Displaying publications 61 - 80 of 370 in total

Abstract:
Sort:
  1. Dasan YK, Bhat AH, Ahmad F
    Carbohydr Polym, 2017 Feb 10;157:1323-1332.
    PMID: 27987839 DOI: 10.1016/j.carbpol.2016.11.012
    The current research discusses the development of poly (lactic acid) (PLA) and poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced nanocrystalline cellulose bionanocomposites. The nanocrystalline cellulose was derived from waste oil palm empty fruit bunch fiber by acid hydrolysis process. The resulting nanocrystalline cellulose suspension was then surface functionalized by TEMPO-mediated oxidation and solvent exchange process. Furthermore, the PLA/PHBV/nanocrystalline cellulose bionanocomposites were produced by solvent casting method. The effect of the addition of nanocrystalline cellulose on structural, morphology, mechanical and barrier properties of bionanocomposites was investigated. The results revealed that the developed bionanocomposites showed improved mechanical properties and decrease in oxygen permeability rate. Therefore, the developed bio-based composite incorporated with an optimal composition of nanocrystalline cellulose exhibits properties as compared to the polymer blend.
    Matched MeSH terms: Nanocomposites/chemistry*
  2. Kamboh MA, Wan Ibrahim WA, Rashidi Nodeh H, Zardari LA, Sanagi MM
    Environ Technol, 2019 Aug;40(19):2482-2493.
    PMID: 29464995 DOI: 10.1080/09593330.2018.1444100
    Magnetic nanocomposites adorned with calixarene were successfully prepared by immobilizing diethanolamine functionalized p-tert-butylcalix[4]arene (DEA-Calix) onto silica-coated magnetic nanoparticles (MNPs). The synthesis, surface morphology, purity, elemental composition and thermal stability of newly prepared nanocomposites were analyzed using FT-IR spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX), X-ray diffractometer (XRD), thermal gravimetric analysis (TGA) and vibrating sample magnetometer (VSM). Magnetic solid-phase adsorption (MSPA) was employed to explore the adsorption behavior of DEA-Calix-MNPs towards Pb(II) from water samples prior to its flame atomic absorption spectrometric analysis. The essential analytical factors governing the adsorption efficiency such as solution pH, mass of adsorbent, concentration and contact time have been investigated and optimized. The results depict that DEA-Calix-MNPs has excellent adsorption efficiency 97% (at pH 5.5) with high adsorption capacity of 51.81 mg g-1 for Pb(II) adsorption. Additionally, kinetic and equilibrium studies suggested that Pb(II) adsorption process follows a pseudo-second-order model and Langmuir isotherms, respectively. Real sample analysis also confirmed field applicability of the new DEA-Calix-MNPs adsorbent.
    Matched MeSH terms: Nanocomposites*
  3. Liew WC, Muhamad II, Chew JW, Karim KJA
    Int J Biol Macromol, 2023 Dec 31;253(Pt 6):127288.
    PMID: 37813215 DOI: 10.1016/j.ijbiomac.2023.127288
    Incorporating two different nanoparticles in nanocomposite films is promising as their synergistic effects could significantly enhance polymer performance. Our previous work conferred the remarkable antimicrobial (AM) properties of the polylactic acid (PLA)-based film using optimal formulations of synergistic graphene oxide (GO)/zinc oxide (ZnO) nanocomposites. This study further explores the release profile of GO/ZnO nanocomposite and their impact on the antimicrobial properties. A fixed 1.11 wt% GO and different ZnO concentrations were well dispersed in the PLA matrix. Increasing ZnO concentrations tended to increase agglomeration, as evident in rougher surfaces. Agglomeration inhibited water penetration, leading to a significant reduction in water permeability (46.3 %), moisture content (31.6 %) but an improvement in Young's Modulus (52.6 %). The overall and specific migration of GO/ZnO nanocomposites was found to be within acceptable limits. It is inferred that the release of Zn2+ ions followed pseudo-Fickian behavior with an initial burst effect. AM film with the highest concentration of ZnO (1.25 wt%) exhibited the highest inhibition rate against Escherichia coli (68.0 %), Bacillus cereus (66.5 %), Saccharomyces cerevisiae (70.9 %). Results suggest that GO/ZnO nanocomposites with optimal ZnO concentrations have the potential to serve as promising antimicrobial food packaging materials, offering enhanced barrier, antimicrobial properties and a controlled release system.
