Displaying publications 61 - 80 of 797 in total

Abstract:
Sort:
  1. Wong JC, Xiang L, Ngoi KH, Chia CH, Jin KS, Hirao A, et al.
    Polymers (Basel), 2020 Aug 23;12(9).
    PMID: 32842480 DOI: 10.3390/polym12091894
    Star-shaped polymers are very attractive because of their potential application ability in various technological areas due to their unique molecular topology. Thus, information on the molecular structure and chain characteristics of star polymers is essential for gaining insights into their properties and finding better applications. In this study, we report molecular structure details and chain characteristics of 17-armed polystyrenes in various molecular weights: 17-Arm(2k)-PS, 17-Arm(6k)-PS, 17-Arm(10k)-PS, and 17-Arm(20k)-PS. Quantitative X-ray scattering analysis using synchrotron radiation sources was conducted for this series of star polymers in two different solvents (cyclohexane and tetrahydrofuran), providing a comprehensive set of three-dimensional structure parameters, including radial density profiles and chain characteristics. Some of the structural parameters were crosschecked by qualitative scattering analysis and dynamic light scattering. They all were found to have ellipsoidal shapes consisting of a core and a fuzzy shell; such ellipse nature is originated from the dendritic core. In particular, the fraction of the fuzzy shell part enabling to store desired chemicals or agents was confirmed to be exceptionally high in cyclohexane, ranging from 74 to 81%; higher-molecular-weight star polymer gives a larger fraction of the fuzzy shell. The largest fraction (81%) of the fuzzy shell was significantly reduced to 52% in tetrahydrofuran; in contrast, the lowest fraction (19%) of core was increased to 48%. These selective shell contraction and core expansion can be useful as a key mechanism in various applications. Overall, the 17-armed polystyrenes of this study are suitable for applications in various technological fields including smart deliveries of drugs, genes, biomedical imaging agents, and other desired chemicals.
    Matched MeSH terms: Molecular Structure
  2. Taha M, Uddin I, Gollapalli M, Almandil NB, Rahim F, Farooq RK, et al.
    BMC Chem, 2019 Dec;13(1):102.
    PMID: 31410413 DOI: 10.1186/s13065-019-0617-4
    We have synthesized new series of bisindole analogs (1-27), characterized by 1HNMR and HR-EI-MS and evaluated for their anti-leishmanial potential. All compounds showed outstanding inhibitory potential with IC50 values ranging from 0.7 ± 0.01 to 13.30 ± 0.50 µM respectively when compared with standard pentamidine with IC50 value of 7.20 ± 0.20 µM. All analogs showed greater potential than standard except 10, 19 and 23 when compared with standard. Structure activity relationship has been also established for all compounds. Molecular docking studies were carried out to understand the binding interaction of active molecules.
    Matched MeSH terms: Molecular Structure
  3. Wang S, Lee WJ, Wang Y, Tan CP, Lai OM, Wang Y
    J Agric Food Chem, 2020 Aug 05;68(31):8391-8403.
    PMID: 32511921 DOI: 10.1021/acs.jafc.0c01346
    Medium-chain diacylglycerol (MCD), medium-long-chain diacylglycerol (MLCD), and long-chain diacylglycerol (LCD) were prepared through enzymatic esterification using different conditions at temperatures of 55-70 °C and reaction times of 1.5-5 h and in the presence of 5-6% Novozym 435. Subsequently, purification was performed using three different techniques, namely, molecular distillation (MD), deodorization (DO), and silica gel column chromatography (SGCC). Variations in terms of the physicochemical and thermodynamic properties, crystallization properties, and kinetics of the diacylglycerols (DAGs) before and after purification were determined. Irrespective of the DAG chain lengths, SGCC was able to produce samples with high DAG purity (96-99 wt %), followed by MD (58-79 wt %) and DO (39-59 wt %). A higher 1,3-DAG/1,2-DAG ratio was recorded for all samples, with the highest ratio recorded for SGCC purified samples. Regardless of the purification techniques used, the solid fat content (SFC) profiles of crude samples with steep curves were altered post-purification, showing a gradual increment in SFC along with increasing temperature. Modification of the Avrami constant and coefficient suggested the modification of the crystal growth mechanism post-purification. Crystallization and melting temperatures of products with a higher DAG purity were shifted to a higher temperature region. Variations were also reflected in terms of the crystal polymorphism, whereby the α and β' crystals transitioned into the more stable β form in purified samples accompanied by modification in the microstructures and crystal sizes. However, there was insignificant change in the morphology of MLCD crystal after purification, except for the decrease in crystal sizes. In conclusion, synthesis of MCD, MLCD, and LCD comprising different DAG purities had distinctive SFC profiles, thermodynamic properties, crystallization kinetics, and crystal morphologies, which can be further incorporated into the preparation of a variety of fat products to obtain end products with desired characteristics.
