Displaying publications 61 - 80 of 896 in total

Abstract:
Sort:
  1. Yakop F, Abd Ghafar SA, Yong YK, Saiful Yazan L, Mohamad Hanafiah R, Lim V, et al.
    Artif Cells Nanomed Biotechnol, 2018;46(sup2):131-139.
    PMID: 29561182 DOI: 10.1080/21691401.2018.1452750
    PURPOSE: The purpose of this study was to investigate apoptotic activity of silver nanoparticle Clinacanthus nutans (AgNps-CN) towards HSC-4 cell lines (oral squamous cell carcinoma cell lines).

    METHODS: Methods involved were MTT assay (cytotoxic activity), morphological cells analysis, flow cytometry and cell cycle analysis and western blot.

    RESULTS: MTT assay revealed IC50 concentration was 1.61 µg/mL, 3T3-L1 cell lines were used to determine whether AgNps-CN is cytotoxic to normal cells. At the highest concentration (3 µg/mL), no cytotoxic activity has been observed. Flow cytometry assay revealed AgNps-CN caused apoptosis effects towards HSC-4 cell lines with significant changes were observed at G1 phase when compared with untreated cells. Morphological cells analysis revealed that most of the cells exhibit apoptosis characteristics rather than necrosis. Protein study revealed that ratio of Bax/Bcl-2 increased mainly due to down-regulation of Bcl-2 expression.

    CONCLUSION: AgNps-CN have shown potential in inhibiting HSC-4 cell lines. IC50 was low compared to few studies involving biosynthesized of silver nanoparticles. Apoptosis effects were shown towards HSC-4 cell lines by the increased in Bax/Bcl-2 protein ratio. Further study such as PCR or in vivo studies are required.

