Displaying publications 61 - 80 of 437 in total

Abstract:
Sort:
  1. Tahlan S, Ramasamy K, Lim SM, Shah SAA, Mani V, Narasimhan B
    Chem Cent J, 2018 Dec 19;12(1):139.
    PMID: 30569392 DOI: 10.1186/s13065-018-0513-3
    BACKGROUND: The emergence of bacterial resistance is a major public health problem. It is essential to develop and synthesize new therapeutic agents with better activity. The mode of actions of certain newly developed antimicrobial agents, however, exhibited very limited effect in treating life threatening systemic infections. Therefore, the advancement of multi-potent and efficient antimicrobial agents is crucial to overcome the increased multi-drug resistance of bacteria and fungi. Cancer, which remains as one of the primary causes of deaths and is commonly treated by chemotherapeutic agents, is also in need of novel and efficacious agents to treat resistant cases. As such, a sequence of novel substituted benzamides was designed, synthesized and evaluated for their antimicrobial and anticancer activities.

    METHODOLOGY: All synthesized compounds were characterized by IR, NMR, Mass and elemental analysis followed by in vitro antimicrobial studies against Gram-positive (Staphylococcus aureus), Gram-negative (Salmonella typhi and Klebsiella pneumoniae) bacterial and fungal (Candida albicans and Aspergillus niger) strains by the tube dilution method. The in vitro anticancer evaluation was carried out against the human colorectal carcinoma cell line (HCT116), using the Sulforhodamine B assay.

    RESULTS, DISCUSSION AND CONCLUSION: Compound W6 (MICsa, st, kp = 5.19 µM) emerged as a significant antibacterial agent against all tested bacterial strains i.e. Gram-positive (S. aureus), Gram-negative (S. typhi, K. pneumoniae) while compound W1 (MICca, an = 5.08 µM) was most potent against fungal strains (A. niger and C. albicans) and comparable to fluconazole (MIC = 8.16 µM). The anticancer screening demonstrated that compound W17 (IC50 = 4.12 µM) was most potent amongst the synthesized  compounds and also more potent than the standard drug 5-FU (IC50 = 7.69 µM).

    Matched MeSH terms: Inhibitory Concentration 50
  2. Tahlan S, Ramasamy K, Lim SM, Shah SAA, Mani V, Narasimhan B
    BMC Chem, 2019 Dec;13(1):12.
    PMID: 31384761 DOI: 10.1186/s13065-019-0533-7
    Background: Dihydrofolate reductase (DHFR) is an important target for antimetabolite class of antimicrobials because it participates in purine synthesis. 2-mercaptobenzimidazole (2MBI) has similar structural features as purine nucleotides. Given that benzimidazole and similar heteroaromatics have been broadly examined for their anticancer potential, so, we hereby report the design, synthesis and biological studies (i.e. antimicrobial and anticancer studies) of 2MBI derivatives.

    Methodology: The antimicrobial activity of synthesized 2MBI derivatives were evaluated against Gram positive and Gram negative bacterial species as well as fungal species by tube dilution technique whereas their anticancer activity was assessed against human colorectal carcinoma cell line (HCT116) by Sulforhodamine B (SRB) assay. They were also structurally characterized by IR, NMR, MS and elemental analyses.

    Results discussion and conclusion: The antimicrobial activity findings revealed that compound N1 (MIC
    bs,st,
    ca
     = 1.27, 2.54, 1.27 µM), N8 (MIC
    ec
    = 1.43 µM), N22 (MIC
    kp,an
    = 2.60 µM), N23 and N25 (MIC
    sa
    = 2.65 µM) exhibited significant antimicrobial effects against tested strains, i.e. Gram-positive, Gram-negative (bacterial) and fungal strains. The anticancer screening results demonstrated that compounds N9, N18 (IC50 = 5.85, 4.53 µM) were the most potent compounds against cancer cell line (HCT116) even more than 5-FU, the standard drug (IC50 = 9.99 µM).

    Matched MeSH terms: Inhibitory Concentration 50
  3. Taher M, Salleh WMNHW, Alkhamaiseh SI, Ahmad F, Rezali MF, Susanti D, et al.
    Z Naturforsch C J Biosci, 2021 Jan 27;76(1-2):87-91.