    Matched MeSH terms: Molecular Structure
  4. Jamain Z, Omar NF, Khairuddean M
    Molecules, 2020 Aug 20;25(17).
    PMID: 32825211 DOI: 10.3390/molecules25173780
    A series of liquid crystal molecules with two Schiff base linking units and a cinnamaldehyde core with different terminal groups were synthesized and characterized. The intermediates of 4-heptyloxybenzaldehyde (1a) and 4-dodeyloxybenzaldehyde (1b) were synthesized through the alkylation of 4-hydroxybenzaldehyde with a series of bromoalkane. A condensation reaction of cinnamaldehyde, 1,4-phenylenediamine and a series of substituted benzaldehydes with different terminal groups such as bromo, chloro, hydroxy, cinnamaldehyde, hydrogen, methoxy, heptyloxy and dodecyloxy produced a series of new cinnamaldehyde-based compounds, 2-9, respectively. All these compounds were characterized using Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and CHN elemental analysis. The liquid crystal properties of these compounds were determined using polarized optical microscopy (POM), and their transitions were further confirmed using differential scanning calorimetry (DSC). Compounds with chloro, bromo, methoxy, heptyloxy, and dodecyloxy substituents are mesogenic compounds with nematic phase behavior. However, the other compounds were found to be non-mesogenic without any mesophase transitions. The structure-property relationship was investigated in order to study the effect of different terminal groups and Schiff base linking units on the liquid crystalline behavior of these compounds.
    Matched MeSH terms: Molecular Structure
  5. Tan, Hueyling
    Scientific Research Journal, 2012;9(1):43-61.
    MyJurnal
    Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use of peptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study of biological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries of existing disciplines. Many self-assembling systems are range from bi- and tri-block copolymers to DNA structures as well as simple and complex proteins and peptides. The ultimate goal is to harness molecular self-assembly such that design and control of bottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes of life and non-life science applications. Such aspirations can be achieved through understanding the fundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.
    Matched MeSH terms: Molecular Structure
  6. Mohd. Hilmi Mahmood, Shahrol Najmin Baharom, Rida Tajau, Mek Zah Salleh, Khairul Zaman Mohd. Dahlan, Rosley Che Ismail
    MyJurnal
    Various palm oil (RBD Palm Olein) based urethane acrylate prepolymers (UPs) having different structures and molecular weights were synthesised from palm oil based polyols, diisocyanate compounds and hydroxyl terminated acrylate monomers by following established synthesis procedures described elsewhere. The products (UPs) were compared with each other in terms of their molecular weights (MW), viscosities and UV curing performances of pressure sensitive adhesives (PSA) UP based formulations. The molecular structure of diisocyanate compounds and hydroxyl acrylate monomers tend to determine the molecular weights and hence viscosities of the final products of urethane acrylate prepolymers (UP), whereas, the MW of the UP has no direct effects on the coatings and adhesive properties of UV curable UP based PSA.
