Displaying publications 61 - 80 of 536 in total

Abstract:
Sort:
  1. Katja DG, Hilmayanti E, Nurlelasari, Mayanti T, Harneti D, Maharani R, et al.
    J Asian Nat Prod Res, 2023 Jan;25(1):36-43.
    PMID: 35128999 DOI: 10.1080/10286020.2022.2032678
    Two new azadirone-type limonoids, namely lasiocarpine A (1) and lasiocarpine B (2) were isolated from the fruit of Chisocheton lasiocarpus along with three known limonoids (3-5). UV, IR, one- and two- dimensional NMR, and mass spectrometry were used to determine the chemical structure of the isolated compounds. Furthermore, their cytotoxic activity against breast cancer cell line MCF-7 was evaluated using PrestoBlue reagent. From these compounds, lasiocarpine A (1) showed the strongest activity with an IC50 value of 43.38 μM.
    Matched MeSH terms: Magnetic Resonance Spectroscopy
  2. Purnama, Farabi K, Runadi D, Kuncoro H, Harneti D, Nurlelasari, et al.
    Molecules, 2023 Jun 23;28(13).
    PMID: 37446608 DOI: 10.3390/molecules28134946
    The Aglaia genus, a member of the Meliaceae family, is generally recognized to include a number of secondary metabolite compounds with diverse structures and biological activities, including triterpenoids. Among the members of this genus, Aglaia cucullata has been reported to have unique properties and thrives exclusively in mangrove ecosystems. This plant is also known to contain various metabolites, such as flavaglines, bisamides, and diterpenoids, but there are limited reports on the isolation of triterpenoid compounds from its stem bark. Therefore, this research attempted to isolate and elucidate seven triterpenoids belonging to dammarane-type (1-7) from the stem bark of Aglaia cucullata. The isolated compounds included 20S,24S-epoxy-3α,25-dihydroxy-dammarane (1), dammaradienone (2), 20S-hydroxy-dammar-24-en-3-on (3), eichlerianic acid (4), (20S,24RS)-23,24-epoxy-24-methoxy-25,26,27-tris-nor dammar-3-one (5), 3α-acetyl-cabraleahydroxy lactone (6), and 3α-acetyl-20S,24S-epoxy-3α,25-dihydroxydammarane (7). Employing spectroscopic techniques, the chemical structures of the triterpenoids were identified using FTIR, NMR, and HRESITOF-MS. The cytotoxic activity of compounds 1-7 was tested with the PrestoBlue cell viability reagent against MCF-7 breast cancer, B16-F10 melanoma, and CV-1 normal kidney fibroblast cell lines. The results displayed that compound 5 had the highest level of bioactivity compared to the others. Furthermore, the IC50 values obtained were more than 100 μM, indicating the low potential of natural dammarane-type triterpenoids as anticancer agents. These findings provided opportunities for further studies aiming to increase their cytotoxic activities through semi-synthetic methods.
    Matched MeSH terms: Magnetic Resonance Spectroscopy
  3. Sulaiman F, Ahmad Azam A, Ahamad Bustamam MS, Fakurazi S, Abas F, Lee YX, et al.
    Molecules, 2020 Jul 15;25(14).
    PMID: 32679913 DOI: 10.3390/molecules25143235
    Watermelon, a widely commercialized fruit, is famous for its thirst-quenching property. The broad range of cultivars, which give rise to distinct color and taste, can be attributed to the differences in their chemical profile, especially that of the carotenoids and volatile compounds. In order to understand this distribution properly, water extracts of red and yellow watermelon pulps with predominantly polar metabolites were subjected to proton nuclear magnetic resonance (1H-NMR) analysis. Deuterium oxide (D2O) and deuterated chloroform (CDCl3) solvents were used to capture both polar and non-polar metabolites from the same sample. Thirty-six metabolites, of which six are carotenoids, were identified from the extracts. The clustering of the compounds was determined using unsupervised principal component analysis (PCA) and further grouping was achieved using supervised orthogonal partial least squares discriminant analysis (OPLS-DA). The presence of lycopene, β-carotene, lutein, and prolycopene in the red watermelon plays an important role in its differentiation from the yellow cultivar. A marked difference in metabolite distribution was observed between the NMR solvents used as evidenced from the PCA model. OPLS-DA and relative quantification of the metabolites, on the other hand, helped in uncovering the discriminating metabolites of the red and yellow watermelon cultivars from the same solvent system.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  4. Martula E, Morak-Młodawska B, Jeleń M, Okechukwu PN, Balachandran A, Tehirunavukarasu P, et al.
