Displaying publications 61 - 80 of 776 in total

Abstract:
Sort:
  1. Lin TY, Chai WS, Chen SJ, Shih JY, Koyande AK, Liu BL, et al.
    Chemosphere, 2021 May;270:128615.
    PMID: 33077189 DOI: 10.1016/j.chemosphere.2020.128615
    This work studied the potential of using eggshell (ES) (200-300 μm) waste as adsorbent for sequential removal of heavy metals, soluble microbial products, and dye wastes. In this study, among soluble microbial products, chicken egg white (CEW) proteins were selected as simulated contaminants. ES was applied to capture heavy metal ions (e.g., Cu2+ and Zn2+) and the formed eggshell metal (ES-M) complex was use to absorb soluble microbial products (e.g., soluble proteins), followed by subsequent removal of dyes from aqueous solutions using ES-M-CEW adsorbent. The experimental conditions for the adsorption of CEW proteins by ES-M include shaking rate, adsorption pH, isothermal and kinetic studies. The maximum protein adsorption by ES-Zn and ES-Cu were 175.67 and 153.65 mg/g, respectively. Optimal removal efficiencies of the ES-M-CEW particles for Acid Orange (AO7) and Toluidine blue (TBO) dyes were at pH 2 and 12, respectively, achieving performance of 75.38 and 114.18 mg/g, respectively. The removal of TBO dye by ES-M-CEW adsorbent was equilibrated at 5 min. The results showed that low cost and simple preparation of the modified ES particles are feasible for treating various wastewaters.
    Matched MeSH terms: Metals, Heavy*
  2. Abbas SZ, Rafatullah M
    Chemosphere, 2021 Jun;272:129691.
    PMID: 33573807 DOI: 10.1016/j.chemosphere.2021.129691
    The cost-effective and eco-friendly approaches are needed for decontamination of polluted soils. The bio-electrochemical system, especially microbial fuel cells (MFCs) offer great promise as a technology for remediation of soil, sediment, sludge and wastewater. Recently, soil MFCs (SMFCs) have been attracting increasing amounts of interest in environmental remediation, since they are capable of providing a clean and inexhaustible source of electron donors or acceptors and can be easily controlled by adjusting the electrochemical parameters. In this review, we comprehensively covered the principle of SMFCs including the mechanisms of electron releasing and electron transportation, summarized the applications for soil contaminants remediation by SMFCs with highlights on organic contaminants degradation and heavy metal ions removal. In addition, the main factors that affected the performance of SMFCs were discussed in details which would be helpful for performance optimization of SMFCs as well as the efficiency improvement for soil remediation. Moreover, the key issues need to be addressed and future perspectives are presented.
    Matched MeSH terms: Metals, Heavy*
  3. Lim SS, Fontmorin JM, Pham HT, Milner E, Abdul PM, Scott K, et al.
    Sci Total Environ, 2021 Jul 01;776:145934.
    PMID: 33647656 DOI: 10.1016/j.scitotenv.2021.145934
    Microbial fuel cells (MFCs) that simultaneously remove organic contaminants and recovering metals provide a potential route for industry to adopt clean technologies. In this work, two goals were set: to study the feasibility of zinc removal from industrial effluents using MFCs and to understand the removal process by using reaction rate models. The removal of Zn2+ in MFC was over 96% for synthetic and industrial samples with initial Zn2+ concentrations less than 2.0 mM after 22 h of operation. However, only 83 and 42% of the zinc recovered from synthetic and industrial samples, respectively, was attached on the cathode surface of the MFCs. The results marked the domination of electroprecipitation rather than the electrodeposition process in the industrial samples. Energy dispersive X-ray (EDX) analysis showed that the recovered compound contained not only Zn but also O, evidence that Zn(OH)2 could be formed. The removal of Zn2+ in the MFC followed a mechanism where oxygen was reduced to hydroxide before reacting with Zn2+. Nernst equations and rate law expressions were derived to understand the mechanism and used to estimate the Zn2+ concentration and removal efficiency. The zero-, first- and second-order rate equations successfully fitted the data, predicted the final Zn2+ removal efficiency, and suggested that possible mechanistic reactions occurred in the electrolysis cell (direct reduction), MFC (O2 reduction), and control (chemisorption) modes. The half-life, t1/2, of the Zn2+ removal reaction using synthetic and industrial samples was estimated to be 7.0 and 2.7 h, respectively. The t1/2 values of the controls (without the power input from the MFC bioanode) were much slower and were recorded as 21.5 and 7.3 h for synthetic and industrial samples, respectively. The study suggests that MFCs can act as a sustainable and environmentally friendly technology for heavy metal removal without electrical energy input or the addition of chemicals.