    Matched MeSH terms: Molecular Structure
  7. Nugroho AE, Zhang W, Hirasawa Y, Tang Y, Wong CP, Kaneda T, et al.
    J Nat Prod, 2018 11 26;81(11):2600-2604.
    PMID: 30362746 DOI: 10.1021/acs.jnatprod.8b00749
    Three new bisindole alkaloids, bisleuconothines B-D (1-3), were isolated from the bark of Leuconotis griffithii. Their structures were elucidated by 1D and 2D NMR spectroscopy and DFT calculations. Bisleuconothine B (1) is the first monoterpene indole alkaloid dimer featuring bridges between both C-16-C-10' and C-2-O-C-9'. All compounds were deemed noncytotoxic (IC50 > 10 μM) when tested against A549 human lung adenocarcinoma cells.
    Matched MeSH terms: Molecular Structure
  8. Wan M. Khairul, Foong, Y.D., Lee, O.J., Lim, S.K.J., Daud, A.I., Rahamathullah, R., et al.
    ASM Science Journal, 2018;11(101):124-135.
    MyJurnal
    A new class of liquid crystalline acetylide-imine system was successfully synthesized, characterized
    and deposited on indium tin oxide (ITO) coated substrate via electrochemical deposition
    method for potential organic film application. The relationship between liquid crystal
    molecular structure, phase transition temperature and electrical performance was evaluated.
    The mesomorphic properties were identified via polarized optic microscopy (POM) which displayed
    fan-shaped texture of smectic A phase and their corresponding transition enthalpies
    are in concurrence with DSC and TGA studies. The findings from the conductivity analysis
    revealed that the fabricated film exhibits good electrical performance where it displayed
    linear current-voltage relationship of I-V curve. Therefore, this proposed type of molecular
    framework has given an ideal indication to act as transporting material for application in
    optoelectronic devices.
    Matched MeSH terms: Molecular Structure
  9. Wang Z, Li P, Ma K, Chen Y, Campana M, Penfold J, et al.
    J Colloid Interface Sci, 2019 May 15;544:293-302.
    PMID: 30861434 DOI: 10.1016/j.jcis.2019.03.011
    The transition from monolayer to multilayer adsorption at the air-water interface in the presence of multivalent counterions has been demonstrated for a limited range of anionic surfactants which exhibit increased tolerance to precipitation in the presence of multivalent counterions. Understanding the role of molecular structure in determining the transition to surface ordering is an important aspect of the phenomenon. The focus of the paper is on the alkyl ester sulfonate, AES, surfactants; a promising group of anionic surfactants, with the potential for improved performance and biocompatibility. Neutron reflectivity measurements were made in aqueous solution and in the presence of NaCl, CaCl2, MgCl2 and AlCl3, for a range of alkyl ester sulfonate surfactants, in which the headgroup and alkyl chain geometries were manipulated. In the regions of monolayer adsorption changing the AES headgroup and alkyl chain geometries results in an increased saturation adsorption and in a more gradual decrease in the adsorption at low concentrations, consistent with a greater adsorption efficiency. Changing the AES headgroup and alkyl chain geometries also results in changes in the transition from monolayer adsorption to more ordered surface structures with the addition of AlCl3 and mixed multivalent electrolytes. A more limited surface layering is observed for the ethyl ester sulfonate, EES, with a C14 alkyl chain. Replacing the C14 alkyl chain with a C18 isostearic chain results in only monolayer adsorption. The results demonstrate the role and importance of the surfactant molecular structure in determining the nature of the surface adsorption in the presence of different electrolytes, and in the tendency to form extended surface multilayer structures.
    Matched MeSH terms: Molecular Structure
  10. Law CSW, Yeong KY
    ChemMedChem, 2021 06 17;16(12):1861-1877.
