Displaying publications 61 - 80 of 2470 in total

Abstract:
Sort:
  1. Vijayaraghavan K, Rajkumar J, Bukhari SN, Al-Sayed B, Seyed MA
    Mol Med Rep, 2017 Mar;15(3):1007-1016.
    PMID: 28112383 DOI: 10.3892/mmr.2017.6133
    The study of wound‑healing plants has acquired an interdisciplinary nature with a systematic investigational approach. Several biochemicals are involved in the healing process of the body, including antioxidants and cytokines. Although several pharmaceutical preparations and formulations are available for wound care and management, it remains necessary to search for efficacious treatments, as certain current formulations cause adverse effects or lack efficacy. Phytochemicals or biomarkers from numerous plants suggest they have positive effects on different stages of the wound healing process via various mechanisms. Several herbal medicines have displayed marked activity in the management of wounds and various natural compounds have verified in vivo wound healing potential, and can, therefore, be considered as potential drugs of natural origin. Chromolaena odorata (L.) R.M. King and H. Robinson is considered a tropical weed. However, it exhibits anti‑inflammatory, antipyretic, analgesic, antimicrobial, cytotoxic and numerous other relevant medicinal properties on an appreciable scale, and is known in some parts of the world as a traditional medicine used to treat various ailments. To understand its specific role as nature's gift for healing wounds and its contribution to affordable healthcare, this plant must be scientifically assessed based on the available literature. This review aims to summarize the role of C. odorata and its biomarkers in the wound healing activities of biological systems, which are crucial to its potential future drug design, development and application for the treatment of wounds.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/chemistry
  2. Lim V, Schneider E, Wu H, Pang IH
    Nutrients, 2018 Oct 26;10(11).
    PMID: 30373159 DOI: 10.3390/nu10111580
    Cataract is an eye disease with clouding of the eye lens leading to disrupted vision, which often develops slowly and causes blurriness of the eyesight. Although the restoration of the vision in people with cataract is conducted through surgery, the costs and risks remain an issue. Botanical drugs have been evaluated for their potential efficacies in reducing cataract formation decades ago and major active phytoconstituents were isolated from the plant extracts. The aim of this review is to find effective phytoconstituents in cataract treatments in vitro, ex vivo, and in vivo. A literature search was synthesized from the databases of Pubmed, Science Direct, Google Scholar, Web of Science, and Scopus using different combinations of keywords. Selection of all manuscripts were based on inclusion and exclusion criteria together with analysis of publication year, plant species, isolated phytoconstituents, and evaluated cataract activities. Scientists have focused their attention not only for anti-cataract activity in vitro, but also in ex vivo and in vivo from the review of active phytoconstituents in medicinal plants. In our present review, we identified 58 active phytoconstituents with strong anti-cataract effects at in vitro and ex vivo with lack of in vivo studies. Considering the benefits of anti-cataract activities require critical evaluation, more in vivo and clinical trials need to be conducted to increase our understanding on the possible mechanisms of action and the therapeutic effects.
    Matched MeSH terms: Plant Extracts/pharmacology*; Plant Extracts/chemistry
  3. Pavithra K, Saravanan G
    PMID: 32048980 DOI: 10.2174/1871525718666200212095353
    Nature is an amazing source for food, shelter, clothing and medicine. An impressive number of modern drugs are isolated from many sources like plants, animals and microbes. The development of natural products from traditional medicines is of great importance to society. Modern concepts and methodologies with abundant clinical studies, unique diversity of chemical structures and biological activities aid the modern drug discovery process. Kedrostis foetidissima (Jacq.) Cogn., a traditional medicinal plant of the Cucurbitaceae family, is found in India, Sri Lanka, Ethiopia and Western Malaysia. Almost all parts of the plant are used in traditional systems of medicines and reported having medicinal properties in both in vitro and in vivo studies. In the last few years, extensive research work had been carried out using extracts and isolated phytoconstituents from Kedrostis foetidissima to confirm its pharmacology and biological activities. Many scientific reports show that crude extracts and extensive numbers of phytochemical constituents isolated from Kedrostis foetidissima have activities like antimicrobial, antioxidant, anticancer, gastroprotective, anti-inflammatory and various other important medicinal properties. The therapeutic properties of the plants are mainly attributed to the existence of phytoconstituents like phenols, alkaloids, flavonoids, tannins, terpenoids and steroids. This comprehensive review in various aspects gave a brief overview of phytoconstituents, nutritional values and medicinal property of the plant and might attract the researchers to explore its medicinal activity by discovering novel biologically active compounds that can serve as a lead compound in pharmaceutical and food industry.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/therapeutic use
  4. Cyranoski D
    Nat Med, 2005 Sep;11(9):912.