    Matched MeSH terms: Metals, Heavy*
  4. Yogeshwaran A, Gayathiri K, Muralisankar T, Gayathri V, Monica JI, Rajaram R, et al.
    Mar Pollut Bull, 2020 Sep;158:111443.
    PMID: 32753221 DOI: 10.1016/j.marpolbul.2020.111443
    The present study was performed to analyze the bioaccumulation of heavy metals, biochemical constituents, antioxidants, and metabolic enzymes in the crab Scylla serrata from different regions of Tuticorin, Southeast Coast of India. The study area consists of Threspuram and Harbour Beach which were polluted environments due to the discharge of industrial effluents and domestic sewage into them. Punnakayal, which is a low-polluted environment where the in-situ culture of S. serrata is carried out by local fish farmers, was selected as well. The results revealed that the level of heavy metals, biochemical constituents, antioxidants, and metabolic enzymes were significantly high in the crabs collected from Threspuram and Harbour Beach compared to the crabs collected from Punnakayal. This study indicates that crabs from polluted environments have significant heavy metals bioaccumulation which leads to elevated antioxidants and metabolic enzyme levels. This implies that the crabs are under oxidative and metabolic stress.
    Matched MeSH terms: Metals, Heavy*
  5. Hong KW, Thinagaran Da, Gan HM, Yin WF, Chan KG
    J Bacteriol, 2012 Nov;194(22):6324.
    PMID: 23115161 DOI: 10.1128/JB.01608-12
    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome.
    Matched MeSH terms: Metals, Heavy/toxicity*
  6. Ke B, Nguyen H, Bui XN, Bui HB, Choi Y, Zhou J, et al.
    Chemosphere, 2021 Aug;276:130204.
    PMID: 34088091 DOI: 10.1016/j.chemosphere.2021.130204
    Heavy metals in water and wastewater are taken into account as one of the most hazardous environmental issues that significantly impact human health. The use of biochar systems with different materials helped significantly remove heavy metals in the water, especially wastewater treatment systems. Nevertheless, heavy metal's sorption efficiency on the biochar systems is highly dependent on the biochar characteristics, metal sources, and environmental conditions. Therefore, this study implicates the feasibility of biochar systems in the heavy metal sorption in water/wastewater and the use of artificial intelligence (AI) models in investigating efficiency sorption of heavy metal on biochar. Accordingly, this work investigated and proposed 20 artificial intelligent models for forecasting the sorption efficiency of heavy metal onto biochar based on five machine learning algorithms and bagging technique (BA). Accordingly, support vector machine (SVM), random forest (RF), artificial neural network (ANN), M5Tree, and Gaussian process (GP) algorithms were used as the key algorithms for the aim of this study. Subsequently, the individual models were bagged with each other to generate new ensemble models. Finally, 20 intelligent models were developed and evaluated, including SVM, RF, M5Tree, GP, ANN, BA-SVM, BA-RF, BA-M5Tree, BA-GP, BA-ANN, SVM-RF, SVM-M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-GP, RF-ANN, M5Tree-GP, M5Tree-ANN, GP-ANN. Of those, the hybrid models (i.e., BA-SVM, BA-RF, BA-M5Tree, BA-GP, BA-ANN, SVM-RF, SVM-M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-GP, RF-ANN, M5Tree-GP, M5Tree-ANN, GP-ANN) are introduced as the novelty of this study for estimating the heavy metal's sorption efficiency on the biochar systems. Also, the biochar characteristics, metal sources, and environmental conditions were comprehensively assessed and used, and they are considered as a novelty of the study as well. For this aim, a dataset of sorption efficiency of heavy metal was collected and processed with 353 experimental tests. Various performance indexes were applied to evaluate the models, such as RMSE, R2, MAE, color intensity, Taylor diagram, box and whiskers plots. This study's findings revealed that AI models could predict heavy metal's sorption efficiency onto biochar with high reliability, and the efficiency of the ensemble models is higher than those of individual models. The results also reported that the SVM-ANN ensemble model is the most superior model among 20 developed models. The predictive model proposed that heavy metal's efficiency sorption on biochar can be accurately forecasted and early warning for the water pollution by heavy metal.