    Molecules, 2023 Nov 19;28(22).
    PMID: 38005384 DOI: 10.3390/molecules28227662
    Many new isomeric dipyridothiazine dimers have been presented as molecules with anticancer potential. These compounds were obtained in efficient syntheses of 1,6-, 1,8-, 2,7- and 3,6-diazaphenothiazines with selected alkylaromatic linkers. The structures of these compounds has been proven with two-dimensional spectroscopic techniques (COSY, NOESY, HSQC and HMBC) and high-resolution mass spectrometry (HRMS). In silico analyses of probable molecular targets were performed using the Way2Drug server. All new dimers were tested for anticancer activity against breast cancer line MCF7 and colon cancer line SW480. Cytotoxicity was assessed on normal L6 muscle cells. The tested dimers had high anticancer potential expressed as IC50 and the selectivity index SI. The most active derivative, 4c, showed an IC50 activity of less than 1 µM and an SI selectivity index higher than 100. Moreover, the compounds were characterized by low toxicity towards normal cells, simultaneously indicating a high cytostatic potential.
    Matched MeSH terms: Magnetic Resonance Spectroscopy
  5. Fakhlaei R, Babadi AA, Sun C, Ariffin NM, Khatib A, Selamat J, et al.
    Food Chem, 2024 May 30;441:138402.
    PMID: 38218155 DOI: 10.1016/j.foodchem.2024.138402
    Safety and quality aspects of food products have always been critical issues for the food production and processing industries. Since conventional quality measurements are laborious, time-consuming, and expensive, it is vital to develop new, fast, non-invasive, cost-effective, and direct techniques to eliminate those challenges. Recently, non-destructive techniques have been applied in the food sector to improve the quality and safety of foodstuffs. The aim of this review is an effort to list non-destructive techniques (X-ray, computer tomography, ultraviolet-visible spectroscopy, hyperspectral imaging, infrared, Raman, terahertz, nuclear magnetic resonance, magnetic resonance imaging, and ultrasound imaging) based on the electromagnetic spectrum and discuss their principle and application in the food sector. This review provides an in-depth assessment of the different non-destructive techniques used for the quality and safety analysis of foodstuffs. We also discussed comprehensively about advantages, disadvantages, challenges, and opportunities for the application of each technique and recommended some solutions and developments for future trends.
    Matched MeSH terms: Magnetic Resonance Spectroscopy
  6. Pandya A, Yu YJ, Ge Y, Nagel E, Kwong RY, Bakar RA, et al.
    J Cardiovasc Magn Reson, 2022 01 06;24(1):1.
    PMID: 34986851 DOI: 10.1186/s12968-021-00833-1
    BACKGROUND: Although prior reports have evaluated the clinical and cost impacts of cardiovascular magnetic resonance (CMR) for low-to-intermediate-risk patients with suspected significant coronary artery disease (CAD), the cost-effectiveness of CMR compared to relevant comparators remains poorly understood. We aimed to summarize the cost-effectiveness literature on CMR for CAD and create a cost-effectiveness calculator, useable worldwide, to approximate the cost-per-quality-adjusted-life-year (QALY) of CMR and relevant comparators with context-specific patient-level and system-level inputs.

    METHODS: We searched the Tufts Cost-Effectiveness Analysis Registry and PubMed for cost-per-QALY or cost-per-life-year-saved studies of CMR to detect significant CAD. We also developed a linear regression meta-model (CMR Cost-Effectiveness Calculator) based on a larger CMR cost-effectiveness simulation model that can approximate CMR lifetime discount cost, QALY, and cost effectiveness compared to relevant comparators [such as single-photon emission computed tomography (SPECT), coronary computed tomography angiography (CCTA)] or invasive coronary angiography.