    Matched MeSH terms: Nanocomposites*
  4. Wee JL, Chan YS, Law MC
    ACS Appl Bio Mater, 2023 Nov 20;6(11):4972-4987.
    PMID: 37910790 DOI: 10.1021/acsabm.3c00515
    The use of nanometal oxides in nanoagronomy has garnered considerable attention due to their excellent antifungal and plant growth promotion properties. Hybrid nanometal oxides, which combine the strengths of individual nanomaterials, have emerged as a promising class of materials. In this study, nanomagnesium oxide (n-MgO) and hybrid magnetic nanomagnesium oxide (m/n-MgO) were successfully synthesized via the ultrasound-mediated sol-gel method. Characterization results, including TGA, XRD, VSM, and FTIR, confirmed the successful synthesis of m/n-MgO. Both n-MgO and m/n-MgO underwent antifungal assays and plant growth promotion ability studies, benchmarked against the conventional fungicide-copper oxychloride. This study bridges a significant gap by simultaneously reporting the antifungal properties of both n-MgO and m/n-MgO and their impact on plant growth. The disc diffusion assay suggested that the antifungal activity of n-MgO and m/n-MgO against F. oxysporum was inversely related to the particle size. Notably, n-MgO exhibited superior antifungal performance (lower minimum inhibitory concentration (MIC)) and sustained efficacy compared with m/n-MgO, owing to distinct antifungal mechanisms. Nanorod-shaped MgO, with a smaller size (8.24 ± 5.61 nm) and higher aspect ratio, allowed them to penetrate the fungal cell wall and cause intercellular damage. In contrast, cubical m/n-MgO, with a larger size (20.95 ± 9.99 nm) and lower aspect ratio, accumulate on the fungal cell wall surface, disrupting the wall integrity, albeit less effectively against F. oxysporum. Moreover, in plant growth promotion studies, m/n-MgO-treated samples exhibited a 15.7% stronger promotion effect compared to n-MgO at their respective MICs. In addition, both n-MgO and m/n-MgO outperformed copper oxychloride in terms of antifungal and plant growth promoting activities. Thus, m/n-MgO presents a promising alternative to conventional copper-based fungicides, offering dual functionality as a fungicide and plant growth promoter, while the study also delves into the antifungal mechanisms at the intracellular level, enhancing its novelty.
    Matched MeSH terms: Nanocomposites*
  5. Danagody B, Bose N, Rajappan K, Iqbal A, Ramanujam GM, Anilkumar AK
    ACS Biomater Sci Eng, 2024 Jan 08;10(1):468-481.
    PMID: 38078836 DOI: 10.1021/acsbiomaterials.3c00892
    Developing biomaterial scaffolds using tissue engineering with physical and chemical surface modification processes can improve the bioactivity and biocompatibility of the materials. The appropriate substrate and site for cell attachment are crucial in cell behavior and biological activities. Therefore, the study aims to develop a conventional electrospun nanofibrous biomaterial using reproducible surface topography, which offers beneficial effects on the cell activities of bone cells. The bioactive MgO/gC3N4 was incorporated on PAN/PEG and fabricated into a nanofibrous membrane using electrospinning. The nanocomposite uniformly distributed on the PAN/PEG nanofiber helps to increase the number of induced pores and reduce the hydrophobicity of PAN. The physiochemical characterization of prepared nanoparticles and nanofibers was carried out using FTIR, X-ray diffraction (XRD), thermogravimetry analysis (TGA), X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. SEM and TEM analyses examined the nanofibrous morphology and the structure of MgO/gC3N4. In vitro studies such as on ALP activity demonstrated the membrane's ability to regenerate new bone and healing capacity. Furthermore, alizarin red staining showed the increasing ability of the cell-cell interaction and calcium content for tissue regeneration. The cytotoxicity of the prepared membrane was about 97.09% of live THP-1 cells on the surface of the MgO/gC3N4@PAN/PEG membrane evaluated using MTT dye staining. The soil burial degradation analysis exhibited that the maximum degradation occurs on the 45th day because of microbial activity. In vitro PBS degradation was observed on the 15th day after the bulk hydrolysis mechanism. Hence, on the basis of the study outcomes, we affirm that the MgO/gC3N4@PAN/PEG nanofibrous membrane can act as a potential bone regenerative substrate.
    Matched MeSH terms: Nanocomposites*
  6. Seah MQ, Lau WJ, Goh PS, Tseng HH, Wahab RA, Ismail AF
    Polymers (Basel), 2020 Nov 27;12(12).