    Matched MeSH terms: Plant Extracts/chemistry
  2. Yahayu MA, Rahmani M, Hashim NM, Amin MA, Ee GC, Sukari MA, et al.
    Molecules, 2011 May 27;16(6):4401-7.
    PMID: 21623311 DOI: 10.3390/molecules16064401
    Extraction and chromatographic separation of the extracts of dried stem barks of Glycosmis macrantha lead to isolation of two new acridone alkaloids, macranthanine and 7-hydroxynoracronycine, and a known acridone, atalaphyllidine. The structures of these alkaloids were determined by detailed spectral analysis and also by comparison with reported data.
    Matched MeSH terms: Plant Extracts/chemistry*
  3. Yaacob NS, Kamal NN, Norazmi MN
    PMID: 25034326 DOI: 10.1186/1472-6882-14-252
    Development of tumour resistance to chemotherapeutic drugs and concerns over their toxic effects has led to the increased use of medicinal herbs or natural products by cancer patients. Strobilanthes crispus is a traditional remedy for many ailments including cancer. Its purported anticancer effects have led to the commercialization of the plant leaves as medicinal herbal tea, although the scientific basis for its use has not been established. We previously reported that a bioactive subfraction of Strobilanthes crispus leaves (SCS) exhibit potent cytotoxic activity against human breast cancer cell lines. The current study investigates the effect of this subfraction on cell death activities induced by the antiestrogen drug, tamoxifen, in estrogen receptor-responsive and nonresponsive breast cancer cells.
    Matched MeSH terms: Plant Extracts/chemistry
  4. Xue Mei L, Mohammadi Nafchi A, Ghasemipour F, Mat Easa A, Jafarzadeh S, Al-Hassan AA
    Int J Biol Macromol, 2020 Dec 01;164:4603-4612.
    PMID: 32941902 DOI: 10.1016/j.ijbiomac.2020.09.082
    The development of intelligent packaging based on natural and biodegradable resources is getting more attention by researchers in recent years. The aim of this study was to develop and characterize a pH-sensitive films based on sago starch and incorporated with anthocyanin from torch ginger. The pH-sensitive films were fabricated by casting method with incorporation of different torch ginger extract (TGE) concentration. The surface morphology, physicochemical, barrier, and mechanical properties as well as the pH-sensitivity of films were investigated. The film with the highest concentration of TGE showed the lowest tensile strength (4.26 N/m2), toughness (2.54 MJ/m3), Young's modulus (73.96 MPa) and water vapour permeability (2.6 × 10-4 g·m/day·kPa·m2). However, its elongation at break (85.14%), moisture content (0.27%) and water solubility (37.92%) were the highest compared to other films. pH sensitivity analysis showed that the films containing TGE extract, changes in colour by changing the pH. The colour of films changed from pink to slightly green as the pH increased from pH 4 to 9. Thus, the developed pH-sensitive film with torch ginger extract has potential as intelligent packaging for detection of food freshness or spoilage to ensure their quality and safe consumption.
    Matched MeSH terms: Plant Extracts/chemistry*
  5. Wu YX, Kim YJ, Kwon TH, Tan CP, Son KH, Kim T
    Nat Prod Res, 2020 Jun;34(12):1786-1790.
    PMID: 30470128 DOI: 10.1080/14786419.2018.1527832
    Mulberry (Morus alba L.) root bark (MRB) was extracted using methanol and the extracts were subjected to tests of anti-inflammatory effects. The ethyl acetate fraction demonstrated the best anti-inflammatory effects. Purified compounds, sanggenon B, albanol B and sanggenon D, showed inhibitory effects on NO production in LPS-stimulated RAW264.7 cells and albanol B demonstrated the best anti-inflammatory effects. Regarding the underlying molecular mechanisms, further investigations showed that treatments with Albanol B reduced production of pro-inflammatory cytokines and decreased expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). These results would contribute to development of novel anti-inflammatory drugs from MRB.
    Matched MeSH terms: Plant Extracts/chemistry
  6. Woon CK, Ahmad FB, Zamakshshari NH
    Chem Biodivers, 2023 Sep;20(9):e202300166.
    PMID: 37515318 DOI: 10.1002/cbdv.202300166
    Cancer has become the primary cause of death worldwide, and anticancer drugs are used to combat this disease. Synthesis of anticancer drugs has limited success due to adverse side effects has made compounds from natural products with minimal toxicity gain much popularity. Piper species are known to have a biological effect on human health. The biological activity is due to Piper species rich with active secondary metabolites that can combat most diseases, including cancer. This review will discuss the phytochemistry of Piper species and their anticancer activity. The identification and characterization of ten active metabolites isolated from Piper species were discussed in detail and their anticancer mechanism. These metabolites were mainly found could inhibit anticancer through caspase and P38/JNK pathways. The findings discussed in this review support the therapeutic potential of Piper species against cancer due to their rich source of active metabolites with demonstrated anticancer activity.
    Matched MeSH terms: Plant Extracts/chemistry
  7. Wong WT, Ismail M, Imam MU, Zhang YD
    BMC Complement Altern Med, 2016 Jul 28;16:252.
    PMID: 27465266 DOI: 10.1186/s12906-016-1223-9
    Rice bran is bioactive-rich and has proven health benefits for humans. Moreover, its source, the brown rice has antioxidant, hypolipidemic and other functional properties that are increasingly making it a nutritional staple especially in Asian countries. This study investigated the antiplatelet aggregation mechanisms of crude hexane/methanolic rice bran extract, in which policosanol was the targeted bioactive. Platelets play a vital role in pathogenesis of atherosclerosis and cardiovascular diseases, and their increased activities could potentially cause arterial thrombus formation or severe bleeding disorders. Thus, in this study, platelet aggregation and adhesion of platelets to major components of basal lamina were examined in vitro. In addition, cellular protein secretion was quantified as a measurement of platelet activation.
    Matched MeSH terms: Plant Extracts/chemistry
  8. Wong SK, Lim YY, Abdullah NR, Nordin FJ
    PMID: 21232161 DOI: 10.1186/1472-6882-11-3
    Studies have shown that the barks and roots of some Apocynaceae species have anticancer and antimalarial properties. In this study, leaf extracts of five selected species of Apocynaceae used in traditional medicine (Alstonia angustiloba, Calotropis gigantea, Dyera costulata, Kopsia fruticosa and Vallaris glabra) were assessed for antiproliferative (APF) and antiplasmodial (APM) activities, and analysed for total alkaloid content (TAC), total phenolic content (TPC) and radical-scavenging activity (RSA). As V. glabra leaf extracts showed wide spectrum APF and APM activities, they were further screened for saponins, tannins, cardenolides and terpenoids.
    Matched MeSH terms: Plant Extracts/chemistry
  9. Wong PL, Fauzi NA, Mohamed Yunus SN, Abdul Hamid NA, Abd Ghafar SZ, Azizan A, et al.
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640504 DOI: 10.3390/molecules25133067
    Plants and plant-based products have been used for a long time for medicinal purposes. This study aimed to determine the antioxidant and anti-α-glucosidase activities of eight selected underutilized plants in Malaysia: Leucaena leucocephala, Muntingia calabura, Spondias dulcis, Annona squamosa, Ardisia elliptica, Cynometra cauliflora, Ficus auriculata, and Averrhoa bilimbi. This study showed that the 70% ethanolic extract of all plants exhibited total phenolic content (TPC) ranging from 51 to 344 mg gallic acid equivalent (GAE)/g dry weight. A. elliptica showed strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging activities, with half maximal inhibitory concentration (IC50) values of 2.17 and 49.43 μg/mL, respectively. Most of the tested plant extracts showed higher inhibition of α-glucosidase enzyme activity than the standard, quercetin, particularly A. elliptica, F. auriculata, and M. calabura extracts with IC50 values of 0.29, 0.36, and 0.51 μg/mL, respectively. A total of 62 metabolites including flavonoids, triterpenoids, benzoquinones, and fatty acids were tentatively identified in the most active plant, i.e., A. elliptica leaf extract, by using ultra-high-performance liquid chromatography (UHPLC)-electrospray ionization (ESI) Orbitrap MS. This study suggests a potential natural source of antioxidant and α-glucosidase inhibitors from A. elliptica.
    Matched MeSH terms: Plant Extracts/chemistry*
  10. Wong PL, Zolkeflee NKZ, Ramli NS, Tan CP, Azlan A, Tham CL, et al.
    J Ethnopharmacol, 2024 Jan 10;318(Pt B):117015.
    PMID: 37572932 DOI: 10.1016/j.jep.2023.117015
    ETHNOPHARMACOLOGICAL RELEVANCE: Ardisia elliptica Thunb. (AE) (Primulaceae) is a medicinal plant found in the Malay Peninsula and has been traditionally used to treat diabetes. However, limited studies to date in providing scientific evidence to support the antidiabetic efficacy of this plant by in-vitro and in-vivo models.