    PMID: 16145563 DOI: 10.1038/nm0905-912a
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/chemistry
  5. Leow SS, Fairus S, Sambanthamurthi R
    Crit Rev Food Sci Nutr, 2022;62(32):9076-9092.
    PMID: 34156318 DOI: 10.1080/10408398.2021.1939648
    The oil palm (Elaeis guineensis) fruit is a source of vegetable oil and various phytonutrients. Phytochemical compounds present in palm oil include tocotrienols, carotenoids, phytosterols, squalene, coenzyme Q10, and phospholipids. Being a fruit, the oil palm is also a rich source of water-soluble phytonutrients, including phenolic compounds. Extraction of phytonutrients from the oil palm vegetation liquor of palm oil milling results in a phenolic acid-rich fraction termed Water-Soluble Palm Fruit Extract (WSPFE). Pre-clinical in vitro, ex vivo, and in vivo studies carried out using various biological models have shown that WSPFE has beneficial bioactive properties, while clinical studies in healthy volunteers showed that it is safe for human consumption and confers antioxidant and anti-inflammatory effects. The composition, biological properties, and relevant molecular mechanisms of WSPFE discovered thus far are discussed in the present review, with a view to offer future research perspectives on WSPFE for health and non-health applications.
    Matched MeSH terms: Plant Extracts/analysis; Plant Extracts/pharmacology
  6. Alhassan AM, Ahmed QU, Malami I, Zakaria ZA
    Pharm Biol, 2021 Dec;59(1):955-963.
    PMID: 34283002 DOI: 10.1080/13880209.2021.1950776
    CONTEXT: Pseudocedrela kotschyi (Schweinf) Harms (Meliaceae) is an important medicinal plant found in tropical and subtropical countries of Africa. Traditionally, P. kotschyi is used in the treatment of various diseases including diabetes, malaria, abdominal pain and diarrhoea.

    OBJECTIVE: To provide an overview of traditional medicinal claims, pharmacological properties, and phytochemical principles of P. kotschyi as a basis for its clinical applications and further research and development of new drugs.

    METHODS: Through interpreting already published scientific manuscripts retrieved from different scientific search engines, namely, Medline, PubMed, EMBASE, Science Direct and Google scholar databases, an up-to-date review on the medicinal potentials of P. kotschyi from inception until September, 2020 was compiled. 'Pseudocedrela kotschyi', 'traditional uses', 'pharmacological properties' and 'chemical constituents' were used as search words.

    RESULTS: At present, more than 30 chemical constituents have been isolated and identified from the root and stem bark of P. kotschyi, among which limonoids and triterpenes are the main active constituents. Based on prior research, P. kotschyi has been reported to possess anti-inflammatory, analgesic, antipyretic, anthelminthic, antimalaria, anti-leishmaniasis, anti-trypanosomiasis, hepatoprotective, antioxidant, antidiabetic, antidiarrheal, antimicrobial, and anticancer effects.

    CONCLUSIONS: P. kotschyi is reported to be effective in treating a variety of diseases. Current phytochemical and pharmacological studies mainly focus on antimalaria, anti-leishmaniasis, anti-trypanosomiasis and anticancer potential of the root and stem bark of P. kotschyi. Although experimental data support the beneficial medicinal properties of this plant, there is still a paucity of information on its toxicity profile. Nonetheless, this review provides the basis for future research work.

