation, Plant*
  7. Samad AFA, Kamaroddin MF, Sajad M
    Adv Nutr, 2021 Feb 01;12(1):197-211.
    PMID: 32862223 DOI: 10.1093/advances/nmaa095
    microRNAs (miRNAs) are well known as major players in mammalian and plant genetic systems that act by regulating gene expression at the post-transcriptional level. These tiny molecules can regulate target genes (mRNAs) through either cleavage or translational inhibition. Recently, the discovery of plant-derived miRNAs showing cross-kingdom abilities to regulate mammalian gene expression has prompted exciting discussions among researchers. After being acquired orally through the diet, plant miRNAs can survive in the digestive tract, enter the circulatory system, and regulate endogenous mRNAs. Here, we review current knowledge regarding the cross-kingdom mechanisms of plant miRNAs, related controversies, and potential applications of these miRNAs in dietary therapy, which will provide new insights for plant miRNA investigations related to health issues in humans.
    Matched MeSH terms: Gene Expression Regulation, Plant*
  8. Ealam Selvan M, Lim KS, Teo CH, Lim YY
    J Vis Exp, 2022 Oct 21.
    PMID: 36342167 DOI: 10.3791/64565
    Circular RNAs (circRNAs) are a class of non-coding RNAs that are formed via back-splicing. These circRNAs are predominantly studied for their roles as regulators of various biological processes. Notably, emerging evidence demonstrates that host circRNAs can be differentially expressed (DE) upon infection with pathogens (e.g., influenza and coronaviruses), suggesting a role for circRNAs in regulating host innate immune responses. However, investigations on the role of circRNAs during pathogenic infections are limited by the knowledge and skills required to carry out the necessary bioinformatic analysis to identify DE circRNAs from RNA sequencing (RNA-seq) data. Bioinformatics prediction and identification of circRNAs is crucial before any verification, and functional studies using costly and time-consuming wet-lab techniques. To solve this issue, a step-by-step protocol of in silico prediction and characterization of circRNAs using RNA-seq data is provided in this manuscript. The protocol can be divided into four steps: 1) Prediction and quantification of DE circRNAs via the CIRIquant pipeline; 2) Annotation via circBase and characterization of DE circRNAs; 3) CircRNA-miRNA interaction prediction through Circr pipeline; 4) functional enrichment analysis of circRNA parental genes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). This pipeline will be useful in driving future in vitro and in vivo research to further unravel the role of circRNAs in host-pathogen interactions.
    Matched MeSH terms: Gene Expression Profiling/methods
  9. Das S, Kumar S
    J Med Virol, 2023 Sep;95(9):e29077.
    PMID: 37675861 DOI: 10.1002/jmv.29077
    Long coronavirus disease (COVID) has emerged as a global health issue, affecting a substantial number of people worldwide. However, the underlying mechanisms that contribute to the persistence of symptoms in long COVID remain obscure, impeding the development of effective diagnostic and therapeutic interventions. In this study, we utilized computational methods to examine the gene expression profiles of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and their associations with the wide range of symptoms observed in long COVID patients. Using a comprehensive data set comprising over 255 symptoms affecting multiple organ systems, we identified differentially expressed genes and investigated their functional similarity, leading to the identification of key genes with the potential to serve as biomarkers for long COVID. We identified the participation of hub genes associated with G-protein-coupled receptors (GPCRs), which are essential regulators of T-cell immunity and viral infection responses. Among the identified common genes were CTLA4, PTPN22, KIT, KRAS, NF1, RET, and CTNNB1, which play a crucial role in modulating T-cell immunity via GPCR and contribute to a variety of symptoms, including autoimmunity, cardiovascular disorders, dermatological manifestations, gastrointestinal complications, pulmonary impairments, reproductive and genitourinary dysfunctions, and endocrine abnormalities. GPCRs and associated genes are pivotal in immune regulation and cellular functions, and their dysregulation may contribute to the persistent immune responses, chronic inflammation, and tissue abnormalities observed in long COVID. Targeting GPCRs and their associated pathways could offer promising therapeutic strategies to manage symptoms and improve outcomes for those experiencing long COVID. However, the complex mechanisms underlying the condition require continued study to develop effective treatments. Our study has significant implications for understanding the molecular mechanisms underlying long COVID and for identifying potential therapeutic targets. In addition, we have developed a comprehensive website (https://longcovid.omicstutorials.com/) that provides a curated list of biomarker-identified genes and treatment recommendations for each specific disease, thereby facilitating informed clinical decision-making and improved patient management. Our study contributes to the understanding of this debilitating disease, paving the way for improved diagnostic precision, and individualized therapeutic interventions.