    RESULTS: CMR was cost-effective for evaluation of significant CAD (either health-improving and cost saving or having a cost-per-QALY or cost-per-life-year result lower than the cost-effectiveness threshold) versus its relevant comparator in 10 out of 15 studies, with 3 studies reporting uncertain cost effectiveness, and 2 studies showing CCTA was optimal. Our cost-effectiveness calculator showed that CCTA was not cost-effective in the US compared to CMR when the most recent publications on imaging performance were included in the model.

    CONCLUSIONS: Based on current world-wide evidence in the literature, CMR usually represents a cost-effective option compared to relevant comparators to assess for significant CAD.

    Matched MeSH terms: Magnetic Resonance Spectroscopy
  7. Au A
    Adv Clin Chem, 2018 03 08;85:31-69.
    PMID: 29655461 DOI: 10.1016/bs.acc.2018.02.002
    Ischemic stroke is a sudden loss of brain function due to the reduction of blood flow. Brain tissues cease to function with subsequent activation of the ischemic cascade. Metabolomics and lipidomics are modern disciplines that characterize the metabolites and lipid components of a biological system, respectively. Because the pathogenesis of ischemic stroke is heterogeneous and multifactorial, it is crucial to establish comprehensive metabolomic and lipidomic approaches to elucidate these alterations in this disease. Fortunately, metabolomic and lipidomic studies have the distinct advantages of identifying tissue/mechanism-specific biomarkers, predicting treatment and clinical outcome, and improving our understanding of the pathophysiologic basis of disease states. Therefore, recent applications of these analytical approaches in the early diagnosis of ischemic stroke were discussed. In addition, the emerging roles of metabolomics and lipidomics on ischemic stroke were summarized, in order to gain new insights into the mechanisms underlying ischemic stroke and in the search for novel metabolite biomarkers and their related pathways.
    Matched MeSH terms: Magnetic Resonance Spectroscopy/instrumentation; Magnetic Resonance Spectroscopy/methods
  8. Salih AM, Ahmad MB, Ibrahim NA, Dahlan KZ, Tajau R, Mahmood MH, et al.
    Molecules, 2015;20(8):14191-211.
    PMID: 26248072 DOI: 10.3390/molecules200814191
    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.
    Matched MeSH terms: Carbon-13 Magnetic Resonance Spectroscopy; Proton Magnetic Resonance Spectroscopy*
  9. Prakash I, Chaturvedula VS, Markosyan A
    Nat Prod Commun, 2013 Nov;8(11):1523-6.
    PMID: 24427932
    From the extract of the leaves of Stevia rebaudiana Bertoni, a diterpene glycoside was isolated which was identified as 13-[(2-O-beta-D-glucopyranosyl-3-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-(2-O-beta-D-glucopyranosyl-3-O-beta-D-glucopyranosyl-D-glucopyranosyl) ester (1). The complete 1H and 13C NMR assignment of 1 is reported for the first time, from extensive NMR (1H and 13C, COSY, HSQC, and HMBC) and mass spectral data. Also, we report the sensory evaluation of 1 against sucrose for the sweetness property of this molecule.
    Matched MeSH terms: Magnetic Resonance Spectroscopy
  10. Naqeebullah, Farina Y, Chan KM, Mun LK, Rajab NF, Ooi TC
    Molecules, 2013 Jul 22;18(7):8696-711.
    PMID: 23881054 DOI: 10.3390/molecules18078696
    Three diorganotin(IV) complexes of the general formula R2Sn[RcC(O)N(RN)O] (Rc = aryl, RN = Alkyl) have been synthesized by refluxing in toluene the corresponding diorganotin(IV) oxides with the free ligand N-methyl p-fluorobenzohydroxamic acid, using a Dean and Stark water separator. The ligand was derived from the reaction of the corresponding p-fluorobenzoyl chloride and N-methylhydroxylamine hydrochloride in the presence of sodium hydrogen carbonate. The isolated free ligand and its respective diorganotin compounds have been characterized by elemental analysis, IR and 1H-, 13C-, 119Sn-NMR spectroscopies. The crystal structures of the diorganotin complexes have been confirmed by single crystal X-ray diffraction methods. The investigations carried out on the diorganotin(IV) complexes of N-methyl p-fluorobenzohydroxamic acid confirmed a 1:2 stoichiometry. The complex formation took place through the O,O-coordination via the carbonyl oxygen and subsequent deprotonated hydroxyl group to the tin atom. The crystal structures of three diorganotin complexes were determined and were found to adopt six coordination geometries at the tin centre with coordination to two ligand moieties.
