Displaying publications 61 - 80 of 345 in total

Abstract:
Sort:
  1. Jaafar J, Irwan Z, Ahamad R, Terabe S, Ikegami T, Tanaka N
    J Sep Sci, 2007 Feb;30(3):391-8.
    PMID: 17396598
    An online preconcentration technique by dynamic pH junction was studied to improve the detection limit for anionic arsenic compounds by CE. The main target compound is roxarsone, or 3-nitro-4-hydroxyphenylarsonic acid, which is being used as an animal feed additive. The other inorganic and organoarsenic compounds studied are the possible biotransformation products of roxarsone. The arsenic species were separated by a dynamic pH junction in a fused-silica capillary using 15 mM phosphate buffer (pH 10.6) as the BGE and 15 mM acetic acid as the sample matrix. CE with UV detection was monitored at a wavelength of 192 nm. The influence of buffer pH and concentration on dynamic pH junction were investigated. The arsenic species focusing resulted in LOD improvement by a factor of 100-800. The combined use of C18 and anion exchange SPE and dynamic pH junction to CE analysis of chicken litter and soils helps to increase the detection sensitivity. Recoveries of spiked samples ranged between 70 and 72%.
    Matched MeSH terms: Limit of Detection
  2. Hosseini S, Aeinehvand MM, Uddin SM, Benzina A, Rothan HA, Yusof R, et al.
    Sci Rep, 2015;5:16485.
    PMID: 26548806 DOI: 10.1038/srep16485
    The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres' specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness.
    Matched MeSH terms: Limit of Detection
  3. Chua KH, Lim SC, Ng CC, Lee PC, Lim YA, Lau TP, et al.
    Sci Rep, 2015;5:15671.
    PMID: 26507008 DOI: 10.1038/srep15671
    Molecular detection has overcome limitations of microscopic examination by providing greater sensitivity and specificity in Plasmodium species detection. The objective of the present study was to develop a quantitative real-time polymerase chain reaction coupled with high-resolution melting (qRT-PCR-HRM) assay for rapid, accurate and simultaneous detection of all five human Plasmodium spp. A pair of primers targeted the 18S SSU rRNA gene of the Plasmodium spp. was designed for qRT-PCR-HRM assay development. Analytical sensitivity and specificity of the assay were evaluated. Samples collected from 229 malaria suspected patients recruited from Sabah, Malaysia were screened using the assay and results were compared with data obtained using PlasmoNex(TM), a hexaplex PCR system. The qRT-PCR-HRM assay was able to detect and discriminate the five Plasmodium spp. with lowest detection limits of 1-100 copy numbers without nonspecific amplifications. The detection of Plasmodium spp. in clinical samples using this assay also achieved 100% concordance with that obtained using PlasmoNex(TM). This indicated that the diagnostic sensitivity and specificity of this assay in Plasmodium spp. detection is comparable with those of PlasmoNex(TM). The qRT-PCR-HRM assay is simple, produces results in two hours and enables high-throughput screening. Thus, it is an alternative method for rapid and accurate malaria diagnosis.
    Matched MeSH terms: Limit of Detection
  4. Ikhsan NI, Rameshkumar P, Pandikumar A, Mehmood Shahid M, Huang NM, Vijay Kumar S, et al.
    Talanta, 2015 Nov 1;144:908-14.
    PMID: 26452907 DOI: 10.1016/j.talanta.2015.07.050
    In this report, silver nanoparticles (Ag NPs) were successfully deposited on graphene oxide (GO) sheets to form GO-Ag nanocomposite using garlic extract and sunlight and the nanocomposite modified glassy carbon (GC) electrode was applied as an electrochemical sensor for the detection of nitrite ions. The formation of GO-Ag nanocomposite was confirmed by using UV-visible absorption spectroscopy, TEM, XRD and FTIR spectroscopy analyses. Further, TEM pictures showed a uniform distribution Ag on GO sheets with an average size of 19 nm. The nanocomposite modified electrode produced synergistic catalytic current in nitrite oxidation with a negative shift in overpotential. The limit of detection (LOD) values were found as 2.1 µM and 37 nM, respectively using linear sweep voltammetry (LSV) and amperometric i-t curve techniques. The proposed sensor was stable, reproducible, sensitive and selective toward the detection nitrite and could be applied for the detection of nitrite in real water sample.