    Matched MeSH terms: Gene Expression Profiling*
  10. Sahebi M, Hanafi MM, Rafii MY, Mahmud TMM, Azizi P, Osman M, et al.
    Biomed Res Int, 2018;2018:3158474.
    PMID: 30175125 DOI: 10.1155/2018/3158474
    Drought tolerance is an important quantitative trait with multipart phenotypes that are often further complicated by plant phenology. Different types of environmental stresses, such as high irradiance, high temperatures, nutrient deficiencies, and toxicities, may challenge crops simultaneously; therefore, breeding for drought tolerance is very complicated. Interdisciplinary researchers have been attempting to dissect and comprehend the mechanisms of plant tolerance to drought stress using various methods; however, the limited success of molecular breeding and physiological approaches suggests that we rethink our strategies. Recent genetic techniques and genomics tools coupled with advances in breeding methodologies and precise phenotyping will likely reveal candidate genes and metabolic pathways underlying drought tolerance in crops. The WRKY transcription factors are involved in different biological processes in plant development. This zinc (Zn) finger protein family, particularly members that respond to and mediate stress responses, is exclusively found in plants. A total of 89 WRKY genes in japonica and 97 WRKY genes in O. nivara (OnWRKY) have been identified and mapped onto individual chromosomes. To increase the drought tolerance of rice (Oryza sativa L.), research programs should address the problem using a multidisciplinary strategy, including the interaction of plant phenology and multiple stresses, and the combination of drought tolerance traits with different genetic and genomics approaches, such as microarrays, quantitative trait loci (QTLs), WRKY gene family members with roles in drought tolerance, and transgenic crops. This review discusses the newest advances in plant physiology for the exact phenotyping of plant responses to drought to update methods of analysing drought tolerance in rice. Finally, based on the physiological/morphological and molecular mechanisms found in resistant parent lines, a strategy is suggested to select a particular environment and adapt suitable germplasm to that environment.
    Matched MeSH terms: Gene Expression Regulation, Plant*
  11. Pasha F, Alatawi A, Amir M, Faridi U
    Pak J Biol Sci, 2020 Jan;23(8):1086-1095.
    PMID: 32700860 DOI: 10.3923/pjbs.2020.1086.1095
    BACKGROUND AND OBJECTIVE: The epidemiology of Nipah virus (NiV) was shortly seen in many Asian countries like Malaysia, Bangladesh and India most recently. Nipah virus also synonym as bat born virus is transmitted primarily by fruit bats. The 2 different strains transmitted are Hendra (highly pathogenic) and Cedar (non-pathogenic). The present study was attempt to develop recombinant protein based reagents for molecular diagnosis of Nipah.

    MATERIALS AND METHODS: The different primer sets were developed using bioinformatics software DNASTAR. The E. coli cells were used for recombinant protein expression.

    RESULTS: The NiV 'G' region primers were designed and amplified for 1 kb fragment and cloned. The NiV 'G' fragments were sub-cloned in pET-28(+) B and pGEX-5x-1. Recombinant protein thus obtained in soluble form in both the cases was essayed using western blot. The result showed the protein expression yield was more in pET-28(+) B with low stability and vice versa for pGEX-5x-1.

    CONCLUSION: The antibodies raised from the protein can be used as diagnostic reagent for detection of NiV. Thus, a new diagnostic technique can be industrialized.

    Matched MeSH terms: Gene Expression Regulation, Viral*
  12. Osei GY, Adu-Amankwaah J, Koomson S, Beletaa S, Asiamah EA, Smith-Togobo C, et al.
    Mol Biol Rep, 2023 Nov;50(11):9575-9585.