    PMID: 33261079 DOI: 10.3390/polym12122817
    In this paper, we review various novel/modified interfacial polymerization (IP) techniques for the fabrication of polyamide (PA) thin film composite (TFC)/thin film nanocomposite (TFN) membranes in both pressure-driven and osmotically driven separation processes. Although conventional IP technique is the dominant technology for the fabrication of commercial nanofiltration (NF) and reverse osmosis (RO) membranes, it is plagued with issues of low membrane permeability, relatively thick PA layer and susceptibility to fouling, which limit the performance. Over the past decade, we have seen a significant growth in scientific publications related to the novel/modified IP techniques used in fabricating advanced PA-TFC/TFN membranes for various water applications. Novel/modified IP lab-scale studies have consistently, so far, yielded promising results compared to membranes made by conventional IP technique, in terms of better filtration efficiency (increased permeability without compensating solute rejection), improved chemical properties (crosslinking degree), reduced surface roughness and the perfect embedment of nanomaterials within selective layers. Furthermore, several new IP techniques can precisely control the thickness of the PA layer at sub-10 nm and significantly reduce the usage of chemicals. Despite the substantial improvements, these novel IP approaches have downsides that hinder their extensive implementation both at the lab-scale and in manufacturing environments. Herein, this review offers valuable insights into the development of effective IP techniques in the fabrication of TFC/TFN membrane for enhanced water separation.
    Matched MeSH terms: Nanocomposites
  7. Ikram R, Mohamed Jan B, Vejpravova J, Choudhary MI, Zaman Chowdhury Z
    Nanomaterials (Basel), 2020 Oct 11;10(10).
    PMID: 33050617 DOI: 10.3390/nano10102004
    Nanocomposite materials have distinctive potential for various types of captivating usage in drilling fluids as a well-designed solution for the petroleum industry. Owing to the improvement of drilling fluids, it is of great importance to fabricate unique nanocomposites and advance their functionalities for amplification in base fluids. There is a rising interest in assembling nanocomposites for the progress of rheological and filtration properties. A series of drilling fluid formulations have been reported for graphene-derived nanocomposites as additives. Over the years, the emergence of these graphene-derived nanocomposites has been employed as a paradigm to formulate water-based drilling fluids (WBDF). Herein, we provide an overview of nanocomposites evolution as engineered materials for enhanced rheological attributes in drilling operations. We also demonstrate the state-of-the-art potential graphene-derived nanocomposites for enriched rheology and other significant properties in WBDF. This review could conceivably deliver the inspiration and pathways to produce novel fabrication of nanocomposites and the production of other graphenaceous materials grafted nanocomposites for the variety of drilling fluids.
    Matched MeSH terms: Nanocomposites
  8. Fu G, Huo D, Shyha I, Pancholi K, Saharudin MS
    Nanomaterials (Basel), 2019 Jun 26;9(7).
    PMID: 31247963 DOI: 10.3390/nano9070917
    Efficient machining of the polyester nanocomposite components requires a better understanding of machinability characteristics of such material, which has become an urgent requirement for modern industrial production. In this research, the micro-milling of polyester/halloysite nano-clay (0.1, 0.3, 0.7, 1.0 wt%) nanocomposites were carried out and the outcomes in terms of tool wear, cutting force, the size effect, surface morphology, and surface roughness were compared with those for plain polyester. In order to accomplish the machining of the material in ductile mode, the required feed per tooth was found to be below 0.3 µm. The degree of surface breakage was also found to decrease in ductile mode. A maximum flank wear VB of 0.012 mm after removing 196 mm3 of workpiece material was measured.
    Matched MeSH terms: Nanocomposites
  9. Rehman GU, Tahir M, Goh PS, Ismail AF, Samavati A, Zulhairun AK, et al.
    Environ Pollut, 2019 Oct;253:1066-1078.