    PMID: 32931451 DOI: 10.1515/znc-2020-0089
    A phytochemical investigation of the stem bark of Calophyllum canum resulted in the isolation of a new xanthone dimer identified as biscaloxanthone (1), together with four compounds; trapezifoliaxanthone (2), trapezifolixanthone A (3), taraxerone (4) and taraxerol (5). The structures of these compounds were determined via spectroscopic methods of IR, UV, MS and NMR (1D and 2D). The cytotoxicity of compounds 1-3 were screened against A549, MCF-7, C33A and 3T3L1 cell lines, wherein weak cytotoxic activities were observed (IC50 > 50 μm).
    Matched MeSH terms: Inhibitory Concentration 50
  4. Taha M, Ismail NH, Imran S, Wadood A, Rahim F, Riaz M
    Bioorg Med Chem, 2015 Nov 15;23(22):7211-8.
    PMID: 26507431 DOI: 10.1016/j.bmc.2015.10.017
    Disulfide analogs (1-20) have been synthesized, characterized by HR-MS, (1)H NMR and (13)C NMR and screened for urease inhibitory potential. All compounds were found to have varied degree of urease inhibitory potential ranging in between 0.4 ± 0.01 and 18.60 ± 1.24 μM when compared with standard inhibitor thiourea with IC50 19.46 ± 1.20 μM. Structure activity relationship has been established. The binding interactions of compounds with enzyme were confirmed through molecular docking. All the synthesized compounds 1-20 are new. Our compounds are cheaply synthesizable with high yield and can further be studied to discovery lead compounds. We further, tested for carbonic anhydrase, PDE1 and butyrylcholinesterase but they show no activity. On the other hand we evaluated all compounds for cytotoxicity they showed no toxicity.
    Matched MeSH terms: Inhibitory Concentration 50
  5. Taha M, Ismail NH, Javaid K, Imran S, Anouar el H, Wadood A, et al.
    Bioorg Chem, 2015 Dec;63:24-35.
    PMID: 26398141 DOI: 10.1016/j.bioorg.2015.09.001
    2-Indolcarbohydrazones 1-28 were synthesized and evaluated for their α-glucosidase inhibitory potential. A varying degree of inhibitory potential with IC50 values in the range of 2.3±0.11-226.4±6.8μM was observed while comparing these outcomes with the standard acarbose (IC50=906.0±6.3μM). The stereochemistry of ten (10) randomly selected compounds (1, 3, 6, 8, 12, 18, 19, 23, 25 and 28) was predicted by Density Functional Theory (DFT). The stability of E isomer was deduced by comparing the calculated and experimental vibration modes of νCO, νNC and νCH (CH in NCH-R). It was observed that except compound 18, all other compounds were deduced to have E configuration while molecular modeling studies revealed the key interactions between enzyme and synthesized compounds.
    Matched MeSH terms: Inhibitory Concentration 50
  6. Taha M, Ismail NH, Imran S, Selvaraj M, Rahim A, Ali M, et al.
    Bioorg Med Chem, 2015 Dec 1;23(23):7394-404.
    PMID: 26526743 DOI: 10.1016/j.bmc.2015.10.037
    A series of compounds consisting of 25 novel oxadiazole-benzohydrazone hybrids (6-30) were synthesized through a five-step reaction sequence and evaluated for their β-glucuronidase inhibitory potential. The IC50 values of compounds 6-30 were found to be in the range of 7.14-44.16μM. Compounds 6, 7, 8, 9, 11, 13, 18, and 25 were found to be more potent than d-saccharic acid 1,4-lactone (48.4±1.25μM). These compounds were further subjected for molecular docking studies to confirm the binding mode towards human β-d-glucuronidase active site. Docking study for compound 13 (IC50=7.14±0.30μM) revealed that it adopts a binding mode that fits within the entire pocket of the binding site of β-d-glucuronidase. Compound 13 has the maximum number of hydrogens bonded to the residues of the active site as compared to the other compounds, that is, the ortho-hydroxyl group forms hydrogen bond with carboxyl side chain of Asp207 (2.1Å) and with hydroxyl group of Tyr508 (2.6Å). The other hydroxyl group forms hydrogen bond with His385 side chain (2.8Å), side chain carboxyl oxygen of Glu540 (2.2Å) and Asn450 side-chain's carboxamide NH (2.1Å).