    AIM OF THE STUDY: To investigate the anti-hyperglycemic potential of AE through in-vitro enzymatic activities and streptozotocin-nicotinamide (STZ-NA) induced diabetic rat models using proton-nuclear magnetic resonance (1H-NMR)-based metabolomics approach.

    MATERIALS AND METHODS: Anti-α-amylase and anti-α-glucosidase activities of the hydroethanolic extracts of AE were evaluated. The absolute quantification of bioactive constituents, using ultra-high performance liquid chromatography (UHPLC) was performed for the most active extract. Three different dosage levels of the AE extract were orally administered for 4 weeks consecutively in STZ-NA induced diabetic rats. Physical assessments, biochemical analysis, and an untargeted 1H-NMR-based metabolomics analysis of the urine and serum were carried out on the animal model.

    RESULTS: Type 2 diabetes mellitus (T2DM) rat model was successfully developed based on the clear separation observed between the STZ-NA induced diabetic and normal non-diabetic groups. Discriminating biomarkers included glucose, citrate, succinate, allantoin, hippurate, 2-oxoglutarate, and 3-hydroxybutyrate, as determined through an orthogonal partial least squares-discriminant analysis (OPLS-DA) model. A treatment dosage of 250 mg/kg body weight (BW) of standardized 70% ethanolic AE extract mitigated increase in serum glucose, creatinine, and urea levels, providing treatment levels comparable to that obtained using metformin, with flavonoids primarily contribute to the anti-hyperglycemic activities. Urinary metabolomics disclosed that the following disturbed metabolism pathways: the citrate cycle (TCA cycle), butanoate metabolism, glycolysis and gluconeogenesis, pyruvate metabolism, and synthesis and degradation of ketone bodies, were ameliorated after treatment with the standardized AE extract.

    CONCLUSIONS: This study demonstrated the first attempt at revealing the therapeutic effect of oral treatment with 250 mg/kg BW of standardized AE extract on chemically induced T2DM rats. The present study provides scientific evidence supporting the ethnomedicinal use of Ardisia elliptica and further advances the understanding of the fundamental molecular mechanisms affected by this herbal antidote.