    Matched MeSH terms: Metals, Heavy*
  7. Rezania S, Taib SM, Md Din MF, Dahalan FA, Kamyab H
    J Hazard Mater, 2016 Nov 15;318:587-599.
    PMID: 27474848 DOI: 10.1016/j.jhazmat.2016.07.053
    Environmental pollution specifically water pollution is alarming both in the developed and developing countries. Heavy metal contamination of water resources is a critical issue which adversely affects humans, plants and animals. Phytoremediation is a cost-effective remediation technology which able to treat heavy metal polluted sites. This environmental friendly method has been successfully implemented in constructed wetland (CWs) which is able to restore the aquatic biosystem naturally. Nowadays, many aquatic plant species are being investigated to determine their potential and effectiveness for phytoremediation application, especially high growth rate plants i.e. macrophytes. Based on the findings, phytofiltration (rhizofiltration) is the sole method which defined as heavy metals removal from water by aquatic plants. Due to specific morphology and higher growth rate, free-floating plants were more efficient to uptake heavy metals in comparison with submerged and emergent plants. In this review, the potential of wide range of aquatic plant species with main focus on four well known species (hyper-accumulators): Pistia stratiotes, Eicchornia spp., Lemna spp. and Salvinia spp. was investigated. Moreover, we discussed about the history, methods and future prospects in phytoremediation of heavy metals by aquatic plants comprehensively.
    Matched MeSH terms: Metals, Heavy/metabolism*
  8. Othman R, Hasni SI, Baharuddin ZM
    J Environ Biol, 2016 09;37(5 Spec No):1181-1185.
    PMID: 29989751
    Degradation or decline of soil quality that cause shallow slope failure may occur due to physical or chemical processes. It can be triggered off by natural phenomena, or induced by human activity through misuse of land resources, excessive development and urbanization leading to deforestation and erosion of covered soil masses causing serious threat to slopes. The extent of damage of the slopes can be minimized if a long-term early warning system is predicted in the landslide prone areas. The aim of the study was to characterize chemical properties of stable and unstable slope along selected highways of Malaysia which can be manipulated as indicator to forecast shallow slope failure. The elements in soil chemical properties contributed to each other as binding agents that affected the existing soil structure. It could make the soil structure strong or weak. Indicators that can be used to predict shallow slope failure were low content in iron, lead, aluminum, chromium, zinc, low content of organic carbon and CEC.
    Matched MeSH terms: Metals, Heavy/chemistry*
  9. Samsuri AW, Fahmi AH, Jol H, Daljit S
    Int J Phytoremediation, 2020;22(6):567-577.
    PMID: 31744301 DOI: 10.1080/15226514.2019.1687423
    Various amendments are used to reduce the phytoavailability of heavy metals in contaminated soils, but recently the use of biochar is receiving serious attention. In this study, two particle sizes of an oil palm empty fruit bunch biochar (EFBB); <50 µm (F-EFBB) and >2 mm (C-EFBB) were applied at either 0, 0.5, or 1% (w/w) to soils contaminated with either Cd or Pb and the phytoavailability of these metals by mustard plants grown on the soils was evaluated. Results revealed that the application of EFBB at 1% significantly increased plant growth parameters as compared with the control in Cd-soil. However, there was no significant effect of EFBB application rate on plant growth parameters in Pb-soil. There was a significant difference in the concentrations of Cd and Pb in the plant root and shoot between soils receiving different particle sizes of EFBB. The treatment of 1% F-EFBB gave the lowest concentration of the Cd concentration in the shoot (115.200 mgkg-1) and Pb concentration in the root and shoot (4196.000 and 78.467 mgkg-1, respectively) as compared with the other treatments. Therefore, F-EFBB application at high rates can be recommended for reducing the phytoavailability of Cd and Pb in contaminated soils.