    PMID: 33646618 DOI: 10.1002/cmdc.202100004
    Benzimidazole is a heterocyclic ring system that has been widely studied in the pharmaceutical field. For the past decade, numerous benzimidazole derivatives have been synthesized and evaluated for their wide range of pharmacological activities, which are beneficial for drug development. This article presents the biological effects of benzimidazole derivatives in each invention from 2015 to 2020. Two patent databases, Google Patents and Lens, were used to locate relevant granted patent applications. Specifically, this review delineates the role of patented benzimidazoles from a disease-centric perspective and examines the mechanisms of action of these compounds in related diseases. Most of the benzimidazoles have shown good activities against various target proteins. Whilst several of them have progressed into clinical trials, most patents presented novel therapeutic approaches for respective target diseases. Hence, their potential in being developed into clinical drugs are also discussed.
    Matched MeSH terms: Molecular Structure
  11. Zainuri DA, Abdullah M, Zaini MF, Bakhtiar H, Arshad S, Abdul Razak I
    PLoS One, 2021;16(9):e0257808.
    PMID: 34582495 DOI: 10.1371/journal.pone.0257808
    The Ultraviolet-visible (UV-Vis) spectra indicate that anthracenyl chalcones (ACs) have high maximum wavelengths and good transparency windows for optical applications and are suitable for optoelectronic applications owing to their HOMO-LUMO energy gaps (2.93 and 2.76 eV). Different donor substituents on the AC affect their dipole moments and nonlinear optical (NLO) responses. The positive, negative, and neutral electrostatic potential regions of the molecules were identified using molecular electrostatic potential (MEP). The stability of the molecule on account of hyperconjugative interactions and accompanying charge delocalization was analyzed using natural bond orbital (NBO) analysis. Open and closed aperture Z-scans were performed using a continuous-wave frequency-doubled diode-pumped solid-state (DPSS) laser to measure the nonlinear absorption and nonlinear refractive index coefficients, respectively. The valley-to-peak profile of AC indicated a negative nonlinear refractive index coefficient. The obtained single crystals possess reverse saturation absorption due to excited-state absorption. The structural and nonlinear optical properties of the molecules have been discussed, along with the role of anthracene substitution for enhancing the nonlinear optical properties. The calculated third-order susceptibility value was 1.10 x10-4 esu at an intensity of 4.1 kW/cm2, higher than the reported values for related chalcone derivatives. The NLO response for both ACs offers excellent potential in optical switching and limiting applications.
    Matched MeSH terms: Molecular Structure
  12. Karunakaran T, Firouz NS, Santhanam R, Jong VYM
    Nat Prod Res, 2022 Jan;36(2):654-659.
    PMID: 32674628 DOI: 10.1080/14786419.2020.1795658
    Species from the Genus Calophyllum are rich source for bioactive phenolic compounds such as coumarins and xanthones. Phytochemical study carried out on the plant, Calophyllum macrocarpum has led to the isolation of three known prenylated xanthones, ananixanthone (1), trapezifolixanthone (2) and 8-deoxygartanin (3) with two common triterpenoids, stigmasterol (4), and friedelin (5). The structures of these compounds were identified and determined using spectroscopic techniques such as NMR and MS. The cytotoxic activities of compounds 1 and 2 as well as the extracts were tested against HeLa Chang liver and HEK-293 cell lines. Compound 1 exhibited appreciable cytotoxicity with the IC50 value of 11.08 ± 3.09 µM against HeLa Chang liver cell line and moderate cytotoxicity against HEK-293 cell line while compound 2 showed limited toxicity against these two cell lines.
    Matched MeSH terms: Molecular Structure
  13. Taha M, Ismail S, Imran S, Almandil NB, Alomari M, Rahim F, et al.
    J Biomol Struct Dyn, 2022 Nov;40(18):8232-8247.