    Matched MeSH terms: Plant Extracts/adverse effects; Plant Extracts/therapeutic use*
  7. Rasool M, Malik A, Abdul Basit Ashraf M, Mubbin R, Ayyaz U, Waquar S, et al.
    Bioengineered, 2021 12;12(1):4593-4604.
    PMID: 34346287 DOI: 10.1080/21655979.2021.1955528
    The Vaccinium genus comprises more than 126 genera of perennial flowering plants that are commonly adapted to poor and acidic soils or epiphytic environments. Their molecular and genomic characterization is a result of the recent advent in next-generation sequencing technology. In the current research, extracts were prepared in different media, such as petroleum ether, methanol and ethanol. An extract of Vaccinium macrocarpon (cranberry) was used at a dose of 200-400 mg/kg by weight (B.wt). Levels of oxidative stress markers, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), advanced oxidation protein products (AOPPs) and malondialdehyde (MDA), were measured. A histopathological study of six vital organs in rats was also conducted. The results indicated that the antioxidant levels were lower in the group given only ethylene oxide (EtO) but higher in the groups receiving cranberry extract as a treatment. Major improvements were also observed in stress markers such as advanced oxidation protein products (AOPPs) and MDA following cranberry treatment. Histopathological changes induced by EtO were observed in the heart, kidney, liver, lung, stomach and testis and were reversed following cranberry treatment. The major toxic effects of EtO were oxidative stress and organ degeneration, as observed from various stress markers and histopathological changes. Our study showed that this extract contains strong antioxidant properties, which may contribute to the amelioration of the observed toxic effects.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/chemistry
  8. Khan TM, Wu DB, Dolzhenko AV
    Phytother Res, 2018 Mar;32(3):402-412.
    PMID: 29193352 DOI: 10.1002/ptr.5972
    A systematic review and network-meta analysis (NMA) were performed to test significance of the galactagogue effect of fenugreek administrated to lactating women versus other comparators (i.e., placebo/control/other galactagogues). A pairwise comparison for the treatment effect was carried out to generate the forest plot for the NMA. League tables were generated using treatment effect, weighted mean difference (WMD; 95% confidence interval, CI) for all pairwise comparisons, where WMD > 0 favors the column-defining treatment. Five studies were identified with 122 participants receiving treatment with fenugreek. The NMA results of 4 studies indicated that consumption of fenugreek significantly increased amount of the produced breast milk [11.11, CI 95% 6.77, 15.46] versus placebo. The pairwise comparison revealed that fenugreek was effective as a galactagogue compared to placebo, control, and reference groups WMD 17.79 [CI 11.71, 23.88]. However, the effect of fenugreek was substantially inferior to Coleus amboinicus Lour and palm date. The NMA using pairwise comparison demonstrated the effect of C. amboinicus and palm date in the stimulation of the breast milk production was comparable and superior to all comparators.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/therapeutic use*
  9. Zahidin NS, Saidin S, Zulkifli RM, Muhamad II, Ya'akob H, Nur H
    J Ethnopharmacol, 2017 Jul 31;207:146-173.
    PMID: 28647509 DOI: 10.1016/j.jep.2017.06.019
    ETHNOPHARMACOLOGICAL RELEVANCE: Acalypha indica is an herbal plant that grows in wet, temperate and tropical region, primarily along the earth's equator line. This plant is considered by most people as a weed and can easily be found in these regions. Although this plant is a weed, Acalypha indica has been acknowledged by local people as a useful source of medicine for several therapeutic treatments. They consume parts of the plant for many therapeutics purposes such as anthelmintic, anti-ulcer, bronchitis, asthma, wound healing, anti-bacterial and other applications. As this review was being conducted, most of the reports related to ethnomedicinal practices were from Asian and African regions.

    THE AIM OF THE REVIEW: The aim of this review is to summarize the current studies on ethnomedicinal practices, phytochemistry, pharmacological studies and a potential study of Acalypha indica in different locations around the world. This review updates related information regarding the potential therapeutic treatments and also discusses the toxicity issue of Acalypha indica.