    Matched MeSH terms: Limit of Detection
  5. Karami R, Mohsenifar A, Mesbah Namini SM, Kamelipour N, Rahmani-Cherati T, Roodbar Shojaei T, et al.
    PMID: 26503886
    Organophosphorus (OP) compounds are one of the most hazardous chemicals used as insecticides/pesticide in agricultural practices. A large variety of OP compounds are hydrolyzed by organophosphorus hydrolases (OPH; EC 3.1.8.1). Therefore, OPHs are among the most suitable candidates which could be used in designing enzyme-based sensors for detecting OP compounds. In the present work, a novel nanobiosensor for the detection of paraoxon was designed and fabricated. More specifically, OPH was covalently embedded onto chitosan and the enzyme-chitosan bioconjugate was then immobilized on negatively charged gold nanoparticles (AuNPs) electrostatically. The enzyme was immobilized on AuNPs without chitosan as well to compare the two systems in terms of detection limit and enzyme stability under different pH and temperature conditions. Coumarin 1, a competitive inhibitor of the enzyme, was used as a fluorogenic probe. The emission of coumarin 1 was effectively quenched by the immobilized Au-NPs when bound to the developed nanobioconjugates. However, in the presence of paraoxon, coumarin 1 left the nanobioconjugate leading to enhanced fluorescence intensity. Moreover, compared to the immobilized enzyme without chitosan, the chitosan-immobilized enzyme was found to possess decreased Km value by over 50%, increased Vmax and Kcat values by around 15% and 74%, respectively. Higher stability within a wider range of pH (2-12) and temperature (25-90°C) was also achieved. The method worked in the 0 to 1050 nM concentration ranges, and had a detection limit as low as 5 × 10(-11) M.
    Matched MeSH terms: Limit of Detection
  6. Tang R, Yang H, Choi JR, Gong Y, Hu J, Feng S, et al.
    Talanta, 2016 May 15;152:269-76.
    PMID: 26992520 DOI: 10.1016/j.talanta.2016.02.017
    Lateral flow assays (LFAs) hold great promise for point-of-care testing, especially in resource-poor settings. However, the poor sensitivity of LFAs limits their widespread applications. To address this, we developed a novel device by integrating dialysis-based concentration method into LFAs. The device successfully achieved 10-fold signal enhancement in Human Immunodeficiency Virus (HIV) nucleic acid detection with a detection limit of 0.1nM and 4-fold signal enhancement in myoglobin (MYO) detection with a detection limit of 1.56ng/mL in less than 25min. This simple, low-cost and portable integrated device holds great potential for highly sensitive detection of various target analytes for medical diagnostics, food safety analysis and environmental monitoring.
    Matched MeSH terms: Limit of Detection
  7. Haarindraprasad R, Hashim U, Gopinath SC, Perumal V, Liu WW, Balakrishnan SR
    Anal Chim Acta, 2016 Jun 21;925:70-81.