    Matched MeSH terms: Plant Extracts/chemistry
  11. Wong PF, Cheong WF, Shu MH, Teh CH, Chan KL, AbuBakar S
    Phytomedicine, 2012 Jan 15;19(2):138-44.
    PMID: 21903368 DOI: 10.1016/j.phymed.2011.07.001
    Bioactive compounds from the medicinal plant, Eurycoma longifolia Jack have been shown to promote anti-proliferative effects on various cancer cell lines. Here we examined the effects of purified eurycomanone, a quassinoid found in Eurycoma longifolia Jack extract, on the expression of selected genes of the A549 lung cancer cells. Eurycomanone inhibited A549 lung cancer cell proliferation in a dose-dependent manner at concentrations ranging from 5 to 20 μg/ml. The concentration that inhibited 50% of cell growth (GI(50)) was 5.1 μg/ml. The anti-proliferative effects were not fully reversible following the removal of eurycomanone, in which 30% of cell inhibition still remained (p<0.0001, T-test). At 8 μg/ml (GI(70)), eurycomanone suppressed anchorage-independent growth of A549 cells by >25% (p<0.05, T-test, n=8) as determined using soft agar colony formation assay. Cisplatin, a chemotherapy drug used for the treatment of non small cell lung cancer on the other hand, inhibited A549 cells proliferation at concentrations ranging from 0.2 μg/ml to 15 μg/ml with a GI(50) of 0.58 μg/ml. The treatment with eurycomanone reduced the abundance expression of the lung cancer markers, heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1, p53 tumor suppressor protein and other cancer-associated genes including prohibitin (PHB), annexin 1 (ANX1) and endoplasmic reticulum protein 28 (ERp28) but not the house keeping genes. The mRNA expressions of all genes with the exception of PHB were significantly downregulated, 72 h after treatment (p<0.05, T-test, n=9). These findings suggest that eurycomanone at viable therapeutic concentrations of 5-20 μg/ml exhibited significant anti-proliferative and anti-clonogenic cell growth effects on A549 lung cancer cells. The treatment also resulted in suppression of the lung cancer cell tumor markers and several known cancer cell growth-associated genes.
    Matched MeSH terms: Plant Extracts/chemistry
  12. Wong JY, Matanjun P, Ooi YB, Chia KF
    Int J Food Sci Nutr, 2013 Aug;64(5):621-31.
    PMID: 23368987 DOI: 10.3109/09637486.2013.763910
    This study was carried out to characterize phenolic compounds, carotenoids, vitamins and the antioxidant activity of selected wild edible plants. Plant extracts were purified, and phenolic compounds comprising 11 phenolic acids (hydroxybenzoic acid and hydrocinnamic acid) and 33 flavonoids (including catechin, glycosides and aglycones) were analysed using High Performance Liquid Chromatography - Diode Array Detector (HPLC-DAD). Furthermore, the contents of ascorbic acid and tocopherol ((α and γ tocopherol) and carotenoids (lutein and β-carotene) were also determined. The major phenolics identified consisted of glycosides of flavones (apigenin and luteolin) and flavonols (kaempferol and quercetin). Among the phenolic acids identified after hydrolysis, coumaric acid was the predominant phenolic acid in all the extracts of wild plants. Ascorbic acid [53.8 mg/100 g fresh weight (FW)] and β-carotene (656.5 mg/100 g FW) showed the highest content in the leaf of Heckeria umbellatum. In conclusion, the leaves of H. umbellatum, Aniseia martinicensis and Gonostegia hirta have excellent potential in the future to emerge as functional ingredients.
    Matched MeSH terms: Plant Extracts/chemistry
  13. Widyawati T, Yusoff NA, Bello I, Asmawi MZ, Ahmad M
    Molecules, 2022 Oct 12;27(20).
    PMID: 36296407 DOI: 10.3390/molecules27206814
    (1) Background: An earlier study on the hypoglycemic activity of S. polyanthum (Wight.) leaf methanol extract identified squalene as the major chemical compound. The present study was conducted to assess the hypoglycemic effect of fractions and subfractions of the methanol extract of S. polyanthum compared to the squalene using a bioassay-guided in vivo study. (2) Methods: The methanol extract was fractionated using the liquid−liquid fractionation method. Streptozotocin-induced type 1 diabetic rat was used to study the hypoglycemic effect. (3) Results: The findings showed that chloroform fraction significantly (p < 0.05) lowered blood glucose levels of diabetic rats as compared to the control. Further fractionation of chloroform fraction yielded subfraction-1 and -2, whereby subfraction-1 exhibited a higher blood-glucose-lowering effect. The lipid profile test showed that the total cholesterol level of subfraction-1 and