    Matched MeSH terms: Magnetic Resonance Spectroscopy
  11. Hamzah R, Bakar MA, Khairuddean M, Mohammed IA, Adnan R
    Molecules, 2012 Sep 12;17(9):10974-93.
    PMID: 22971583 DOI: 10.3390/molecules170910974
    A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at δ 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50.
    Matched MeSH terms: Magnetic Resonance Spectroscopy
  12. Tan SJ, Lim KH, Subramaniam G, Kam TS
    Phytochemistry, 2013 Jan;85:194-202.
    PMID: 22995929 DOI: 10.1016/j.phytochem.2012.08.016
    Nine bisindole alkaloids, comprising four belonging to the macroline-sarpagine group, and five belonging to the macroline-pleiocarpamine group, were isolated from the stem-bark extracts of Alstonia angustifolia (Apocynacea). Their structures were established using NMR and MS analyses.
    Matched MeSH terms: Magnetic Resonance Spectroscopy
  13. Thambidorai CR, Anuar Z
    J Indian Assoc Pediatr Surg, 2011 Jul;16(3):115-7.
    PMID: 21897576 DOI: 10.4103/0971-9261.83500
    This is a report on the use of magnetic resonance urography (MRU) in a 6-year-old girl who presented with urinary incontinence. She had a left duplex kidney with poorly functioning upper moiety and ectopic insertion of the dilated upper pole ureter. MRU has been shown to be superior to conventional imaging techniques in delineating poorly functioning moieties of duplex kidneys and ectopic ureters.
    Matched MeSH terms: Magnetic Resonance Spectroscopy
  14. Lau NS, Chee JY, Tsuge T, Sudesh K
    Bioresour Technol, 2010 Oct;101(20):7916-23.
    PMID: 20541932 DOI: 10.1016/j.biortech.2010.05.049
    We attempted to synthesize a polyhydroxyalkanoate (PHA) containing newly reported 3-hydroxy-4-methylvalerate (3H4MV) monomer by using wild type Burkholderia sp. USM (JCM15050) and its transformed strain harboring the PHA synthase gene of Aeromonas caviae (phaCAc). The introduction of 3H4MV as a second monomer will improve the material properties of 3HB-based polymers. To promote the accumulation of PHA containing 3H4MV monomer, isocaproic acid was provided as co-carbon source. Approximately 1mol% of 3H4MV was detected in wild type Burkholderia sp. cultures when they were fed glucose or fructose together with isocaproic acid. Thus, the wild type strain can synthesize the 3H4MV monomer. High 3H4MV fractions, of about 40mol%, were obtained when the transformed strain was cultivated on glucose or fructose together with isocaproic acid. In addition, the ability of the transformed strain to mobilize accumulated PHA containing 3H4MV monomer was demonstrated in this study. This is the first report on mobilization of the 3H4MV monomer.
    Matched MeSH terms: Magnetic Resonance Spectroscopy
  15. Ishii T, Matsuura H, Zhaoqi Z, Vairappan CS
    Molecules, 2009;14(11):4591-6.
    PMID: 19924087 DOI: 10.3390/molecules14114591
    A new germacrane-type norsesquiterpenoid, 1-acetoxy-germacra-5E,10(14)-diene-4-one (1), as well as three known compounds, were isolated from the organic extracts of a Bornean soft coral Nephthea sp. Their structures were elucidated on the basis of spectroscopic data analysis.
    Matched MeSH terms: Magnetic Resonance Spectroscopy
  16. Al-Mulla EA, Yunus WM, Ibrahim NA, Rahman MZ
    J Oleo Sci, 2010;59(2):59-64.