    PMID: 27188319 DOI: 10.1016/j.aca.2016.04.030
    Diabetes is a metabolic disease with a prolonged elevated level of glucose in the blood leads to long-term complications and increases the chances for cardiovascular diseases. The present study describes the fabrication of a ZnO nanowire (NW)-modified interdigitated electrode (IDE) to monitor the level of blood glucose. A silver IDE was generated by wet etching-assisted conventional lithography, with a gap between adjacent electrodes of 98.80 μm. The ZnO-based thin films and NWs were amended by sol-gel and hydrothermal routes. High-quality crystalline and c-axis orientated ZnO thin films were observed by XRD analyses. The ZnO thin film was annealed for 1, 3 and 5 h, yielding a good-quality crystallite with sizes of 50, 100 and 110 nm, and the band gaps were measured as 3.26, 3.20 and 3.17 eV, respectively. Furthermore, a flower-modeled NW was obtained with the lowest diameter of 21 nm. Our designed ZnO NW-modified IDE was shown to have a detection limit as low as 0.03 mg/dL (correlation coefficient = 0.98952) of glucose with a low response time of 3 s, perform better than commercial glucose meter, suitable to instantly monitor the glucose level of diabetes patients. This study demonstrated the high performance of NW-mediated IDEs for glucose sensing as alternative to current glucose sensors.
    Matched MeSH terms: Limit of Detection
  8. Thang LY, See HH, Quirino JP
    Electrophoresis, 2016 05;37(9):1166-9.
    PMID: 26873060 DOI: 10.1002/elps.201600010
    Micelle to solvent stacking was implemented for the recently established NACE-C(4) D method to determine tamoxifen and its metabolites in standard samples and human plasma of breast cancer patients. For stacking, the standard samples and extract after liquid-liquid extraction (LLE) were prepared in methanol and the resulting sample solution was pressure injected after a micellar plug of SDS. Factors that affected the stacking such as SDS concentration, micelle, and sample plug length were examined. The sensitivity enhancement factor (peak height from stacking/peak height from typical injection of sample in BGE) was 15-22. The method detection limits with LLE were in the range of 5-10 ng/mL, which was lower than the established method (where the LLE extract was also prepared in methanol) with reported method detection limits of 25-40 ng/mL. The intraday and interday repeatability were in the range of 1.0-3.4% and 3.8-6.5%, respectively.
    Matched MeSH terms: Limit of Detection
  9. Mori M, Sagara K, Arai K, Nakatani N, Ohira S, Toda K, et al.
    J Chromatogr A, 2016 Jan 29;1431:131-7.
    PMID: 26755416 DOI: 10.1016/j.chroma.2015.12.064
    Selective separation and sensitive detection of dissolved silicon and boron (DSi and DB) in aqueous solution was achieved by combining an electrodialytic ion isolation device (EID) as a salt remover, an ion-exclusion chromatography (IEC) column, and a corona charged aerosol detector (CCAD) in sequence. DSi and DB were separated by IEC on the H(+)-form of a cation exchange resin column using pure water eluent. DSi and DB were detected after IEC separation by the CCAD with much greater sensitivity than by conductimetric detection. The five-channel EID, which consisted of anion and cation acceptors, cathode and anode isolators, and a sample channel, removed salt from the sample prior to the IEC-CCAD. DSi and DB were scarcely attracted to the anion accepter in the EID and passed almost quantitatively through the sample channel. Thus, the coupled EID-IEC-CCAD device can isolate DSi and DB from artificial seawater and hot spring water by efficiently removing high concentrations of Cl(-) and SO4(2-) (e.g., 98% and 80% at 0.10molL(-1) each, respectively). The detection limits at a signal-to-noise ratio of 3 were 0.52μmolL(-1) for DSi and 7.1μmolL(-1) for DB. The relative standard deviations (RSD, n=5) of peak areas were 0.12% for DSi and 4.3% for DB.
    Matched MeSH terms: Limit of Detection
  10. Moh MH, Tang TS, Tan GH
    J Chromatogr Sci, 2001 Dec;39(12):508-12.