    PMID: 37776413 DOI: 10.1007/s11033-023-08810-w
    Colorectal cancer (CRC) is a serious global health concern, with a high incidence and mortality rate. Although there have been advancements in the early detection and treatment of CRC, therapy resistance is common. MicroRNAs (miRNAs), a type of small non-coding RNA that regulates gene expression, are key players in the initiation and progression of CRC. Recently, there has been growing attention to the complex interplay of miRNAs in cancer development. miRNAs are powerful RNA molecules that regulate gene expression and have been implicated in various physiological and pathological processes, including carcinogenesis. By identifying current challenges and limitations of treatment strategies and suggesting future research directions, this review aims to contribute to ongoing efforts to enhance CRC diagnosis and treatment. It also provides a comprehensive overview of the role miRNAs play in CRC carcinogenesis and explores the potential of miRNA-based therapies as a treatment option. Importantly, this review highlights the exciting potential of targeted modulation of miRNA function as a therapeutic approach for CRC.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic/genetics
  13. Ali Hassan NZ, Mokhtar NM, Kok Sin T, Mohamed Rose I, Sagap I, Harun R, et al.
    PLoS One, 2014;9(4):e92553.
    PMID: 24694993 DOI: 10.1371/journal.pone.0092553
    Integrative analyses of multiple genomic datasets for selected samples can provide better insight into the overall data and can enhance our knowledge of cancer. The objective of this study was to elucidate the association between copy number variation (CNV) and gene expression in colorectal cancer (CRC) samples and their corresponding non-cancerous tissues. Sixty-four paired CRC samples from the same patients were subjected to CNV profiling using the Illumina HumanOmni1-Quad assay, and validation was performed using multiplex ligation probe amplification method. Genome-wide expression profiling was performed on 15 paired samples from the same group of patients using the Affymetrix Human Gene 1.0 ST array. Significant genes obtained from both array results were then overlapped. To identify molecular pathways, the data were mapped to the KEGG database. Whole genome CNV analysis that compared primary tumor and non-cancerous epithelium revealed gains in 1638 genes and losses in 36 genes. Significant gains were mostly found in chromosome 20 at position 20q12 with a frequency of 45.31% in tumor samples. Examples of genes that were associated at this cytoband were PTPRT, EMILIN3 and CHD6. The highest number of losses was detected at chromosome 8, position 8p23.2 with 17.19% occurrence in all tumor samples. Among the genes found at this cytoband were CSMD1 and DLC1. Genome-wide expression profiling showed 709 genes to be up-regulated and 699 genes to be down-regulated in CRC compared to non-cancerous samples. Integration of these two datasets identified 56 overlapping genes, which were located in chromosomes 8, 20 and 22. MLPA confirmed that the CRC samples had the highest gains in chromosome 20 compared to the reference samples. Interpretation of the CNV data in the context of the transcriptome via integrative analyses may provide more in-depth knowledge of the genomic landscape of CRC.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic*; Gene Expression Profiling*
  14. Tan SH, Chung HH, Shu-Chien AC
    Biochem Biophys Res Commun, 2010 Mar 12;393(3):397-403.
    PMID: 20138842 DOI: 10.1016/j.bbrc.2010.01.130
    Despite the known importance of long-chained polyunsaturated fatty acids (LC-PUFA) during development, very little is known about their utilization and biosynthesis during embryogenesis. Combining the advantages of the existence of a complete range of enzymes required for LC-PUFA biosynthesis and the well established developmental biology tools in zebrafish, we examined the expression patterns of three LC-PUFA biosynthesis genes, Elovl2-like elongase (elovl2), Elovl5-like elongase (elovl5) and fatty acyl desaturase (fad) in different zebrafish developmental stages. The presence of all three genes in the brain as early as 24 hours post fertilization (hpf) implies LC-PUFA synthesis activity in the embryonic brain. This expression eventually subsides from 72 hpf onwards, coinciding with the initiation of elovl2 and fad expression in the liver and intestine, 2 organs known to be involved in adult fish LC-PUFA biosynthesis. Collectively, these patterns strongly suggest the necessity for localized production of LC-PUFA in the brain during in early stage embryos prior to the maturation of the liver and intestine. Interestingly, we also showed a specific expression of elovl5 in the proximal convoluted tubule (PCT) of the zebrafish pronephros, suggesting a possible new role for LC-PUFA in kidney development and function.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic*; Gene Expression Regulation, Developmental*
  15. Ee SF, Oh JM, Mohd Noor N, Kwon TR, Mohamed-Hussein ZA, Ismail I, et al.
    Mol Biol Rep, 2013 Mar;40(3):2231-41.