    Matched MeSH terms: Metals, Heavy*
  10. Chin JF, Heng ZW, Teoh HC, Chong WC, Pang YL
    Chemosphere, 2022 Mar;291(Pt 3):133035.
    PMID: 34848231 DOI: 10.1016/j.chemosphere.2021.133035
    Heavy metal contamination in water bodies is currently in an area of greater concern due to the adverse effects on human health. Despite the good adsorption performance of biochar, various modifications have been performed on the pristine biochar to further enhance its adsorption capability, at the same time overcome the difficulty of particles separation and mitigate the secondary pollution issues. In this review, the feasibility of chitosan-modified magnetic biochar for heavy metal removal from aqueous solution is evaluated by critically analysing existing research. The effective strategies that applied to introduce chitosan and magnetic substances into the biochar matrix are systematically reviewed. The physicochemical changes of the modified-biochar composite are expounded in terms of surface morphology, pore properties, specific surface area, surface functional groups and electromagnetism. The detailed information regarding the adsorption performances of various modified biochar towards different heavy metals and their respective underlying mechanisms are studied in-depth. The current review also analyses the kinetic and isotherm models that dominated the adsorption process and summarizes the common models that fitted well to most of the experimental adsorption data. Moreover, the operating parameters that affect the adsorption process which include solution pH, temperature, initial metal concentration, adsorbent dosage, contact time and the effect of interfering ions are explored. This review also outlines the stability of modified biochar and their regeneration rate after cycles of heavy metal removal process. Lastly, constructive suggestions on the future trends and directions are provided for better research and development of chitosan-modified magnetic biochar.
    Matched MeSH terms: Metals, Heavy*
  11. Praveena SM, Omar NA
    Food Chem, 2017 Nov 15;235:203-211.
    PMID: 28554627 DOI: 10.1016/j.foodchem.2017.05.049
    Heavy metal in rice studies has attracted a greater concern worldwide. However, there have been limited studies on marketed rice samples although it represents a vital ingestion portion for a real estimation of human health risk. This study was aimed to determine both total and bioaccessible of trace elements and heavy metals (Cd, Cr, Cu, Co, Al, Zn, As, Pb and Fe) in 22 varieties of cooked rice using an inductively coupled plasma-optical emission spectroscopy. Both total and bioaccessible of trace elements and heavy metals were digested using closed-nitric acid digestion and Rijksinstituut voor Volksgezondheid en Milieu (RIVM) in vitro digestion model, respectively. Human health risks via Health Risk Assessment (HRA) were conducted to understand exposure risks involving adults and children representing Malaysian population. Zinc was the highest while As was the lowest contents for total and in their bioavailable forms. Four clusters were identified: (1) Pb, As, Co, Cd and Cr; (2) Cu and Al; (3) Fe and (4) Zn. For HRA, there was no any risks found from single element exposure. While potential carcinogenic health risks present for both adult and children from single As exposure (Life time Cancer Risk, LCR>1×10(-4)). Total Hazard Quotient values for adult and children were 27.0 and 18.0, respectively while total LCR values for adult and children were 0.0049 and 0.0032, respectively.
    Matched MeSH terms: Metals, Heavy/analysis*
  12. Dikhanbaev B, Gomes C, Dikhanbaev AB
    PLoS One, 2017;12(12):e0187790.
    PMID: 29281646 DOI: 10.1371/journal.pone.0187790
    Dumps of a mining-metallurgical complex of post-Soviet Republics have accumulated a huge amount of technogenic waste products. Out of them, Kazakhstan alone has preserved about 20 billion tons. In the field of technogenic waste treatment, there is still no technical solution that leads it to be a profitable process. Recent global trends prompted scientists to focus on developing energy-saving and a highly efficient melting unit that can significantly reduce specific fuel consumption. This paper reports, the development of a new technological method-smelt layer of inversion phase. The introducing method is characterized by a combination of ideal stirring and ideal displacement regimes. Using the method of affine modelling, recalculation of pilot plant's test results on industrial sample has been obtained. Experiments show that in comparison with bubbling and boiling layers of smelt, the degree of zinc recovery increases in the layer of inversion phase. That indicates the reduction of the possibility of new formation of zinc silicates and ferrites from recombined molecules of ZnO, SiO2, and Fe2O3. Calculations show that in industrial samples of the pilot plant, the consumption of natural gas has reduced approximately by two times in comparison with fuming-furnace. The specific fuel consumption has reduced by approximately four times in comparison with Waelz-kiln.