    PMID: 11767238
    A simple and sensitive high-performance liquid chromatographic method for the determination of Therminol 66 thermal heating fluid in glycerin and fatty acids is developed. Sample solutions dissolved in methanol-tetrahydrofuran (50:50, v/v) are injected directly into a reversed-phase C18 column and eluted with a methanol and water mixture (88:12, v/v). The concentration of the thermal heating fluid is monitored by fluorescence detection at 257 nm (excitation) and 320 nm (emission). The calibration graph obtained from various concentrations of the thermal heating fluid in the methanol and tetrahydrofuran mixture is linear (correlation coefficient = 0.999), and the limit of detection is 0.01 microg/mL. Spiked glycerin containing 0.1 to 1.0 microg/g of the thermal heating fluid also gives good linearity with a mean recovery of 95.3%. The mean intra- and interassay precision are 1.80-6.51% and 5.71-9.03%, respectively, at the 0.1-microg/g level. The method is simple and does not require any pretreatment step, thus it is ideal for quality assurance purposes.
    Matched MeSH terms: Limit of Detection
  11. Saad B, Kanapathy K, Ahmad MN, Hussin AH, Ismail Z
    Talanta, 1991 Dec;38(12):1399-402.
    PMID: 18965315
    Three main types of PVC solvent polymeric membrane ion-selective electrodes for chloroquine are described. They are based on three ion-pairing agents namely dipicrylamine (DPA), tetraphenylborate (TPB) or tetrakis(4-chlorophenyl)borate (TCPB) with either dioctylphenyl phosphonate (DOPP) or trioctyl phosphate (TOP) solvent mediator. All electrodes exhibit Nernstian responses, fast dynamic response times and a wide useful pH range. The best all-round electrode is based on TPB and TOP plasticizing solvent mediators with a limit of detection of 7.1 x 10(-6)M and was utilized for the assay of chloroquine in tablets. Direct potentiometric determinations with either the analyte addition method or the normal calibration method gave results comparable to the official method.
    Matched MeSH terms: Limit of Detection
  12. Zhang J, Lakshmipriya T, Gopinath SCB
    ACS Omega, 2020 Oct 13;5(40):25899-25905.
    PMID: 33073115 DOI: 10.1021/acsomega.0c03260
    The primary reasons for myocardial infarction (MI) are pericarditis, arrhythmia, and heart failure, causing predominant deaths worldwide. Patients need a potential diagnostic system and treatment before cardiomyocyte damage. Cardiac biomarkers are released from myocytes immediately after a heart attack. Troponin is an efficient biomarker released from dead cells within a few hours. Aptamers are artificial antibodies used effectively in the biosensor field for biomarker detection. Along with aptamers, the application of nanomaterials is also expected to enhance the detection limits of biosensors. In this investigation, selected aptamers against cardiac troponin I (cTnI) were conjugated with gold nanoparticles (GNPs) to diagnose MI and compared with an aptamer-only control group on an interdigitated electrode surface. Based on electroanalysis, cTnI was detected at concentrations as low as 1 fM, and the detection limit improved to 100 aM when the aptamer was conjugated with GNP. In addition, aptamer-GNP conjugates increased the current level at the tested concentrations of cTnI. Control experiments with noncomplementary aptamers and relevant proteins did not result in notable changes in the current, demonstrating the selective detection of cTnI.
    Matched MeSH terms: Limit of Detection
  13. Kuppusamy G, Kong CK, Segaran GC, Tarmalingam E, Herriman M, Ismail MF, et al.
    Biology (Basel), 2020 Sep 05;9(9).
    PMID: 32899563 DOI: 10.3390/biology9090274
    Black soldier fly (BSF) larva is an attractive animal feed replacer due to its noticeable nutritional content. However, the conventional rearing method often resulted in BSF with undesirably high heavy metal residues that are harmful to animals. In this work, putrefied Sesbania grandiflora (S. Grandiflora) leaves were employed as feed to rear BSF larvae. The resultant BSF prepupae were found to contain 43.5% protein and 16.7% fat, reflecting a comparable protein content and a 2-fold reduction in crude fat than those reared using conventional kitchen waste. Moreover, high quantities of arginine (25.4 g/kg dry matter basis (DM)), carnitine (32.9 g/kg DM), and short-chain fatty acids, including lauric (40.00%), palmitic (19.20%), and oleic (12.10%) acids, have also been noticed in the BSF prepupae. Furthermore, the BSF larvae have been recorded with 0.185 mg/kg chromium, 0.380 mg/kg selenium, and mercury below the detection limit, which is far lower than those reared using conventional kitchen and agricultural wastes (≈1.7 mg/kg chromium, 1.2 mg/kg selenium, and 0.2 mg/kg mercury). Overall, the study shows that the nutritional quality of BSF prepupae is extensively improved when using S. Grandiflora as their feed. The resultant BSF prepupae may serve as an alternative feed for animal rearing.