    PMID: 33860726 DOI: 10.1080/07391102.2021.1910072
    In search of potent urease inhibitor indole analogues (1-22) were synthesized and evaluated for their urease inhibitory potential. All analogues (1-22) showed a variable degree of inhibitory interaction potential having IC50 value ranging between 0.60 ± 0.05 to 30.90 ± 0.90 µM when compared with standard thiourea having IC50 value 21.86 ± 0.90 µM. Among the synthesized analogues, the compounds 1, 2, 3, 5, 6, 8, 12, 14, 18, 20 and 22 having IC50 value 3.10 ± 0.10, 1.20 ± 0.10, 4.60 ± 0.10, 0.60 ± 0.05, 5.30 ± 0.20, 2.50 ± 0.10, 7.50 ± 0.20, 3.90 ± 0.10, 3.90 ± 0.10, 2.30 ± 0.05 and 0.90 ± 0.05 µM respectively were found many fold better than the standard thiourea. All other analogues showed better urease interaction inhibition. Structure activity relationship (SAR) has been established for all analogues containing different substituents on the phenyl ring. To understand the binding interaction of most active analogues with enzyme active site docking study were performed.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Structure
  14. Taha M, Rahim F, Zaman K, Anouar EH, Uddin N, Nawaz F, et al.
    J Biomol Struct Dyn, 2023 Mar;41(5):1649-1664.
    PMID: 34989316 DOI: 10.1080/07391102.2021.2023640
    We have synthesized benzo[d]oxazole derivatives (1-21) through a multistep reaction. Alteration in the structure of derivatives was brought in the last step via using various substituted aromatic aldehydes. In search of an anti-Alzheimer agent, all derivatives were evaluated against acetylcholinesterase and butyrylcholinesterase enzyme under positive control of standard drug donepezil (IC50 = 0.016 ± 0.12 and 4.5 ± 0.11 µM) respectively. In case of acetylcholinesterase enzyme inhibition, derivatives 8, 9 and 18 (IC50 = 0.50 ± 0.01, 0.90 ± 0.05 and 0.3 ± 0.05 µM) showed very promising inhibitory potentials. While in case of butyrylcholinesterase enzyme inhibition, most of the derivatives like 6, 8, 9, 13, 15, 18 and 19 (IC50 = 2.70 ± 0.10, 2.60 ± 0.10, 2.20 ± 0.10, 4.25 ± 0.10, 3.30 ± 0.10, 0.96 ± 0.05 and 3.20 ± 0.10 µM) displayed better inhibitory potential than donepezil. Moreover, derivative 18 is the most potent one among the series in both inhibitions. The binding interaction of derivatives with the active gorge of the enzyme was confirmed via a docking study. Furthermore, the binding interaction between derivatives and the active site of enzymes was correlated through the SAR study. Structures of all derivatives were confirmed through spectroscopic techniques such as 1H-NMR, 13C-NMR and HREI-MS, respectively.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Structure
  15. Sim YL, Ariffin A, Khan MN
    J Org Chem, 2007 Mar 30;72(7):2392-401.
    PMID: 17341117
    The rates of the hydrolyses of N-(o-hydroxyphenyl)phthalimide (1) and N-(o-methoxyphenyl)phthalimide (2), studied at different pH, show that the hydrolysis of 1 involves intramolecular general base (IGB) assistance where the o-O- group of ionized 1 acts as IGB and H2O as the reactant. The rate enhancement due to the IGB-assisted reaction of H2O with ionized 1 is>8x10(4)-fold. Pseudo-first-order rate constant for the reaction of water with 2 is approximately 2x10(3)-fold smaller than the first-order rate constant (0.10 s-1) for pH-independent hydrolysis of 1 within the pH range of 9.60-10.10. Second-order rate constants (kOH) for hydroxide ion-assisted hydrolysis of ionized 1 and 2 are 3.0 and 29.1 M-1 s-1, respectively. The solvent deuterium kinetic isotope effect (dKIE) on the rate of alkaline hydrolysis of 1 and 2 reveals that the respective values of kOH/kOD are 0.84 and 0.78, where kOD represents the second-order rate constant for DO--assisted cleavage of these imides (1 and 2). The value of kwH2O/kdD2O is 2.04, with kwH2O and kdD2O representing pseudo-first-order rate constants for the reactions of ionized 1 with H2O and D2O, respectively.