squalene-treated groups decreased significantly (p < 0.05). An immunohistochemistry study revealed that none of the treatments regenerated pancreatic β-cells. Gas chromatography−mass spectrophotometer analysis identified the presence of squalene in the active methanol extract, chloroform fraction, and subfraction-1. In silico analysis revealed a higher affinity of squalene against protein receptors that control lipid metabolism than metformin. (4) Conclusions: Data obtained from the present work suggested the crude methanol extract exerted the highest hypoglycemic effect compared to fraction, subfraction, and squalene, confirming synergistic effect may be responsible for the hypoglycemic activity of S. polyanthum.
    Matched MeSH terms: Plant Extracts/chemistry
  14. Wibawa PJ, Nur M, Asy'ari M, Wijanarka W, Susanto H, Sutanto H, et al.
    Molecules, 2021 Jun 22;26(13).
    PMID: 34206375 DOI: 10.3390/molecules26133790
    This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs-ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis's spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).
    Matched MeSH terms: Plant Extracts/chemistry
  15. Wernsdorfer WH, Ismail S, Chan KL, Congpuong K, Wernsdorfer G
    Wien Klin Wochenschr, 2009 Oct;121 Suppl 3:23-6.
    PMID: 19915812 DOI: 10.1007/s00508-009-1230-7
    The habitats of Eurycoma longifolia Jack, a slender tree, are jungles in Malaysia and Indonesia. It belongs to the family Simaroubaceae and is a source of quassinoids with anabolic, antimalarial and cytostatic activity. In this study, conducted during 2008 in Mae Sot, Thailand, a standardized extract of E. longifolia containing three major quassinoids, eurycomanone (1), 13,21-dihydroeurycomanone (2) and 13alpha(21)-epoxyeurycomanone (3) was evaluated for antiplasmodial activity against Plasmodium falciparum and its activity has been compared with that of artemisinin, using 38 fresh parasite isolates and assessment of inhibition of schizont maturation. The IC(50), IC(90) and IC(99) values for artemisinin were 4.30, 45.48 and 310.97 microg/l, and those for the root extract from E. longifolia 14.72, 139.65 and 874.15 microg/l respectively. The GMCOC for artemisinin was 337.81 mug/l, and for the plant extract it was 807.41 microg/l. The log-concentration probit regressions were parallel. The inhibitory activity of the E. longifolia extract was higher than that expected from the three quassinoids isolated from the plant, suggesting synergism between the quassinoids or the presence of other unidentified compounds.
    Matched MeSH terms: Plant Extracts/chemistry
  16. Wei LS, Wee W, Siong JY, Syamsumir DF
    Acta Med Iran, 2011;49(10):670-4.
    PMID: 22071643
    Peperomia pellucida leaf extract was characterized for its anticancer, antimicrobial, antioxidant activities, and chemical compositions. Anticancer activity of P. pellucida leaf extract was determined through Colorimetric MTT (tetrazolium) assay against human breast adenocarcinoma (MCF-7) cell line and the antimicrobial property of the plant extract was revealed by using two-fold broth micro-dilution method against 10 bacterial isolates. Antioxidant activity of the plant extract was then characterized using α, α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging method and the chemical compositions were screened and identified using gas chromatography-mass spectrometry (GC-MS). The results of present study indicated that P. pellucida leaf extract possessed anticancer activities with half maximal inhibitory concentration (IC(50)) of 10.4 ± 0.06 µg/ml. The minimum inhibitory concentration (MIC) values were ranged from 31.25 to 125 mg/l in which the plant extract was found to inhibit the growth of Edwardsiella tarda, Escherichia coli, Flavobacterium sp., Pseudomonas aeruginosa and Vibrio cholerae at 31.25 mg/l; Klebsiella sp., Aeromonas hydrophila and Vibrio alginolyticus at 62.5 mg/l; and it was able to control the growth of Salmonella sp. and Vibrio parahaemolyticus at 125 mg/l. At the concentration of 0.625 ppt, the plant extract was found to inhibit 30% of DPPH, free radical. Phytol (37.88%) was the major compound in the plant extract followed by 2-Naphthalenol, decahydro- (26.20%), Hexadecanoic acid, methyl ester (18.31%) and 9,12-Octadecadienoic acid (Z,Z)-, methyl ester (17.61%). Findings from this study indicated that methanol extract of P. pellucida leaf possessed vast potential as medicinal drug especially in breast cancer treatment.
    Matched MeSH terms: Plant Extracts/chemistry
  17. Waziri PM, Abdullah R, Yeap SK, Omar AR, Kassim NK, Malami I, et al.