    Matched MeSH terms: Limit of Detection
  14. Hassan RA, Heng LY, Tan LL
    Sensors (Basel), 2020 Sep 04;20(18).
    PMID: 32899886 DOI: 10.3390/s20185043
    Carrageenans are linear sulphated polysaccharides that are commonly added into confectionery products but may exert a detrimental effect to human health. A new and simpler way of carrageenan determination based on an optical sensor utilizing a methylcellulose/poly(n-butyl acrylate) (Mc/PnBA) composite membrane with immobilized methylene blue (MB) was developed. The hydrophilic Mc polymer membrane was successfully modified with a more hydrophobic acrylic polymer. This was to produce an insoluble membrane at room temperature where MB reagent could be immobilized to build an optical sensor for carrageenan analysis. The fluorescence intensity of MB in the composite membrane was found to be proportional to the carrageenan concentrations in a linear manner (1.0-20.0 mg L-1, R2 = 0.992) and with a detection limit at 0.4 mg L-1. Recovery of spiked carrageenan into commercial fruit juice products showed percentage recoveries between 90% and 102%. The optical sensor has the advantages of improved sensitivity and better selectivity to carrageenan when compared to other types of hydrocolloids. Its sensitivity was comparable to most sophisticated techniques for carageenan analysis but better than other types of optical sensors. Thus, this sensor provides a simple, rapid, and sensitive means for carageenan analysis.
    Matched MeSH terms: Limit of Detection
  15. Usman F, Dennis JO, Mkawi EM, Al-Hadeethi Y, Meriaudeau F, Ferrell TL, et al.
    Polymers (Basel), 2020 Nov 20;12(11).
    PMID: 33233844 DOI: 10.3390/polym12112750
    This work reports the use of a ternary composite that integrates p-Toluene sulfonic acid doped polyaniline (PANI), chitosan, and reduced graphene oxide (RGO) as the active sensing layer of a surface plasmon resonance (SPR) sensor. The SPR sensor is intended for application in the non-invasive monitoring and screening of diabetes through the detection of low concentrations of acetone vapour of less than or equal to 5 ppm, which falls within the range of breath acetone concentration in diabetic patients. The ternary composite film was spin-coated on a 50-nm-thick gold layer at 6000 rpm for 30 s. The structure, morphology and chemical composition of the ternary composite samples were characterized by FTIR, UV-VIS, FESEM, EDX, AFM, XPS, and TGA and the response to acetone vapour at different concentrations in the range of 0.5 ppm to 5 ppm was measured at room temperature using SPR technique. The ternary composite-based SPR sensor showed good sensitivity and linearity towards acetone vapour in the range considered. It was determined that the sensor could detect acetone vapour down to 0.88 ppb with a sensitivity of 0.69 degree/ppm with a linearity correlation coefficient of 0.997 in the average SPR angular shift as a function of the acetone vapour concentration in air. The selectivity, repeatability, reversibility, and stability of the sensor were also studied. The acetone response was 87%, 94%, and 99% higher compared to common interfering volatile organic compounds such as propanol, methanol, and ethanol, respectively. The attained lowest detection limit (LOD) of 0.88 ppb confirms the potential for the utilisation of the sensor in the non-invasive monitoring and screening of diabetes.