    MATERIALS AND METHODS: This review was performed through a systematic search related to Acalypha indica including the ethnomedicinal practices, phytochemistry and pharmacological studies around the world. The data was collected from online journals, magazines, and books, all of which were published in English, Malay and Indonesian. Search engine websites such as Google, Google Scholar, PubMed, Science Direct, Researchgate and other online collections were utilized in this review to obtain information.

    RESULTS: The links between ethnomedicinal practices and scientific studies have been discussed with a fair justification. Several pharmacological properties exhibited certain potentials based on the obtained results that came from different related studies. Based on literature studies, Acalypha indica has the capability to serve as anthelmintic, anti-inflammation, anti-bacterial, anti-cancer, anti-diabetes, anti-hyperlipidemic, anti-obesity, anti-venom, hepatoprotective, hypoxia, and wound healing medicine. For the traditional practices, the authors also mentioned several benefits of consuming the raw plant and decoction.

    CONCLUSION: This review summarizes the current studies of Acalypha indica collected from many regions. This review hopefully will provide a useful and basic knowledge platform for anyone interested in gaining information regarding Acalypha indica.

    Matched MeSH terms: Plant Extracts/pharmacology*; Plant Extracts/toxicity
  10. Alam S, Dhar A, Hasan M, Richi FT, Emon NU, Aziz MA, et al.
    Molecules, 2022 Dec 08;27(24).
    PMID: 36557843 DOI: 10.3390/molecules27248709
    Diabetes mellitus is a life-threatening disorder affecting people of all ages and adversely disrupts their daily functions. Despite the availability of numerous synthetic-antidiabetic medications and insulin, the demand for the development of novel antidiabetic medications is increasing due to the adverse effects and growth of resistance to commercial drugs in the long-term usage. Hence, antidiabetic phytochemicals isolated from fruit plants can be a very nifty option to develop life-saving novel antidiabetic therapeutics, employing several pathways and MoAs (mechanism of actions). This review focuses on the antidiabetic potential of commonly available Bangladeshi fruits and other plant parts, such as seeds, fruit peals, leaves, and roots, along with isolated phytochemicals from these phytosources based on lab findings and mechanism of actions. Several fruits, such as orange, lemon, amla, tamarind, and others, can produce remarkable antidiabetic actions and can be dietary alternatives to antidiabetic therapies. Besides, isolated phytochemicals from these plants, such as swertisin, quercetin, rutin, naringenin, and other prospective phytochemicals, also demonstrated their candidacy for further exploration to be established as antidiabetic leads. Thus, it can be considered that fruits are one of the most valuable gifts of plants packed with a wide spectrum of bioactive phytochemicals and are widely consumed as dietary items and medicinal therapies in different civilizations and cultures. This review will provide a better understanding of diabetes management by consuming fruits and other plant parts as well as deliver innovative hints for the researchers to develop novel drugs from these plant parts and/or their phytochemicals.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/therapeutic use
  11. Adam FA, Mohd N, Rani H, Mohd Yusof MYP, Baharin B
    J Ethnopharmacol, 2023 Feb 10;302(Pt A):115863.
    PMID: 36283639 DOI: 10.1016/j.jep.2022.115863
    ETHNOPHARMACOLOGICAL RELEVANCE: Salvadora persica L., also known as miswak, is an indigenous plant most prevalent in the Middle Eastern, some Asian, and African countries. It has medicinal and prophylactics function for numerous illnesses, including periodontal disease. Various trials, apart from World Health Organization encouragement have contributed to the production and use of S. persica in extract form in the formulation of mouthwash. This systematic review and meta-analysis aimed to compare the clinical effect of Salvadora persica-extract mouthwash and chlorhexidine gluconate mouthwash for anti-plaque and anti-gingivitis functions.

    METHODS: Using the PRISMA 2020 Protocol, a systematic search of the publications was undertaken from the MEDLINE, CENTRAL, Science Direct, PubMed, and Google Scholars for randomized control trials published through 31st January 2022 to determine the effectiveness of Salvadora persica-extract mouthwash relative to chlorhexidine gluconate as anti-plaque and anti-gingivitis properties.