    PMID: 31434184 DOI: 10.1016/j.envpol.2019.07.013
    In this study, the synthesis of Fe3O4@GO@g-C3N4 ternary nanocomposite for enhanced photocatalytic degradation of phenol has been investigated. The surface modification of Fe3O4 was performed through layer-by-layer electrostatic deposition meanwhile the heterojunction structure of ternary nanocomposite was obtained through sonicated assisted hydrothermal method. The photocatalysts were characterized for their crystallinity, surface morphology, chemical functionalities, and band gap energy. The Fe3O4@GO@g-C3N4 ternary nanocomposite achieved phenol degradation of ∼97%, which was significantly higher than that of Fe3O4@GO (∼75%) and Fe3O4 (∼62%). The enhanced photoactivity was due to the efficient charge carrier separation and desired band structure. The photocatalytic performance was further enhanced with the addition of hydrogen peroxide, in which phenol degradation up to 100% was achieved in 2 h irradiation time. The findings revealed that operating parameters have significant influences on the photocatalytic activities. It was found that lower phenol concentration promoted higher activity. In this study, 0.3 g of Fe3O4@GO@g-C3N4 was found to be the optimized photocatalyst for phenol degradation. At the optimized condition, the reaction rate constant was reported as 6.96 × 10-3 min-1. The ternary photocatalyst showed excellent recyclability in three consecutive cycles, which confirmed the stability of this ternary nanocomposite for degradation applications.
    Matched MeSH terms: Nanocomposites
  10. Abdul Wahab MS, Abd Rahman S, Abu Samah R
    Heliyon, 2020 Nov;6(11):e05610.
    PMID: 33305039 DOI: 10.1016/j.heliyon.2020.e05610
    A two-level full factorial design was used to analyze several factors involved in PSF-GO-Pebax thin film nanocomposite membranes development. Permeate flux was chosen as a single response for four possible factors: Pebax selective layer concentration, amount of GO load to Pebax selective layer, Pebax-GO selective layer thickness, and amount of GO load to PSF substrate. The study is aimed at factors interaction and contribution towards the highest permeation flux via FFD and RSM approach. R2 obtained from the ANOVA is 0.9937 with Pebax concentration as the highest contributing factor. Pebax concentration-amount of GO load to PSF substrate is the only interaction contributing to the highest flux. A regression analysis concluded the study with model development and an optimized condition for the membrane design.
    Matched MeSH terms: Nanocomposites
  11. Mhd Haniffa MAC, Ching YC, Abdullah LC, Poh SC, Chuah CH
    Polymers (Basel), 2016 Jun 29;8(7).
    PMID: 30974522 DOI: 10.3390/polym8070246
    The properties of a composite material depend on its constituent materials such as natural biopolymers or synthetic biodegradable polymers and inorganic or organic nanomaterials or nano-scale minerals. The significance of bio-based and synthetic polymers and their drawbacks on coating film application is currently being discussed in research papers and articles. Properties and applications vary for each novel synthetic bio-based material, and a number of such materials have been fabricated in recent years. This review provides an in-depth discussion on the properties and applications of biopolymer-based nanocomposite coating films. Recent works and articles are cited in this paper. These citations are ubiquitous in the development of novel bionanocomposites and their applications.
    Matched MeSH terms: Nanocomposites
  12. Trache D, Hussin MH, Haafiz MK, Thakur VK
    Nanoscale, 2017 Feb 02;9(5):1763-1786.
    PMID: 28116390 DOI: 10.1039/c6nr09494e
    Cellulose nanocrystals, a class of fascinating bio-based nanoscale materials, have received a tremendous amount of interest both in industry and academia owing to its unique structural features and impressive physicochemical properties such as biocompatibility, biodegradability, renewability, low density, adaptable surface chemistry, optical transparency, and improved mechanical properties. This nanomaterial is a promising candidate for applications in fields such as biomedical, pharmaceuticals, electronics, barrier films, nanocomposites, membranes, supercapacitors, etc. New resources, new extraction procedures, and new treatments are currently under development to satisfy the increasing demand of manufacturing new types of cellulose nanocrystals-based materials on an industrial scale. Therefore, this review addresses the recent progress in the production methodologies of cellulose nanocrystals, covering principal cellulose resources and the main processes used for its isolation. A critical and analytical examination of the shortcomings of various approaches employed so far is made. Additionally, structural organization of cellulose and nomenclature of cellulose nanomaterials have also been discussed for beginners in this field.
    Matched MeSH terms: Nanocomposites
  13. Noorhafanita Norhakim, Sahrim Ahmad, Chin HC, Nay MH
    Sains Malaysiana, 2014;43:603-609.