    Matched MeSH terms: Inhibitory Concentration 50
  7. Taha M, Sultan S, Nuzar HA, Rahim F, Imran S, Ismail NH, et al.
    Bioorg Med Chem, 2016 08 15;24(16):3696-704.
    PMID: 27312423 DOI: 10.1016/j.bmc.2016.06.008
    Thirty N-arylidenequinoline-3-carbohydrazides (1-30) have been synthesized and evaluated against β-glucuronidase inhibitory potential. Twenty four analogs showed outstanding β-glucuronidase activity having IC50 values ranging between 2.11±0.05 and 46.14±0.95 than standard d-saccharic acid 1,4 lactone (IC50=48.4±1.25μM). Six analogs showed good β-glucuronidase activity having IC50 values ranging between 49.38±0.90 and 80.10±1.80. Structure activity relationship and the interaction of the active compounds and enzyme active site with the help of docking studies were established. Our study identifies novel series of potent β-glucuronidase inhibitors for further investigation.
    Matched MeSH terms: Inhibitory Concentration 50
  8. Taha M, Ismail NH, Imran S, Mohamad MH, Wadood A, Rahim F, et al.
    Bioorg Chem, 2016 Apr;65:100-9.
    PMID: 26894559 DOI: 10.1016/j.bioorg.2016.02.004
    Benzimidazole analogs 1-27 were synthesized, characterized by EI-MS and (1)HNMR and their α-glucosidase inhibitory activities were found out experimentally. Compound 25, 19, 10 and 20 have best inhibitory activities with IC50 values 5.30±0.10, 16.10±0.10, 25.36±0.14 and 29.75±0.19 respectively against α-glucosidase. Compound 6 and 12 has no inhibitory activity against α-glucosidase enzyme among the series. Further studies showed that the compounds are not showing any cytotoxicity effect. The docking studies of the compounds as well as the experimental activities of the compounds correlated well. From the molecular docking studies, it was observed that the top ranked conformation of all the compounds fit well in the active site of the homology model of α-glucosidase.
    Matched MeSH terms: Inhibitory Concentration 50
  9. Taha M, Ismail NH, Imran S, Rashwan H, Jamil W, Ali S, et al.
    Bioorg Chem, 2016 Apr;65:48-56.
    PMID: 26855413 DOI: 10.1016/j.bioorg.2016.01.007
    6-Chloro-2-Aryl-1H-imidazo[4,5-b]pyridine derivatives 1-26 were synthesized and characterized by various spectroscopic techniques. All these derivatives were evaluated for their antiglycation, antioxidant and β-glucuronidase potential followed their docking studies. In antiglycation assay, compound 2 (IC50=240.10±2.50μM) and 4 (IC50=240.30±2.90μM) was found to be most active compound of this series, while compounds 3 (IC50=260.10±2.50μM), 6 (IC50=290.60±3.60μM), 13 (IC50=288.20±3.00μM) and 26 (IC50=292.10±3.20μM) also showed better activities than the standard rutin (IC50=294.50±1.50μM). In antioxidant assay, compound 1 (IC50=69.45±0.25μM), 2 (IC50=58.10±2.50μM), 3 (IC50=74.25±1.10μM), and 4 (IC50=72.50±3.30μM) showed good activities. In β-glucuronidase activity, compounds 3 (IC50=29.25±0.50μM), compound 1 (IC50=30.10±0.60μM) and compound 4 (IC50=46.10±1.10μM) showed a significant activity as compared to than standard D-Saccharic acid 1,4-lactonec (IC50=48.50±1.25μM) and their interaction with the enzyme was confirm by docking studies.
    Matched MeSH terms: Inhibitory Concentration 50
  10. Taha M, Ismail NH, Imran S, Rokei MQB, Saad SM, Khan KM
    Bioorg Med Chem, 2015 Aug 01;23(15):4155-4162.