    RESULTS: A total of 1809 titles and abstracts were screened. Of these, twenty-two studies met the inclusion criteria for the systematic review while only sixteen were selected for meta-analysis. The overall effects of standardized mean difference and 95% CI were 0.89 [95% CI 0.09 to 1.69] with a χ2 statistic of 2.54, 15 degrees of freedom (p 

    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/therapeutic use
  12. Manojkumar U, Kaliannan D, Srinivasan V, Balasubramanian B, Kamyab H, Mussa ZH, et al.
    Chemosphere, 2023 May;323:138263.
    PMID: 36858116 DOI: 10.1016/j.chemosphere.2023.138263
    Green synthesis of nanomaterials has emerged as an ecofriendly sustainable technology for the removal of dyes in the last few decades. Especially, plant leaf extracts have been considered as inexpensive and effective materials for the synthesis of nanoparticles. In this study, zinc oxide nanoparticles (ZnO NPs) were prepared using leaves extract of Brassica oleracea var. botrytis (BO) by co-precipitation and applied for photocatalytic/antibacterial activity. The synthesized BO-ZnO NPs was characterized by different instrumental techniques. The UV-vis Spectrum of the synthesized material showed maximum absorbance at a wavelength of 311 nm, which confirmed the formation of BO-ZnO NPs. The XRD pattern of BO-ZnO NPs represents a hexagonal wurtzite structure and the average size of particles was about 52 nm. FT-IR spectrum analysis confirms the presence of hydroxyl, carbonyl, carboxylic, and phenol groups. SEM images exhibited a flower like morphology and EDX spectrum confirming the presence of the elements Zn and O. Photo-catalytic activity of BO-ZnO NPs was tested against thiazine dye (methylene blue-MB) degradation under direct sunlight irradiation. Around 80% of the MB dye got degraded at pH 8 under 75 min of sunlight irradiation. Further, the study examined that the antimicrobial and larvicidal activity of BO-ZnO NPs obtained through green synthesis. The antimicrobial study results showed that the BO-ZnO NPs formed zones against bacterial pathogens. The results showed the formation of an inhibition zone against B. subtills (16 mm), S.aureus (13 mm), K. pneumonia (13 mm), and E. coli (9 mm) respectively at a concentration of 100 μg/mL of BO-ZnO NPs. The larvicidal activity of the BO-ZnO NPs was tested against the fourth instar of Culex quinquefasciatus mosquito larvae The LC50 and LC90 values estimated through the larvicidal activity of BO-ZnO NPs were 76.03, 190.03 ppm respectively. Hence the above findings propose the synthesized BO-ZnO NPs by the ecofriendly method can be used for various environmental and antipathogenic applications.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/chemistry
  13. Ahmad MA, Lim YH, Chan YS, Hsu CY, Wu TY, Sit NW
    Acta Pharm, 2022 Jun 01;72(2):317-328.
    PMID: 36651512 DOI: 10.2478/acph-2022-0013
    This study was conducted to evaluate the chemical composition and biological activities of the leaf extracts of Syzygium myrtifolium Walp. (Myrtaceae). The results indicate that the leaf extracts of S. myrtifolium contain various classes of phytochemicals (alkaloids, anthraquinones, flavonoids, phenolics, saponins, tannins and triterpenoids) and possess antioxidant, antibacterial, antifungal and antiviral activities. Ethyl acetate, ethanol, methanol, and water extracts exhibited significantly higher (p < 0.05) oxygen radical absorbance capacity and ferric-reducing antioxidant power than the hexane and chloroform extracts. However, all extracts exhibited stronger inhibitory activity against four tested species of yeasts (minimal inhibitory concentration: 0.02-0.31 mg mL-1) than against six tested species of bacteria (minimal inhibitory concentration: 0.16-1.25 mg mL-1). The ethanolic extract offered the highest protection of Vero cells (viability > 70 %) from the cytopathic effect caused by the Chikungunya virus while the ethyl acetate extract showed significant replication inhibitory activity against the virus (p < 0.001) using the replicon-enhanced green fluorescent protein reporter system.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/chemistry
  14. Bhupatiraju L, Bethala K, Wen Goh K, Singh Dhaliwal J, Ching Siang T, Menon S, et al.
    J Med Life, 2023 Feb;16(2):307-316.