    In this study, graphene oxide (Go) filled epoxy nanocomposites were prepared using hot pressed method. The GO was produced using modified Hummers' method. The produced GO at different compositions (0.1, 0.3 and 0.5 wt%) were mixed with epoxy before the addition of hardener using ultra-sonication. The produced epoxy nanocomposites were characterized in terms of mechanical and thermal properties. The mechanical properties of the nanocomposites were significantly enhanced by the addition of GO. About 50% of increment in the flexural strength of the composite sample filled with 03 wt% of GO as compared to the neat epoxy sample. However, only slight improvement in the impact strength of the composite were obtained by adding 0.1 wt% of GO.
    Matched MeSH terms: Nanocomposites
  14. Syuhada N, Huang N, Vijay Kumar S, Lim H, Rahman S, Thien G, et al.
    Sains Malaysiana, 2014;43:851-859.
    Nanocomposite thin films of chitosanlgraphene oxide (cs/Go) and chitosanl EDTA-GO (CSIEDTA-GO) were prepared by environmental friendly method and the properties were compared. The experimental results showed fine dispersion of GO and EDTA-GO in CS matrix and some interaction occur between the filler and the CS matrix that leads to better distribution of stress transfer. At 0.5 wt. %, both CSIGO and CSIEDTA-GO experienced maximum tensile stress by 51 and 71% compared with CS. Moreover, the elongation at break for both nanocomposites increases and the amount of filler increases.
    Matched MeSH terms: Nanocomposites
  15. Tarawneh MA, Sahrim Ahmad, Rozaidi Rasid, Yahya S, Shamsul Bahri A, Ehnoum S, et al.
    Sains Malaysiana, 2011;40:1179-1186.
    The effect of various multi-walled carbon nanotubes (MWNTs) on the tensile properties of thermoplastic natural rubber (TPNR) nanocomposite was investigated. The nanocomposite was prepared using melt blending method. MWNTs were added to improve the mechanical properties of MWNTs/TPNR composites in different compositions of 1, 3, 5, and 7 wt.%. The results showed that the mechanical properties of nanocomposites were affected significantly by the composition and the properties of MWNTs. SEM micrographs confirmed the homogenous dispersion of MWNTs in the TPNR matrix and promoted strong interfacial adhesion between MWNTs and the matrix which was improved mechanical properties significantly.
    Matched MeSH terms: Nanocomposites
  16. Yasim-Anuar TAT, Ariffin H, Norrrahim MNF, Hassan MA, Andou Y, Tsukegi T, et al.
    Polymers (Basel), 2020 Apr 17;12(4).
    PMID: 32316664 DOI: 10.3390/polym12040927
    Two different liquid assisted processing methods: internal melt-blending (IMB) and twin-screw extrusion (TWS) were performed to fabricate polyethylene (PE)/cellulose nanofiber (CNF) nanocomposites. The nanocomposites consisted maleic anhydride-grafted PE (PEgMA) as a compatibilizer, with PE/PEgMA/CNF ratio of 97/3/0.5-5 (wt./wt./wt.), respectively. Morphological analysis exhibited that CNF was well-dispersed in nanocomposites prepared by liquid-assisted TWS. Meanwhile, a randomly oriented and agglomerated CNF was observed in the nanocomposites prepared by liquid-assisted IMB. The nanocomposites obtained from liquid-assisted TWS exhibited the best mechanical properties at 3 wt.% CNF addition with an increment in flexural strength by almost 139%, higher than that of liquid-assisted IMB. Results from this study indicated that liquid feeding of CNF assisted the homogenous dispersion of CNF in PE matrix, and the mechanical properties of the nanocomposites were affected by compounding method due to the CNF dispersion and alignment.
    Matched MeSH terms: Nanocomposites
  17. Ostovan F, Matori KA, Toozandehjani M, Oskoueian A, Yusoff HM, Yunus R, et al.
    Materials (Basel), 2016 Feb 26;9(3).
    PMID: 28773261 DOI: 10.3390/ma9030140
    The nanomechanical properties of carbon nanotubes particulate-reinforced aluminum matrix nanocomposites (Al-CNTs) have been characterized using nanoindentation. Bulk nanocomposite specimens containing 2 wt % multiwalled CNTs (MWCNTs) were synthesized by a combination of ball milling and powder metallurgy route. It has been tried to understand the correlation between microstructural evolution particularly carbon nanotubes (CNTs) dispersion during milling and mechanical properties of Al-2 wt % nanocomposites. Maximum enhancement of +23% and +44% has been found in Young's modulus and hardness respectively, owing to well homogenous dispersion of CNTs within the aluminum matrix at longer milling time.