    PMID: 26183542 DOI: 10.1016/j.bmc.2015.06.060
    Oxadiazole derivatives (6-28) having hydrazone linkage, were synthesized through condensation reaction between benzohydrazide 5 with various benzaldehydes. The oxadiazoles derivatives (6-28) were evaluated for their α-glucosidase inhibitory activity. The IC50 values for inhibition activity vary in the range between 2.64 ± 0.05 and 460.14 ± 3.25 μM. The IC50 values were being compared to the standard acarbose (IC50=856.45 ± 5.60 μM) and it was found that compounds 6-9, 12, 13, 16, 18, 20, 22-28 were found to be more active than acarbose, while other compounds showed no activity. Structure-activity relationship (SAR) studies suggest that oxadiazole benzohydrazones (6-28) inhibitory potential is dependent on substitution of the N-benzylidene part. Compound 18 (IC50=2.64 ± 0.05 μM), which has trihydroxy substitution at C-2', C-4', and C-5' on N-benzylidene moiety, recorded the highest inhibition activity that is three-hundred times more active than the standard drug, acarbose (IC50=856.45 ± 5.60 μM). Compound 23 (IC50=34.64 ± 0.35 μM) was found to be the most active among compounds having single hydroxyl substitution. Shifting hydroxyl from C-2' to C-4' (6) and C-3' (7) reduces inhibitory activity significantly. Compounds with chlorine substituent (compounds 16, 28, and 27) showed potent activities but lower as compared to hydroxyl analogs. Substituent like nitro or methyl groups at any position suppresses enzyme inhibition activity. This reveals the important presence of hydroxyl and halo groups to have enzyme inhibitory potential.
    Matched MeSH terms: Inhibitory Concentration 50
  11. Taha M, Baharudin MS, Ismail NH, Imran S, Khan MN, Rahim F, et al.
    Bioorg Chem, 2018 10;80:36-42.
    PMID: 29864686 DOI: 10.1016/j.bioorg.2018.05.021
    In search of potent α-amylase inhibitor we have synthesized eighteen indole analogs (1-18), characterized by NMR and HR-EIMS and screened for α-amylase inhibitory activity. All analogs exhibited a variable degree of α-amylase inhibition with IC50 values ranging between 2.031 ± 0.11 and 2.633 ± 0.05 μM when compared with standard acarbose having IC50 values 1.927 ± 0.17 μM. All compounds showed good α-amylase inhibition. Compound 14 was found to be the most potent analog among the series. Structure-activity relationship has been established for all compounds mainly based on bringing about the difference of substituents on phenyl ring. To understand the binding interaction of the most active analogs molecular docking study was performed.
    Matched MeSH terms: Inhibitory Concentration 50
  12. Taha M, Rahim F, Ali M, Khan MN, Alqahtani MA, Bamarouf YA, et al.
    Molecules, 2019 Apr 18;24(8).
    PMID: 31003424 DOI: 10.3390/molecules24081528
    Chromen-4-one substituted oxadiazole analogs 1-19 have been synthesized, characterized and evaluated for β-glucuronidase inhibition. All analogs exhibited a variable degree of β-glucuronidase inhibitory activity with IC50 values ranging in between 0.8 ± 0.1-42.3 ± 0.8 μM when compared with the standard d-saccharic acid 1,4 lactone (IC50 = 48.1 ± 1.2 μM). Structure activity relationship has been established for all compounds. Molecular docking studies were performed to predict the binding interaction of the compounds with the active site of enzyme.
    Matched MeSH terms: Inhibitory Concentration 50
  13. Taha M, Uddin I, Gollapalli M, Almandil NB, Rahim F, Farooq RK, et al.
    BMC Chem, 2019 Dec;13(1):102.
    PMID: 31410413 DOI: 10.1186/s13065-019-0617-4
    We have synthesized new series of bisindole analogs (1-27), characterized by 1HNMR and HR-EI-MS and evaluated for their anti-leishmanial potential. All compounds showed outstanding inhibitory potential with IC50 values ranging from 0.7 ± 0.01 to 13.30 ± 0.50 µM respectively when compared with standard pentamidine with IC50 value of 7.20 ± 0.20 µM. All analogs showed greater potential than standard except 10, 19 and 23 when compared with standard. Structure activity relationship has been also established for all compounds. Molecular docking studies were carried out to understand the binding interaction of active molecules.
    Matched MeSH terms: Inhibitory Concentration 50
  14. Taha M, Ismail NH, Khan A, Shah SA, Anwar A, Halim SA, et al.
    Bioorg Med Chem Lett, 2015 Aug 15;25(16):3285-9.