    Matched MeSH terms: Metals/chemistry
  13. Razia S, Hadibarata T, Lau SY
    Bioprocess Biosyst Eng, 2023 Mar;46(3):341-358.
    PMID: 36602611 DOI: 10.1007/s00449-022-02844-3
    Acidophiles are a group of microorganisms that thrive in acidic environments where pH level is far below the neutral value 7.0. They belong to a larger family called extremophiles, which is a group that thrives in various extreme environmental conditions which are normally inhospitable to other organisms. Several human activities such as mining, construction and other industrial processes release highly acidic effluents and wastes into the environment. Those acidic wastes and wastewaters contain different types of pollutants such as heavy metals, radioactive, and organic, whose have adverse effects on human being as well as on other living organisms. To protect the whole ecosystem, those pollutants containing effluents or wastes must be clean properly before releasing into environment. Physicochemical cleanup processes under extremely acidic conditions are not always successful due to high cost and release of toxic byproducts. While in case of biological methods, except acidophiles, no other microorganisms cannot survive in highly acidic conditions. Therefore, acidophiles can be a good choice for remediation of different types of contaminants present in acidic conditions. In this review article, various roles of acidophilic microorganisms responsible for removing heavy metals and radioactive pollutants from acidic environments were discussed. Bioremediation of various acidic organic pollutants by using acidophiles was also studied. Overall, this review could be helpful to extend our knowledge as well as to do further relevant novel studies in the field of acidic pollutants remediation by applying acidophilic microorganisms.
    Matched MeSH terms: Metals, Heavy*
  14. Mohamad Nor N, Ramli NH, Poobalan H, Qi Tan K, Abdul Razak K
    Crit Rev Anal Chem, 2023;53(2):253-288.
    PMID: 34565248 DOI: 10.1080/10408347.2021.1950521
    Heavy metal pollution has gained global attention due to its high toxicity and non-biodegradability, even at a low level of exposure. Therefore, the development of a disposable electrode that is sensitive, simple, portable, rapid, and cost-effective as the sensor platform in electrochemical heavy metal detection is vital. Disposable electrodes have been modified with nanomaterials so that excellent electrochemical properties can be obtained. This review highlights the recent progress in the development of numerous types of disposable electrodes modified with nanomaterials for electrochemical heavy metal detection. The disposable electrodes made from carbon-based, glass-based, and paper-based electrodes are reviewed. In particular, the analytical performance, fabrication technique, and integration design of disposable electrodes modified with metal (such as gold, tin and bismuth), carbon (such as carbon nanotube and graphene), and metal oxide (such as iron oxide and zinc oxide) nanomaterials are summarized. In addition, the role of the nanomaterials in improving the electrochemical performance of the modified disposable electrodes is discussed. Finally, the current challenges and future prospect of the disposable electrode modified with nanomaterials are summarized.
    Matched MeSH terms: Metals, Heavy*
  15. Cao X, Yu ZX, Xie M, Pan K, Tan QG
    Environ Sci Technol, 2023 Jan 17;57(2):1060-1070.