    PMID: 36937470 DOI: 10.25122/jml-2022-0151
    Food supplements are used to improve cognitive functions in age-related dementia. This study was designed to determine the Murraya koenigii leaves' effect on Alloxan-induced cognitive impairment in diabetic rats and the contents of oxidative stress biomarkers, catalase, reduced glutathione, and glutathione reductase in brain tissue homogenates. Wistar rats were divided into seven groups (six rats per group). Group I received saline water (1 ml, p.o.), Diabetes was induced in Groups II-VII with Alloxan (120 mg/kg/p.o). Group III was provided with Donepezil HCl (2.5 mg/kg/p.o.), Group IV, V, VI, and VII with Murraya koenigii ethanol extract (200 and 400 mg/kg/p.o.) and aqueous extract (200 and 400 mg/kg/p.o.), respectively, for 30 days. Behavior, acetylcholinesterase (AChE) activity, oxidative stress status, and histopathological features were determined in the hippocampus and cerebral cortex. Administration of Murraya koenigii ethanolic and aqueous extracts significantly (P<0.05, P<0.001) increased the number of holes crossed by rats from one chamber to another. There was an increase in the (1) latency to reach the solid platform, (2) number of squares traveled by rats on the 30th day, and (3) percentage of spontaneous alternation behavior compared to the control group. Administration for successive days markedly decreased AChE activity (P<0.05), decreased TBARS level, and increased catalase, GSH, and GR levels. Murayya koenigii could be a promising food supplement for people with dementia. However, more research into sub-chronic toxicity and pharmacokinetic and pharmacodynamics interactions is essential.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/therapeutic use
  15. Ahda M, Jaswir I, Khatib A, Ahmed QU, Mahfudh N, Ardini YD, et al.
    Sci Rep, 2023 Oct 09;13(1):17012.
    PMID: 37813908 DOI: 10.1038/s41598-023-43251-2
    Ocimum aristatum, commonly known as O. stamineus, has been widely studied for its potential as an herbal medicine candidate. This research aims to compare the efficacy of water and 100% ethanolic extracts of O. stamineus as α-glucosidase inhibitors and antioxidants, as well as toxicity against zebrafish embryos. Based on the study findings, water extract of O. stamineus leaves exhibited superior inhibition activity against α-glucosidase, ABTS, and DPPH, with IC50 values of approximately 43.623 ± 0.039 µg/mL, 27.556 ± 0.125 µg/mL, and 95.047 ± 1.587 µg/mL, respectively. The major active compounds identified in the extract include fatty acid groups and their derivates such as linoleic acid, α-eleostearic acid, stearic acid, oleanolic acid, and corchorifatty acid F. Phenolic groups such as caffeic acid, rosmarinic acid, 3,4-Dihydroxybenzaldehyde, norfenefrine, caftaric acid, and 2-hydroxyphenylalanine and flavonoids and their derivates including 5,7-Dihydroxychromone, 5,7-Dihydroxy-2,6-dimethyl-4H-chromen-4-one, eupatorin, and others were also identified in the extract. Carboxylic acid groups and triterpenoids such as azelaic acid and asiatic acid were also present. This study found that the water extract of O. stamineus is non-toxic to zebrafish embryos and does not affect the development of zebrafish larvae at concentrations lower than 500 µg/mL. These findings highlight the potential of the water extract of O. stamineus as a valuable herbal medicine candidate, particularly for its potent α-glucosidase inhibition and antioxidant properties, and affirm its safety in zebrafish embryos at tested concentrations.
    Matched MeSH terms: Plant Extracts/analysis; Plant Extracts/toxicity
  16. Ahmad AA, Kasim KF, Gopinath SCB, Anbu P, Sofian-Seng NS
    Int J Biol Macromol, 2023 Dec 31;253(Pt 2):126795.