    Matched MeSH terms: Limit of Detection
  16. Azhari NR, Yahaya N, Mohd Suah FBM, Prabu S, Yih Hui B, Shahriman MS, et al.
    Chirality, 2021 01;33(1):37-50.
    PMID: 33197086 DOI: 10.1002/chir.23285
    A chiral separation method coupled with capillary electrophoresis (CE) analysis for ketoconazole and miconazole enantiomers using chiral selectors such as β-cyclodextrin (β-CD) and hydroxypropyl-β-CD (HP-β-CD) was developed in this study, which included the optimisation, validation and application of the method on the antifungal cream samples. The formation of inclusion complex between the hosts (β-CD and HP-β-CD) and guests (ketoconazole and miconazole) were compared and analysed using ultraviolet-visible spectrophotometry, nuclear magnetic resonance (NMR) spectroscopy and molecular docking methods. Results from the study showed that in a concentration that ranged between 0.25 and 50 mg L-1 , the linear calibration curves of each enantiomer had a high coefficient of regression (R2 > 0.999), low limit of detection (0.075 mg L-1 ) and low limit of quantification (0.25 mg L-1 ). The relative standard deviation (RSD) of the intraday and interday analyses ranged from 0.79% to 8.01% and 3.30% to 11.43%, respectively, while the recoveries ranged from 82.0% to 105.7% (RSD < 7%, n = 3). The most probable structure of the inclusion complexes was proposed based on the findings from the molecular docking studies conducted using the PatchDock server.
    Matched MeSH terms: Limit of Detection
  17. Sazali NH, Alshishani A, Saad B, Chew KY, Chong MM, Miskam M
    R Soc Open Sci, 2019 Aug;6(8):190952.
    PMID: 31598260 DOI: 10.1098/rsos.190952
    In this study, salting-out assisted liquid-liquid extraction (SALLE) as a simple and efficient extraction technique followed by high-performance liquid chromatography (HPLC) was employed for the determination of vitamin D3 in milk samples. The sample treatment is based on the use of water-miscible acetonitrile as the extractant and acetonitrile phase separation under high-salt conditions. Under the optimum conditions, acetonitrile and ammonium sulfate were used as the extraction solvent and salting-out agent, respectively. The vitamin D3 extract was separated using Hypersil ODS (250x i.d 4.6 mm, 5 µm) HPLC column that was coupled with diode array detector. Vitamin D2 was used as internal standard (IS) to offset any variations in chromatographic conditions. The vitamin D3 and the IS were eluted in 18 min. Good linearity (r2 > 0.99) was obtained within the range of 25-600 ng g-1 with the limit of detection of 15 ng g-1 and limit of quantification of 25 ng g-1. The validated method was applied for the determination of vitamin D3 in milk samples. The recoveries for spiked samples were from 94.4 to 113.5%.
    Matched MeSH terms: Limit of Detection
  18. Wan Khalid WEF, Mat Arip MN, Jasmani L, Lee YH
    Sensors (Basel), 2019 Jun 18;19(12).
    PMID: 31216625 DOI: 10.3390/s19122726
    A new cellulose nanocrystal-reduced graphene oxide (CNC-rGO) nanocomposite was successfully used for mediatorless electrochemical sensing of methyl paraben (MP). Fourier-transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM) studies confirmed the formation of the CNC-rGO nanocomposite. Cyclic voltammetry (CV) studies of the nanocomposite showed quasi-reversible redox behavior. Differential pulse voltammetry (DPV) was employed for the sensor optimization. Under optimized conditions, the sensor demonstrated a linear calibration curve in the range of 2 × 10-4-9 × 10-4 M with a limit of detection (LOD) of 1 × 10-4 M. The MP sensor showed good reproducibility with a relative standard deviation (RSD) of about 8.20%. The sensor also exhibited good stability and repeatability toward MP determinations. Analysis of MP in cream samples showed recovery percentages between 83% and 106%. Advantages of this sensor are the possibility for the determination of higher concentrations of MP when compared with most other reported sensors for MP. The CNC-rGO nanocomposite-based sensor also depicted good reproducibility and reusability compared to the rGO-based sensor. Furthermore, the CNC-rGO nanocomposite sensor showed good selectivity toward MP with little interference from easily oxidizable species such as ascorbic acid.