    PMID: 36595456 DOI: 10.1021/acs.est.2c06447
    In coastal waters, particulate metals constitute a substantial fraction of the total metals; however, the prevalent water quality criteria are primarily based on dissolved metals, seemingly neglecting the contribution of particulate metals. Here we developed a method to quantify the toxicity risk of particulate metals, and proposed a way to calculate modifying factors (MFs) for setting site-specific criteria in turbid waters. Specifically, we used a side-by-side experimental design to study copper (Cu) bioaccumulation and toxicity in an estuarine clam, Potamocorbula laevis, under the exposure to "dissolved only" and "dissolved + particulate" 65Cu. A toxicokinetic-toxicodynamic model (TK-TD) was used to quantify the processes of Cu uptake, ingestion, assimilation, egestion, and elimination, and to relate mortality risk to tissue Cu. We find that particulate Cu contributes 40-67% of the Cu bioaccumulation when the suspended particulate matter (SPM) ranges from 12 to 229 mg L-1. The Cu-bearing SPM also increases the sensitivity of organisms to internalized Cu by decreasing the internal threshold concentration (CIT) from 141 to 76.8 μg g-1. MFs were derived based on the TK-TD model to consider the contribution of particulate Cu (in the studied SPM range) for increasing Cu bioaccumulation (MF = 1.3-2.2) and toxicity (MF = 2.3-3.9). Water quality criteria derived from dissolved metal exposure need to be lowered by dividing by an MF to provide adequate protection. Overall, the method we developed provides a scientifically sound framework to manage the risks of metals in turbid waters.
    Matched MeSH terms: Metals/analysis
  16. Elzwayie A, Afan HA, Allawi MF, El-Shafie A
    Environ Sci Pollut Res Int, 2017 May;24(13):12104-12117.
    PMID: 28353110 DOI: 10.1007/s11356-017-8715-0
    Several research efforts have been conducted to monitor and analyze the impact of environmental factors on the heavy metal concentrations and physicochemical properties of water bodies (lakes and rivers) in different countries worldwide. This article provides a general overview of the previous works that have been completed in monitoring and analyzing heavy metals. The intention of this review is to introduce the historical studies to distinguish and understand the previous challenges faced by researchers in analyzing heavy metal accumulation. In addition, this review introduces a survey on the importance of time increment sampling (monthly and/or seasonally) to comprehend and determine the rate of change of different parameters on a monthly and seasonal basis. Furthermore, suggestions are made for future research to achieve more understandable figures on heavy metal accumulation by considering climate conditions. Thus, the intent of the current study is the provision of reliable models for predicting future heavy metal accumulation in water bodies in different climates and pollution conditions so that water management can be achieved using intelligent proactive strategies and artificial neural network (ANN) techniques.
    Matched MeSH terms: Metals, Heavy*
  17. Khan FSA, Mubarak NM, Khalid M, Walvekar R, Abdullah EC, Mazari SA, et al.
    Environ Sci Pollut Res Int, 2020 Jul;27(19):24342-24356.
    PMID: 32306264 DOI: 10.1007/s11356-020-08711-6
    Due to the rapid growth in the heavy metal-based industries, their effluent and local dumping have created significant environmental issues. In the past, typically, removal of heavy metals was handled by reverse osmosis and ion exchange techniques, but these methods have many disadvantages. Therefore, extensive work into the development of improved techniques has increased, especially for heavy metal removal. Many countries are currently researching new materials and techniques based on nanotechnology for various applications that involve extracting heavy metals from different water sources such as wastewater, groundwater, drinking water and surface water. Nanotechnology provides the possibility of enhancing existing techniques to tackle problems more efficiently. The development in nanotechnology has led to the discovery of many new materials such as magnetic nanoparticles. These nanoparticles demonstrate excellent properties such as surface-volume ratio, higher surface area, low toxicity and easy separation. Besides, magnetic nanoparticles can be easily and efficiently recovered after adsorption compared with other typical adsorbents. This review mainly emphasises on the efficiency of heavy metal removal using magnetic nanoadsorbent from aqueous solution. In addition, an in-depth analysis of the synthesis, characterisation and modification approaches of magnetic nanoparticles is systematically presented. Furthermore, future opportunities and challenges of using magnetic particles as an adsorbent for the removal of heavy metals are also discussed.
    Matched MeSH terms: Metals, Heavy*
  18. Othman M, Latif MT
    Environ Sci Pollut Res Int, 2020 Apr;27(10):11227-11245.