    PMID: 37689304 DOI: 10.1016/j.ijbiomac.2023.126795
    Dicranopteris linearis (DL) is a fern in the Gleicheniaceae family, locally known as resam by the Malay community. It has numerous pharmacological benefits, with antiulcer and gastroprotective properties. Peptic ulcer is a chronic and recurring disease that significantly impacts morbidity and mortality, affecting nearly 20 % of the world's population. Despite the effectiveness of peptic ulcer drugs, there is no perfect treatment for the ailment. Encapsulation is an advanced technique that can treat peptic ulcers by incorporating natural sources. This work aims to encapsulate DL extract using different types of cellulose particles by the solvent displacement technique for peptic ulcer medication. The extract was encapsulated using methyl cellulose (MC), ethyl cellulose (EC), and a blend of ethyl methyl cellulose through a dialysis cellulose membrane tube and freeze-dried to yield a suspension of the encapsulated DL extracts. The microencapsulated methyl cellulose chloroform extract (MCCH) has a considerably greater level of total phenolic (84.53 ± 6.44 mg GAE/g), total flavonoid (84.53 ± 0.54 mg GAE/g), and antioxidant activity (86.40 ± 0.63 %). MCCH has the highest percentage of antimicrobial activity against Escherichia coli (2.42 ± 107 × 0.70 CFU/mL), Bacillus subtilis (5.21 ± 107 × 0.90 CFU/mL), and Shigella flexneri (1.25 ± 107 × 0.66 CFU/mL), as well as the highest urease inhibitory activity (50.0 ± 0.21 %). The MCCH particle size was estimated to be 3.347 ± 0.078 μm in diameter. It has been proven that DL elements were successfully encapsulated in the methyl cellulose polymer in the presence of calcium (Ca). Fourier transform infrared (FTIR) analysis indicated significant results, where the peak belonging to the CO stretch of the carbonyl groups of methyl cellulose (MC) shifted from 1638.46 cm-1 in the spectrum of pure MC to 1639.10 cm-1 in the spectrum of the MCCH extract. The shift in the wavenumbers was due to the interactions between the phytochemicals in the chloroform extract and the MC matrix in the microcapsules. Dissolution studies in simulated gastric fluid (SGF) and model fitting of encapsulated chloroform extracts showed that MCCH has the highest EC50 of 6.73 ± 0.27 mg/mL with R2 = 0.971 fitted by the Korsmeyer-Peppas model, indicating diffusion as the mechanism of release.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/chemistry
  17. Mahawer S, Kumar R, Prakash O, Singh S, Singh Rawat D, Dubey SK, et al.
    Curr Top Med Chem, 2023;23(20):1964-1972.
    PMID: 37218200 DOI: 10.2174/1568026623666230522104104
    Alpinia malaccensis, commonly known as "Malacca ginger" and "Rankihiriya," is an important medicinal plant of Zingiberaceae. It is native to Indonesia and Malaysia and widely distributed in countries including Northeast India, China, Peninsular Malaysia and Java. Due to vide pharmacological values, it is necessary to recognize this species for its significance of pharmacological importance. This article provides the botanical characteristics, chemical compounds of vegetation, ethnopharmacological values, therapeutic properties, along with the potential pesticidal properties of this important medicinal plant. The information in this article was gathered by searching the online journals in the databases such as PubMed, Scopus, Web of Science etc. The terms such as Alpinia malaccensis, Malacca ginger, Rankihiriya, pharmacology, chemical composition, ethnopharmacology, etc., were used in different combinations. A detailed study of the available resources for A. malaccensis confirmed its native and distribution, traditional values, chemical properties, and medicinal values. Its essential oils and extracts are the reservoir of a wide range of important chemical constituents. Traditionally, it is being used to treat nausea, vomiting and wounds along with as a seasoning agent in meat processing and as perfume. Apart from traditional values, it has been reported for several pharmacological activities such as antioxidant, antimicrobial, anti-inflammatory etc. We believe that this review will help to provide the collective information of A. malaccensis to further explore it in the prevention and treatment of various diseases and help to the systematic study of this plant to utilize its potential in various areas of human welfare.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/therapeutic use
  18. Ali Reza ASM, Nasrin MS, Hossen MA, Rahman MA, Jantan I, Haque MA, et al.
    Crit Rev Food Sci Nutr, 2023;63(22):5546-5576.