    PMID: 23187733 DOI: 10.1007/s11033-012-2286-4
    The importance of plant secondary metabolites for both mankind and the plant itself has long been established. However, despite extensive research on plant secondary metabolites, plant secondary metabolism and its regulation still remained poorly characterized. In this present study, cDNA-amplified fragment length polymorphism (cDNA-AFLP) transcript profiling was applied to generate the expression profiles of Polygonum minus in response to salicylic acid (SA) and methyl jasmonate (MeJA) elicitations. This study reveals two different sets of genes induced by SA and MeJA, respectively where stress-related genes were proved to lead to the expression of genes involved in plant secondary metabolite biosynthetic pathways. A total of 98 transcript-derived fragments (TDFs) were up-regulated, including 46 from SA-treated and 52 from MeJA-treated samples. The cDNA-AFLP transcripts generated using 64 different Mse1/Taq1 primer combinations showed that treatments with SA and MeJA induced genes mostly involved in scavenging reactive oxygen species, including zeaxanthin epoxidase, cytosolic ascorbate peroxidase 1 and peroxidase. Of these stress-related genes, 15 % of other annotated TDFs are involved mainly in secondary metabolic processes where among these, two genes encoding (+)-delta cadinene synthase and cinnamoyl-CoA reductase were highlighted.
    Matched MeSH terms: Gene Expression Regulation, Plant/drug effects*; Gene Expression Profiling*
  16. San CT, Shah FH
    Mol Biol Rep, 2005 Dec;32(4):227-35.
    PMID: 16328884
    The mRNA differential display method was utilized to study the differential expression and regulation of genes in two species of oil palm, the commercially grown variety Elaeis guineensis, var. tenera and the South American species, Elaeis oleifera. We demonstrated the differential expression of genes in the mesocarp and kernel at the week of active oil synthesis (15 week after anthesis) during fruit development as compare to the roots and leaves and the isolation of tissue-specific and species-specific cDNA clones. A total of eight specific cDNA clones were isolated and their specificities were confirmed by Northern hybridization and classified into three groups. Group one contains four clones (KT3, KT4, KT5 and KT6) that are kernel-specific for E. guineensis, tenera and E. oleifera. The second group represents clone FST1, which is mesocarp and kernel-specific for E. guineensis, tenera and E. oleifera. The third group represents clones MLT1, MLT2 and MLO1 that are mesocarp and leaf-specific. Northern analysis showed that their expressions were developmentally regulated. Nucleotide sequencing and homology search in GenBank data revealed that clones KT3 and KT4 encode for the same maturation protein PM3. While clones MLT1 and MLT2 encode for S-ribonuclease binding protein and fibrillin, respectively. The other clones (KT5, KT6, FST1 and MLO1) did not display any significant homology to any known protein.
    Matched MeSH terms: Gene Expression*; Gene Expression Profiling*
  17. Sahebi M, Hanafi MM, Azizi P, Hakim A, Ashkani S, Abiri R
    Mol Biotechnol, 2015 Oct;57(10):880-903.