    Matched MeSH terms: Nanocomposites
  18. Azizi S, Ahmad MB, Ibrahim NA, Hussein MZ, Namvar F
    Int J Mol Sci, 2014 Jun 18;15(6):11040-53.
    PMID: 24945313 DOI: 10.3390/ijms150611040
    In this study, cellulose nanocrystals/zinc oxide (CNCs/ZnO) nanocomposites were dispersed as bifunctional nano-sized fillers into poly(vinyl alcohol) (PVA) and chitosan (Cs) blend by a solvent casting method to prepare PVA/Cs/CNCs/ZnO bio-nanocomposites films. The morphology, thermal, mechanical and UV-vis absorption properties, as well antimicrobial effects of the bio-nanocomposite films were investigated. It demonstrated that CNCs/ZnO were compatible with PVA/Cs and dispersed homogeneously in the polymer blend matrix. CNCs/ZnO improved tensile strength and modulus of PVA/Cs significantly. Tensile strength and modulus of bio-nanocomposite films increased from 55.0 to 153.2 MPa and from 395 to 932 MPa, respectively with increasing nano-sized filler amount from 0 to 5.0 wt %. The thermal stability of PVA/Cs was also enhanced at 1.0 wt % CNCs/ZnO loading. UV light can be efficiently absorbed by incorporating ZnO nanoparticles into a PVA/Cs matrix, signifying that these bio-nanocomposite films show good UV-shielding effects. Moreover, the biocomposites films showed antibacterial activity toward the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The improved physical properties obtained by incorporating CNCs/ZnO can be useful in variety uses.
    Matched MeSH terms: Nanocomposites/toxicity; Nanocomposites/ultrastructure; Nanocomposites/chemistry*
  19. Rubentheren V, Ward TA, Chee CY, Tang CK
    Carbohydr Polym, 2015 Jan 22;115:379-87.
    PMID: 25439908 DOI: 10.1016/j.carbpol.2014.09.007
    Chitosan film reinforced with nano-sized chitin whiskers and crosslinked using tannic acid was synthesized by the casting-vaporation method. The mechanical and physicochemical properties of several film samples (consisting of different ratio of chitin and tannic acid) were compared with neat chitosan. Tensile tests show that the addition of chitin improves the nanocomposite films mechanical properties up to 137% compared to neat chitosan, but this is slightly degraded when tannic acid is introduced. However, tannic acid and chitin whisker content greatly reduced moisture content by 294% and water solubility by 13%. Transmission electron microscopy (TEM) and Fourier-transform-infrared spectroscopy (FTIR) were used to investigate the morphology and molecular interaction of film. X-ray diffraction results indicated that the samples with chitin whiskers had a more rigid structure. The addition of tannic acid changed the structure into an anhydrous crystalline conformation when compared to neat chitosan film.
    Matched MeSH terms: Nanocomposites/chemistry*
  20. Liau CP, Bin Ahmad M, Shameli K, Yunus WM, Ibrahim NA, Zainuddin N, et al.
    ScientificWorldJournal, 2014;2014:572726.
    PMID: 24600329 DOI: 10.1155/2014/572726
    Polyhydroxybutyrate (PHB)/polycaprolactone (PCL)/stearate Mg-Al layered double hydroxide (LDH) nanocomposites were prepared via solution casting intercalation method. Coprecipitation method was used to prepare the anionic clay Mg-Al LDH from nitrate salt solution. Modification of nitrate anions by stearate anions between the LDH layers via ion exchange reaction. FTIR spectra showed the presence of carboxylic acid (COOH) group which indicates that stearate anions were successfully intercalated into the Mg-Al LDH. The formation of nanocomposites only involves physical interaction as there are no new functional groups or new bonding formed. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the mixtures of nanocomposites are intercalated and exfoliated types. XRD results showed increasing of basal spacing from 8.66 to 32.97 Å in modified stearate Mg-Al LDH, and TEM results revealed that the stearate Mg-Al LDH layers are homogeneously distributed in the PHB/PCL polymer blends matrix. Enhancement in 300% elongation at break and 66% tensile strength in the presence of 1.0 wt % of the stearate Mg-Al LDH as compare with PHB/PCL blends. Scanning electron microscopy (SEM) proved that clay improves compatibility between polymer matrix and the best ratio 80PHB/20PCL/1stearate Mg-Al LDH surface is well dispersed and stretched before it breaks.
    Matched MeSH terms: Nanocomposites/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links