    PMID: 34955042 DOI: 10.1080/10408398.2021.2021138
    Medicinally important plant-foods offer a balanced immune function, which is essential for protecting the body against antigenic invasion, mainly by microorganisms. Immunomodulators play pivotal roles in supporting immune function either suppressing or stimulating the immune system's response to invading pathogens. Among different immunomodulators, plant-based secondary metabolites have emerged as high potential not only for immune defense but also for cellular immunoresponsiveness. These natural immunomodulators can be developed into safer alternatives to the clinically used immunosuppressants and immunostimulant cytotoxic drugs which possess serious side effects. Many plants of different species have been reported to possess strong immunomodulating properties. The immunomodulatory effects of plant extracts and their bioactive metabolites have been suggested due to their diverse mechanisms of modulation of the complex immune system and their multifarious molecular targets. Phytochemicals such as alkaloids, flavonoids, terpenoids, carbohydrates and polyphenols have been reported as responsible for the immunomodulatory effects of several medicinal plants. This review illustrates the potent immunomodulatory effects of 65 plant secondary metabolites, including dietary compounds and their underlying mechanisms of action on cellular and humoral immune functions in in vitro and in vivo studies. The clinical potential of some of the compounds to be used for various immune-related disorders is highlighted.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/chemistry
  19. Salehi B, Albayrak S, Antolak H, Kręgiel D, Pawlikowska E, Sharifi-Rad M, et al.
    Int J Mol Sci, 2018 Sep 19;19(9).
    PMID: 30235891 DOI: 10.3390/ijms19092843
    Aloe genus plants, distributed in Old World, are widely known and have been used for centuries as topical and oral therapeutic agents due to their health, beauty, medicinal, and skin care properties. Among the well-investigated Aloe species are A. arborescens, A. barbadensis, A. ferox, and A. vera. Today, they account among the most economically important medicinal plants and are commonly used in primary health treatment, where they play a pivotal role in the treatment of various types of diseases via the modulation of biochemical and molecular pathways, besides being a rich source of valuable phytochemicals. In the present review, we summarized the recent advances in botany, phytochemical composition, ethnobotanical uses, food preservation, and the preclinical and clinical efficacy of Aloe plants. These data will be helpful to provide future directions for the industrial and medicinal use of Aloe plants.
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/therapeutic use
  20. Mohamad Hanafiah R, Abd Ghafar SA, Lim V, Musa SNA, Yakop F, Hairil Anuar AH
    Artif Cells Nanomed Biotechnol, 2023 Dec;51(1):549-559.
    PMID: 37847252 DOI: 10.1080/21691401.2023.2268167
    This study aims to characterize and determine the antibacterial activities of synthesized Strobilanthes crispus-mediated AgNPs (SC-AgNPs) against Streptococcus mutans, Escherichia coli and Pseudomonas aeruginosa. S. crispus water extract acts as a reducing and capping agent in the synthesis of AgNPs. The synthesized AgNPs were characterized by using UV-Vis spectrophotometer, dynamic light scattering (DLS), field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR). FESEM images showed a rough surface with a spherical shape. The average size distribution of 75.25 nm with a polydispersity index (PDI) of 0.373. XRD analysis matched the face-centred cubic structure of silver. FTIR analysis revealed a shifted peak from 1404.99 to 1345.00 cm-1. MIC and MBC values of SC-AgNPs were 1.25 mg/mL and 2.5 mg/mL against E. coli, P. aeruginosa and S. mutans, respectively. Time-kill assay showed that SC-AgNPs significantly reduced bacterial growth as compared to non-treated bacteria. Morphologies of bacteria treated with SC-AgNPs were shrunk, lysed, irregular and smaller as compared to control. SC-AgNPs significantly disrupted the gene expression of eae A, gtf B and Pel A (p 
    Matched MeSH terms: Plant Extracts/pharmacology; Plant Extracts/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links