    Matched MeSH terms: Molecular Structure
  16. Hong FJ, Low YY, Chong KW, Thomas NF, Kam TS
    J Org Chem, 2014 May 16;79(10):4528-43.
    PMID: 24754525 DOI: 10.1021/jo500559r
    A systematic study of the electrochemical oxidation of 1,2-diarylalkenes was carried out with the focus on detailed product studies and variation of product type as a function of aromatic substitution. A reinvestigation of the electrochemical oxidation of 4,4'-dimethoxystilbene under various conditions was first carried out, and all products formed were fully characterized and quantitated. This was followed by a systematic investigation of the effect of aromatic substitution on the nature and distribution of the products. The aromatic substituents were found to fall into three main categories, viz., substrates in which the nature and position of the aromatic substituents gave rise to essentially the same products as 4,4'-dimethoxystilbene, for example, tetraaryltetrahydrofurans, dehydrotetralins, and aldehydes (p-MeO or p-NMe2 on one ring and X on the other ring, where X = o-MeO or p-alkyl, or m- or p-EWG; e.g., 4-methoxy-4'-trifluoromethylstilbene); those that gave rise to a mixture of indanyl (or tetralinyl) acetamides and dehydrotetralins (or pallidols) (both or one ring substituted by alkyl groups, e.g., 4,4'-dimethylstilbene); and those where strategic placement of donor groups, such as OMe and OH, led to the formation of ampelopsin F and pallidol-type carbon skeletons (e.g., 4,3',4'-trimethoxystilbene). Reaction pathways to rationalize the formation of the different products are presented.
    Matched MeSH terms: Molecular Structure
  17. Phongphane L, Mohd Radzuan SN, Abu Bakar MH, Che Omar MT, Supratman U, Harneti D, et al.
    Comput Biol Chem, 2023 Oct;106:107938.
    PMID: 37542847 DOI: 10.1016/j.compbiolchem.2023.107938
    In our effort to develop potent anti-hyperglycemic compounds with inhibitory activity against α-amylase and α-glucosidase, a series of novel quinoxaline-isoxazole moieties were synthesized. The novel quinoxaline-isoxazole derivatives were assessed in vitro for their anti-hyperglycemic activities on α-amylase and α-glucosidase inhibitions. The results revealed promising IC50 values compared to acarbose as a positive control for α-amylase and α-glucosidase. Among them, N-Ethyl-7-chloro-3-((3-phenylisoxazol-5-yl)methoxy)quinoxalin-2-amine 5b showed dual inhibitory with IC50 of 24.0 µM for α-amylase and 41.7 µM for α-glucosidase. In addition, N-Ethyl-7-methoxy-3-((3-(2-chlorophenyl)isoxazol-5-yl)methoxy)quinoxalin-2-amine 5j also had dual bioactivities against α-amylase and α-glucosidase with IC50 of 17.0 and 40.1 µM, respectively. Nevertheless, two more compounds N-Ethyl-7-cyano-3-((3-phenylisoxazol-5-yl)methoxy)quinoxaline-2-amine 5e showed strong mono-inhibition for α-glucosidase with IC50 of 16.6 µM followed by N-Ethyl-7-methoxy-3-((3-phenylisoxazol-5-yl)methoxy)quinoxalin-2-amine 5 f with IC50 of 18.6 µM. The molecular docking study for α-glucosidase inhibitor provided the binding energy ranging from 8.3 to 9.1 kcal/mol and α-amylase inhibitor showed the binding energy score at 8.4 and 8.5 kcal/mol. The dual inhibitions nature of 5b and 5j were further analyzed and confirmed via molecular dynamics including the stability of the compound, interaction energy, binding free energy, and the interaction residue analysis using the MM-GBSA approach. The results showed that compound 5j was the most potent compound. Lastly, the drug-likeness properties were also evaluated with all synthesized compounds 5a-5j and the results reveal that all potent compounds meet Lipinski's rules of five.