    PMID: 26077497 DOI: 10.1016/j.bmcl.2015.05.069
    We synthesized a series of novel 5-24 derivatives of oxindole. The synthesis started from 5-chlorooxindole, which was condensed with methyl 4-carboxybezoate and result in the formation of benzolyester derivatives of oxindole which was then treated with hydrazine hydrate. The oxindole benzoylhydrazide was treated with aryl acetophenones and aldehydes to get target compounds 5-24. The synthesized compounds were evaluated for urease inhibition; the compound 5 (IC50 = 13.00 ± 0.35 μM) and 11 (IC50 = 19.20 ± 0.50 μM) showed potent activity as compared to the standard drug thiourea (IC50 = 21.00 ± 0.01 μM). Other compounds showed moderate to weak activity. All synthetic compounds were characterized by different spectroscopic techniques including (1)H NMR, (13)C NMR, IR and EI MS. The molecular interactions of the active compounds within the binding site of urease enzyme were studied through molecular docking simulations.
    Matched MeSH terms: Inhibitory Concentration 50
  15. Taha M, Alshamrani FJ, Rahim F, Hayat S, Ullah H, Zaman K, et al.
    Molecules, 2019 Oct 23;24(21).
    PMID: 31652777 DOI: 10.3390/molecules24213819
    A new class of triazinoindole-bearing thiosemicarbazides (1-25) was synthesized and evaluated for α-glucosidase inhibitory potential. All synthesized analogs exhibited excellent inhibitory potential, with IC50 values ranging from 1.30 ± 0.01 to 35.80 ± 0.80 µM when compared to standard acarbose (an IC50 value of 38.60 ± 0.20 µM). Among the series, analogs 1 and 23 were found to be the most potent, with IC50 values of 1.30 ± 0.05 and 1.30 ± 0.01 µM, respectively. The structure-activity relationship (SAR) was mainly based upon bringing about different substituents on the phenyl rings. To confirm the binding interactions, a molecular docking study was performed.
    Matched MeSH terms: Inhibitory Concentration 50
  16. Taha M, Ismail NH, Zaki HM, Wadood A, Anouar EH, Imran S, et al.
    Bioorg Chem, 2017 12;75:235-241.
    PMID: 29031169 DOI: 10.1016/j.bioorg.2017.10.004
    3,4-Dimethoxybenzohydrazide derivatives (1-25) have been synthesized and evaluated for their urease inhibitory potential. Among the series, compounds 2, 3, 4 and 5 with IC50 values 12.61 ± 0.07, 18.24 ± 0.14, 19.22 ± 0.21, and 8.40 ± 0.05 µM, respectively, showed excellent urease inhibitory potentials when compared with standard thiourea (IC50 value 21.40 ± 0.21 µM). Compounds 1, 6, 8, 18, 19 and 20 also showed good to moderate inhibition, while the remaining compounds were found to be completely inactive. The structures of compounds 6 and 25 were confirmed through X-ray crystallography while the structures of remaining compounds were confirmed through ESI-MS and 1H NMR. Molecular docking studies were performed understand the binding interactions with enzyme active site. The synthesized compounds were evaluated for cytotoxicity and found to be nontoxic.
    Matched MeSH terms: Inhibitory Concentration 50
  17. Taha M, Shah SAA, Imran S, Afifi M, Chigurupati S, Selvaraj M, et al.
    Bioorg Chem, 2017 12;75:78-85.
    PMID: 28918064 DOI: 10.1016/j.bioorg.2017.09.002
    The α-amylase acts as attractive target to treat type-2 diabetes mellitus. Therefore in discovering a small molecule as α-amylase inhibitor, we have synthesized benzofuran carbohydrazide analogs (1-25), characterized through different spectroscopic techniques such as 1HNMR and EI-MS. All screened analog shows good α-amylase inhibitory potentials with IC50 value ranging between 1.078±0.19 and 2.926±0.05µM when compared with acarbose having IC50=0.62±0.22µM. Only nine analogs among the series such as analogs 3, 5, 7, 8, 10, 12, 21, 23 and 24 exhibit good inhibitory potential with IC50 values 1.644±0.128, 1.078±0.19, 1.245±0.25, 1.843±0.19, 1.350±0.24, 1.629±0.015, 1.353±0.232, 1.359±0.119 and 1.488±0.07µM when compare with standard drug acarbose. All other analogs showed good to moderate α-amylase inhibitory potentials. The SAR study was conducted on the basis of substituent difference at the phenyl ring. The binding interaction between analogs and active site of enzyme was confirmed by docking studies.