    PMID: 26271955 DOI: 10.1007/s12033-015-9884-z
    Suppression subtractive hybridization (SSH) is an effective method to identify different genes with different expression levels involved in a variety of biological processes. This method has often been used to study molecular mechanisms of plants in complex relationships with different pathogens and a variety of biotic stresses. Compared to other techniques used in gene expression profiling, SSH needs relatively smaller amounts of the initial materials, with lower costs, and fewer false positives present within the results. Extraction of total RNA from plant species rich in phenolic compounds, carbohydrates, and polysaccharides that easily bind to nucleic acids through cellular mechanisms is difficult and needs to be considered. Remarkable advancement has been achieved in the next-generation sequencing (NGS) field. As a result of progress within fields related to molecular chemistry and biology as well as specialized engineering, parallelization in the sequencing reaction has exceptionally enhanced the overall read number of generated sequences per run. Currently available sequencing platforms support an earlier unparalleled view directly into complex mixes associated with RNA in addition to DNA samples. NGS technology has demonstrated the ability to sequence DNA with remarkable swiftness, therefore allowing previously unthinkable scientific accomplishments along with novel biological purposes. However, the massive amounts of data generated by NGS impose a substantial challenge with regard to data safe-keeping and analysis. This review examines some simple but vital points involved in preparing the initial material for SSH and introduces this method as well as its associated applications to detect different novel genes from different plant species. This review evaluates general concepts, basic applications, plus the probable results of NGS technology in genomics, with unique mention of feasible potential tools as well as bioinformatics.
    Matched MeSH terms: Gene Expression Regulation, Plant; Gene Expression Profiling/economics; Gene Expression Profiling/methods
  18. Chua KH, Kee BP, Tan SY, Lian LH
    DOI: 10.3923/jms.2008.437.442
    In this study, we analysed the genetic polymorphisms present in the third intron region of Interleukin-4 gene in Malaysian patients with Systemic Lupus Erythematosus. Overall, the RP I and II alleles were found evenly distributed in both the SLE patients and control individuals. There was no significant association observed in the distribution of allelic and genotypic frequencies between SLE patients and healthy controls. The result obtained is similar to a previous study carried out on SLE Chinese patients in Taiwan.
    Matched MeSH terms: Gene Expression
  19. Chowdhury MKU, Parveez GKA, Saleh NM
    Plant Cell Rep, 1997 Feb;16(5):277-281.
    PMID: 30727662 DOI: 10.1007/BF01088280
    The efficiency of GUS (β-Glucuronidase) gene expression in embryogenic callus and young leaflets of mature and seedling palm after microprojectile bombardment with five constructs (pEmuGN, pAHC25, pAct1-F4, pGH24 and pBARGUS) was evaluated to identify the most suitable promoter(s) to use in transformation attempts in oil palm. Expression of the GUS gene driven by theEmu, Ubi1, Act1 35S orAdh1 was assayed, both histochemically and fluorometrically, from a total of 200 plates of tissues in eight independent experiments two days after bombardment. A completely randomized experimental design was used for each experiment, and the data analysed by ANOVA and Duncan's Multiple Range Test. The expression level of GUS driven by theEmu orUbi1 promoters was significantly higher than that of the Act], 35S and Adhl promoters in many experiments, and that of theAdhl was significantly lower than those of the other four promoters. Both histochemical and fluorometric data indicate that in embryogenic callus, the expression of theEmu promoter was higher than that of theUbi1 whereas in young leaflets from mature palm the Ubi1 expression was stronger. The performances of the five promoters were also tested in tobacco callus using a fluorometric GUS assay. The activity of the 35S promoter was highest, and significantly different from that of all the other promoters except theEmu, and that of theAct1 promoter was lowest. These results indicate that either theUbil orEmu promoter should facilitate the expression of desired genes in oil palm and aid in development of an efficient stable transformation system.
    Matched MeSH terms: Gene Expression
  20. Salleh FM, Mariotti L, Spadafora ND, Price AM, Picciarelli P, Wagstaff C, et al.
    BMC Plant Biol, 2016;16(1):77.
    PMID: 27039085 DOI: 10.1186/s12870-016-0766-8
    In many species floral senescence is coordinated by ethylene. Endogenous levels rise, and exogenous application accelerates senescence. Furthermore, floral senescence is often associated with increased reactive oxygen species, and is delayed by exogenously applied cytokinin. However, how these processes are linked remains largely unresolved. Erysimum linifolium (wallflower) provides an excellent model for understanding these interactions due to its easily staged flowers and close taxonomic relationship to Arabidopsis. This has facilitated microarray analysis of gene expression during petal senescence and provided gene markers for following the effects of treatments on different regulatory pathways.
    Matched MeSH terms: Gene Expression
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links