    Matched MeSH terms: Molecular Structure
  18. Muhammad MT, Beniddir MA, Phongphane L, Abu Bakar MH, Hussin MH, Awang K, et al.
    Fitoterapia, 2024 Apr;174:105873.
    PMID: 38417682 DOI: 10.1016/j.fitote.2024.105873
    Diabetes mellitus stands as a metabolic ailment marked by heightened blood glucose levels due to inadequate insulin secretion. The primary aims of this investigative inquiry encompassed the isolation of phytochemical components from the bark of Kopsia teoi, followed by the assessment of their α-amylase inhibition. The phytochemical composition of the K. teoi culminated in the discovery of a pair of new indole alkaloids; which are 16-epi-deacetylakuammiline N(4)-methylene chloride (akuammiline) (1), and N(1)-methoxycarbonyl-11-methoxy-12-hydroxy-Δ14-17-kopsinine (aspidofractinine) (2), together with five known compounds i.e. kopsiloscine G (aspidofractinine) (3), akuammidine (sarpagine) (4), leuconolam (aspidosperma) (5), N-methoxycarbonyl-12-methoxy-Δ16, 17-kopsinine (aspidofractinine) (6), and kopsininate (aspidofractinine) (7). All compounds were determined via spectroscopic analyses. The in vitro evaluation against α-amylase showed good inhibitory activities for compounds 5-7 with the inhibitory concentration (IC50) values of 21.7 ± 1.2, 34.1 ± 0.1, and 30.0 ± 0.8 μM, respectively compared with the reference acarbose (IC50 = 34.4 ± 0.1 μM). The molecular docking outputs underscored the binding interactions of compounds 5-7 ranging from -8.1 to -8.8 kcal/mol with the binding sites of α-amylase. Consequently, the outcomes highlighted the anti-hyperglycemic attributes of isolates from K. teoi.
    Matched MeSH terms: Molecular Structure
  19. Azmi MN, Gény C, Leverrier A, Litaudon M, Dumontet V, Birlirakis N, et al.
    Molecules, 2014;19(2):1732-47.
    PMID: 24492595 DOI: 10.3390/molecules19021732
    A phytochemical investigation of the methanolic extract of the bark of Endiandra kingiana led to the isolation of seven new tetracyclic endiandric acid analogues, kingianic acids A-G (1-7), together with endiandric acid M (8), tsangibeilin B (9) and endiandric acid (10). Their structures were determined by 1D- and 2D-NMR analysis in combination with HRMS experiments. The structure of compounds 9 and 10 were confirmed by single-crystal X-ray diffraction analysis. These compounds were screened for Bcl-xL and Mcl-1 binding affinities and cytotoxic activity on various cancer cell lines. Compound 5 showed moderate cytotoxic activity against human colorectal adeno-carcinoma (HT-29) and lung adenocarcinoma epithelial (A549) cell lines, with IC50 values in the range 15-17 µM, and compounds 3, 6 and 9 exhibited weak binding affinity for the anti-apoptotic protein Mcl-1.
    Matched MeSH terms: Molecular Structure*
  20. Hild F, Nguyen NT, Deng E, Katrib J, Dimitrakis G, Lau PL, et al.
    Macromol Rapid Commun, 2016 Aug;37(15):1295-9.
    PMID: 27315130 DOI: 10.1002/marc.201600149
    The use of dielectric property measurements to define specific trends in the molecular structures of poly(caprolactone) containing star polymers and/or the interbatch repeatability of the synthetic procedures used to generate them is demonstrated. The magnitude of the dielectric property value is shown to accurately reflect: (a) the number of functional groups within a series of materials with similar molecular size when no additional intermolecular order is present in the medium, (b) the polymer molecular size for a series of materials containing a fixed core material and so functional group number, and/or (c) the batch to batch repeatability of the synthesis method. The dielectric measurements are validated by comparison to spectroscopic/chromatographic data.
    Matched MeSH terms: Molecular Structure
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links