    Matched MeSH terms: Limit of Detection
  19. Abdi MM, Razalli RL, Tahir PM, Chaibakhsh N, Hassani M, Mir M
    Int J Biol Macromol, 2019 Apr 01;126:1213-1222.
    PMID: 30611809 DOI: 10.1016/j.ijbiomac.2019.01.001
    A novel and sensitive electrochemical cholesterol biosensor was developed based on immobilization cholesterol oxidase (ChOx) on the polyaniline/crystalline nanocellulose/ionic liquid modified Screen-Printed Electrode (PANi/CNC/IL/SPE). A thin layer of ionic liquid (IL) was spin coated on the modified electrode to enhance the electron transferring. Crystalline nanocellulose was prepared from Semantan bamboo (Gigantochloa scortechinii) via acid hydrolysis and it was used to synthesize a nanocomposite of PANi/CNC via in situ oxidative polymerization process. FESEM and TEM images showed high porosity of the nanostructure with no phase separation, revealing the homogenous polymerization of the monomer on the surface of the crystalline cellulose. Research surface methodology (RSM) was carried out to optimize the parameters and conditions leading to maximize the performance and sensitivity of biosensors. The PANi/CNC/IL/GLU/ChOx-modified electrode showed a high sensitivity value of 35.19 μA mM/cm-2 at optimized conditions. The proposed biosensor exhibited a dynamic linear range of 1 μM to 12 mM (R2 = 0.99083) with the low Limit of Detection of 0.48 μM for cholesterol determination. An acceptable reproducibility (RSDs ≤3.76%) and repeatability (RSDs ≤3.31%) with the minimal interference from the coexisting electroactive compounds such as ascorbic acid, uric acid and glucose was observed for proposed biosensor.
    Matched MeSH terms: Limit of Detection
  20. Aina GQ, Erwanto Y, Hossain M, Johan MR, Ali ME, Rohman A
    J Adv Vet Anim Res, 2019 Sep;6(3):300-307.
    PMID: 31583226 DOI: 10.5455/javar.2019.f348
    Objective: The objective of this study was to employ real-time or quantitative polymerase chain reaction (q-PCR) using novel species specific primer (SSP) targeting on mitochondrial cytochrome-b of wild boar species (CYTBWB2-wb) gene for the identification of non-halal meat of wild boar meat (WBM) in meatball products.

    Materials and Methods: The novel SSP of CYTBWB2-wb was designed by our group using PRIMERQUEST and NCBI software. DNA was extracted using propanol-chloroform-isoamyl alcohol method. The designed SSP was further subjected for validation protocols using DNA isolated from fresh meat and from meatball, which include specificity test, determination of efficiency, limit of detection and repeatability, and application of developed method for analysis of commercially meatball samples.

    Results: The results showed that CYTBWB2-wb was specific to wild boar species against other animal species with optimized annealing temperature of 59°C. The efficiency of q-PCR obtained was 91.9% which is acceptable according to the Codex Allimentarius Commission (2010). DNA, with as low as 5 pg/μl, could be detected using q-PCR with primer of CYTBWB2-wb. The developed method was also used for DNA analysis extracted from meatball samples commercially available.

    Conclusion: q-PCR using CYTBWB2-wb primers targeting on mitochondrial cytochrome-b gene (forward: CGG TTC CCT CTT AGG CAT TT; Reverse: GGA TGA ACA GGC AGA TGA AGA) can be fruitfully used for the analysis of WBM in commercial meatball samples.

    Matched MeSH terms: Limit of Detection
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links