    Matched MeSH terms: Inhibitory Concentration 50
  18. Taha M, Naz H, Rasheed S, Ismail NH, Rahman AA, Yousuf S, et al.
    Molecules, 2014 Jan 21;19(1):1286-301.
    PMID: 24451249 DOI: 10.3390/molecules19011286
    A series of 4-methoxybenzoylhydrazones 1-30 was synthesized and the structures of the synthetic derivatives elucidated by spectroscopic methods. The compounds showed a varying degree of antiglycation activity, with IC50 values ranging between 216.52 and 748.71 µM, when compared to a rutin standard (IC50=294.46±1.50 µM). Compounds 1 (IC50=216.52±4.2 µM), 3 (IC50=289.58±2.64 µM), 6 (IC50=227.75±0.53 µM), 7 (IC50=242.53±6.1) and 11 (IC50=287.79±1.59) all showed more activity that the standard, and these compounds have the potential to serve as possible leads for drugs to inhibit protein glycation in diabetic patients. A preliminary SAR study was performed.
    Matched MeSH terms: Inhibitory Concentration 50
  19. Tabassam, Q., Mehmood, T., Anwar, F., Saari, N., Qadir, R.
    MyJurnal
    The present work studies the profiling of phenolic bioactive and in vitro biological (anticancer, antioxidant, and antimicrobial) activities of different solvent extracts from Withania
    somnifera fruit. Anticancer activity was performed using potato-disc assay and Agrobacterium tumefaciens. While antibacterial and antifungal evaluation was done by using disc diffusion method against bacterial (Staphylococcus aureus, S. epidermidis, Escherichia coli, and
    Klebsiella pneumonia) and fungal (Aspergillus flavus and Fusarium oxysporum) strains.
    Among different extraction solvents used, n-hexane extract exhibited the highest inhibition of
    tumour initiation (64%), whereas ethyl acetate (15%) was the lowest by using potato-disc
    assay. Highest total phenolic and total flavonoid contents were noted for methanolic (69.10
    GAE mg/g DW%) and n-hexane (29.45 CE mg/g DW%) extracts, respectively. For antioxidant potential, 2,2,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging (IC50) and reducing power EC50 were noted to be superior (0.6 and 2.0 mg/mL, respectively) for n-hexane
    extract. All the tested extracts showed considerable antibacterial and antifungal activity with
    the highest growth inhibition zones for K. pneumoniae (31.70 mm) and A. flavus (27.09 mm)
    were shown by n-hexane extract. High Performance Liquid Chromatographic (HPLC) analysis of individual phenolics (gallic acid, 2,288.48 mg/kg) indicated the highest contents of these
    compounds in n-hexane extract, which might explain the potent biological activities of this
    extract. Our findings revealed that the bioactive present in the tested fruit had significant
    potential as anticancer, antibacterial, and antifungal agents. Further studies are needed to
    elucidate the mechanism of actions of isolated bioactive against specific diseases such as
    cancer, especially in the case of n-hexane fraction.
    Matched MeSH terms: Inhibitory Concentration 50
  20. Syam S, Abdelwahab SI, Al-Mamary MA, Mohan S
    Molecules, 2012 May 25;17(6):6179-95.
    PMID: 22634834 DOI: 10.3390/molecules17066179
    Several chalcones were synthesized and their in vitro cytotoxicity against various human cell lines, including human breast adenocarcinoma cell line MCF-7, human lung adenocarcinoma cell line A549, human prostate cancer cell line PC3, human adenocarcinoma cell line HT-29 (colorectal cancer) and human normal liver cell line WRL-68 was evaluated. Most of the compounds being active cytotoxic agents, four of them with minimal IC₅₀ values were chosen and studied in detail with MCF-7 cells. The compounds 1, 5, 23, and 25 were capable in eliciting apoptosis in MCF-7 cells as shown by multiparameter cytotoxicity assay and caspase-3/7, -8, and -9 activities (p < 0.05). The ROS level showed 1.3-fold increase (p < 0.05) at the low concentrations used and thus it was concluded that the compounds increased the ROS level eventually leading to apoptosis in MCF-7 cells through intrinsic as well as extrinsic pathways.
    Matched MeSH terms: Inhibitory Concentration 50
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links