    PMID: 20103977
    Fatty amides have been successfully synthesized from palm olein and urea by a one-step lipase catalyzed reaction. The use of immobilized lipase as the catalyst for the preparation reaction provides an easy isolation of the enzyme from the products and other components in the reaction mixture. The fatty amides were characterized using Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance ((1)H NMR) technique and elemental analysis. The highest conversion percentage (96%) was obtained when the process was carried out for 36 hours using urea to palm oil ratio of 5.2: 1.0 at 40 degrees C. The method employed offers several advantages such as renewable and abundant of the raw material, simple reaction procedure, environmentally friendly process and high yield of the product.
    Matched MeSH terms: Magnetic Resonance Spectroscopy
  17. Mukhtar MR, Hadi AH, Rondeau D, Richomme P, Litaudon M, Mustafa MR, et al.
    Nat Prod Res, 2008;22(11):921-6.
    PMID: 18629705 DOI: 10.1080/14786410701642821
    The phytochemical study of the bark of Malaysian Phoebe scortechinii (Lauraceae) has resulted in the isolation and identification of two new proaporphine alkaloids; (+)-scortechiniine A (1) and (+)-scortechiniine B (2) together with two known proaporphines; (-)-hexahydromecambrine A (3), (-)-norhexahydromecambrine A (4), and one aporphine; norboldine (5). Structural elucidations of these alkaloids were performed using spectroscopic methods especially 1D and 2D (1)H and (13)C NMR.
    Matched MeSH terms: Magnetic Resonance Spectroscopy
  18. Wah LK, Abas F, Cordell GA, Ito H, Ismail IS
    Steroids, 2013 Feb;78(2):210-9.
    PMID: 23178158 DOI: 10.1016/j.steroids.2012.09.011
    Seven new 23-oxo-cholestane derivatives named as grandol A (1), B (2), C (3), D (4), E (5), F (6), and G (7) were isolated from Dysoxylum grande leaves alongside with a new 3,4-secodammar-4(28)-en-3-oic acid derivative (8). The structures of the compounds were elucidated based on the interpretation of spectroscopic data, and their relative configurations were established by NOESY 2D NMR data. All of the isolates were tested for anti-acetylcholinesterase activity using thin layer chromatography (TLC)-bioautography with fast blue B salt. Only grandol A (1) and B (2) showed positive results, with clear discoloration at a concentration of 12.5 ppm. However, the obtained IC(50) values for grandol A and B, when using Ellman's method, were not significant (>200 μg/ml).
    Matched MeSH terms: Magnetic Resonance Spectroscopy
  19. Mukhtar MR, Hadi AH, Litaudon M, Awang K
    Fitoterapia, 2004 Dec;75(7-8):792-4.
    PMID: 15567268
    Five morphinoid alkaloids have been isolated from Dehaasia longipedicellata, namely (-) pallidine, a new alkaloid (+) pallidinine (1), (+)-milonine, (-) 8,14-dehydrosalutaridine and (-) sinoacutine.
    Matched MeSH terms: Magnetic Resonance Spectroscopy
  20. Rahim F, Zaman K, Ullah H, Taha M, Wadood A, Javed MT, et al.
    Bioorg Chem, 2015 Dec;63:123-31.
    PMID: 26520885 DOI: 10.1016/j.bioorg.2015.10.005
    4-Thiazolidinone analogs 1-20 were synthesized, characterized by (1)H NMR and EI-MS and investigated for urease inhibitory activity. All twenty (20) analogs exhibited varied degree of urease inhibitory potential with IC50 values 1.73-69.65μM, if compared with standard thiourea having IC50 value of 21.25±0.15μM. Among the series, eight derivatives 3, 6, 8, 10, 15, 17, 19, and 20 showed outstanding urease inhibitory potential with IC50 values of 9.34±0.02, 14.62±0.03, 8.43±0.01, 7.3±0.04, 2.31±0.002, 5.75±0.003, 8.81±0.005, and 1.73±0.001μM, respectively, which is better than the standard thiourea. The remaining analogs showed good to excellent urease inhibition. The binding interactions of these compounds were confirmed through molecular docking studies.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links