    PMID: 31956949 DOI: 10.1007/s11356-020-07633-7
    Urban road dust contains anthropogenic components at toxic concentrations which can be hazardous to human health. A total of 36 road dust samples from five different urban areas, a commercial (CM), a high traffic (HT), a park (GR), a rail station (LRT), and a residential area (RD), were collected in Kuala Lumpur City followed by investigation into compositions, sources, and human health risks. The concentrations of trace metals in road dust and the bioaccessible fraction were determined using inductively couple plasma-mass spectrometry (ICP-MS) while ion concentrations were determined using ion chromatography (IC). The trace metal concentrations were dominated by Fe and Al with contributions of 53% and 21% to the total trace metal and ion concentrations in road dust. Another dominant metal was Zn while the dominant ion was Ca2+ with average concentrations of 314 ± 190 μg g-1 and 3470 ± 1693 μg g-1, respectively. The most bioaccessible fraction was Zn followed by the sequence Sr > Cd > Cr > Cu > Ni > Co > Mn > As > V > Pb > Fe > Al > U. The results revealed that the highest trace metal and ion concentrations in road dust and in the bioaccessible fraction were found at the LRT area. Based on the source apportionment analysis, the major source of road dust was vehicle emissions/traffic activity (47%), and for the bioaccessible fraction, the major source was soil dust (50%). For the health risk assessments, hazard quotient (HQ) and cancer risk (CR) values for each element were
    Matched MeSH terms: Metals, Heavy/analysis*
  19. Krishnankutty N, Idris M, Hamzah FM, Manan Y
    Environ Sci Pollut Res Int, 2019 Aug;26(24):25046-25056.
    PMID: 31250391 DOI: 10.1007/s11356-019-05680-3
    Bauxite and iron ore mining is the major contributor to metal pollution in Tasik Chini, Malaysia. Deforestation of the protected zone of reserve forest exacerbates the problem. The current study is to understand the speciation of metals spatially in sediment to analyse the risk associated in terms of its mobility and bioavailability. The samples of sediment are collected from Sungai Jemberau, Laut Jemberau, and Laut Gumum of Tasik Chini. Four samplings were conducted for a year, by collecting the surface sediment. Sequential extraction method was followed for speciation of sediment and classified it into exchangeable, reducible, Fe-Mn oxides, organic and residual fractions. The results were also analyzed using principal component analysis (PCA) and cluster analysis (CA). The result reveals that Fe, Al, Mn, Zn, and Pb are the primary constituents of sediment contributing to about 98% of residual fraction. Co, Cd, Cr, As, and Ni are found in trace metal concentration and are identified to be mainly released from anthropogenic sources nearby. Although the individual proportion is less than major metals in exchangeable and carbonate fraction, they possess geochemically significant concentration above the permissible limit. More than 70-80% of all its total concentration proportion is hence found in mobile and bioavailable state. These possess toxic and have chronic effects to aquatic life and public health even in trace elemental concentration. Hence, these metals are the most toxic and bioavailable metals pausing risk for aquatic and public health. PCA analysis highlights that the enrichment of heavy metals in bioavailable fraction is mostly contributed from anthropogenic sources. The same results are emphasized by cluster analysis.
    Matched MeSH terms: Metals, Heavy/analysis*
  20. Irshad MA, Sattar S, Nawaz R, Al-Hussain SA, Rizwan M, Bukhari A, et al.
    Ecotoxicol Environ Saf, 2023 Sep 15;263:115231.
    PMID: 37429088 DOI: 10.1016/j.ecoenv.2023.115231
    Water contamination can be detrimental to the human health due to higher concentration of carcinogenic heavy metals such as chromium (Cr) in the wastewater. Many traditional methods are being employed in wastewater treatment plants for Cr removal to control the environmental impacts. Such methods include ion exchange, coagulation, membrane filtration, and chemical precipitation and microbial degradation. Recent advances in materials science and green chemistry have led to the development of nanomaterial that possess high specific surface areas and multiple functions, making them suitable for removing metals such as Cr from wastewater. Literature shows that the most efficient, effective, clean, and long-lasting approach for removing heavy metals from wastewater involves adsorbing heavy metals onto the surface of nanomaterial. This review assesses the removal methods of Cr from wastewater, advantages and disadvantages of using nanomaterial to remove Cr from wastewater and potential negative impacts on human health. The latest trends and developments in Cr removal strategies using nanomaterial adsorption are also explored in the present review.
    Matched MeSH terms: Metals, Heavy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links