    BMC Complement Altern Med, 2016 Jul 29;16:256.
    PMID: 27473055 DOI: 10.1186/s12906-016-1247-1
    BACKGROUND: Clausena excavata Burm.f. is a shrub traditionally used to treat cancer patients in Asia. The main bioactive chemical components of the plant are alkaloids and coumarins. In this study, we isolated clausenidin from the roots of C. excavata to determine its apoptotic effect on the colon cancer (HT-29) cell line.
    METHOD: We examined the effect of clausenidin on cell viability, ROS generation, DNA fragmentation, mitochondrial membrane potential in HT-29 cells. Ultrastructural analysis was conducted for morphological evidence of apoptosis in the treated HT-29 cells. In addition, we also evaluated the effect of clausenidin treatment on the expression of caspase 3 and 9 genes and proteins in HT-29 cells.
    RESULT: Clausenidin induced a G0/G1 cell cycle arrest in HT-29 cells with significant (p 
    Matched MeSH terms: Plant Extracts/chemistry
  18. Wang Y, Lee SM, Dykes GA
    Biofouling, 2013;29(3):307-18.
    PMID: 23528127 DOI: 10.1080/08927014.2013.774377
    Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.
    Matched MeSH terms: Plant Extracts/chemistry
  19. Wang L, Xu J, Yan Y, Liu H, Karunakaran T, Li F
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):1617-1627.
    PMID: 31014134 DOI: 10.1080/21691401.2019.1594862
    Nanotechnology has been materialized as a proficient technology for the development of anticancer nanoparticles all the way through an environment-friendly approach. Conventionally, nanoparticles have been assembled by dissimilar methods, but regrettably rely on the negative impact on the natural environment. Amalgamation of nanoparticles by means of plant extract is alternate conservative methods. Scutellaria barbata species was used majorly as food or as medicines against various diseases, and extensive research was conducted for their therapeutic properties. The present research was mainly focused on the synthesis of gold nanoparticles from the Scutellaria barbata by green route method and evaluation of its anticancer activity against pancreatic cancer cell lines (PANC-1). The gold nanoparticles have been characterized by UV-visible spectroscopy, TEM, SAED, AFM, and FTIR analysis. The synthesized gold nanoparticles (AuNPs) possessed effective anticancer activity against pancreatic cancer cell lines (PANC-1). Hence, further research on this plant may lead to the development of novel anticancer drugs which can be used to combat pancreatic cancer.
    Matched MeSH terms: Plant Extracts/chemistry*
  20. Wan-Nadilah WA, Akhtar MT, Shaari K, Khatib A, Hamid AA, Hamid M
    BMC Complement Altern Med, 2019 Sep 05;19(1):245.
    PMID: 31488132 DOI: 10.1186/s12906-019-2655-9
    BACKGROUND: Cosmos caudatus is an annual plant known for its medicinal value in treating several health conditions, such as high blood pressure, arthritis, and diabetes mellitus. The α-glucosidase inhibitory activity and total phenolic content of the leaf aqueous ethanolic extracts of the plant at different growth stages (6, 8. 10, 12 and 14 weeks) were determined in an effort to ascertain the best time to harvest the plant for maximum medicinal quality with respect to its glucose-lowering effects.

    METHODS: The aqueous ethanolic leaf extracts of C. caudatus were characterized by NMR and LC-MS/MS. The total phenolic content and α-glucosidase inhibitory activity were evaluated by the Folin-Ciocalteu method and α-glucosidase inhibitory assay, respectively. The statistical significance of the results was evaluated using one-way ANOVA with Duncan's post hoc test, and correlation among the different activities was performed by Pearson's correlation test. NMR spectroscopy along with multivariate data analysis was used to identify the metabolites correlated with total phenolic content and α-glucosidase inhibitory activity of the C. caudatus leaf extracts.

    RESULTS: It was found that the α-glucosidase inhibitory activity and total phenolic content of the optimized ethanol:water (80:20) leaf extract of the plant increased significantly as the plant matured, reaching a maximum at the 10th week. The IC50 value for α-glucosidase inhibitory activity (39.18 μg mL- 1) at the 10th week showed greater potency than the positive standard, quercetin (110.50 μg mL- 1). Through an 1H NMR-based metabolomics approach, the 10-week-old samples were shown to be correlated with a high total phenolic content and α-glucosidase inhibitory activity. From the partial least squares biplot, rutin and flavonoid glycosides, consisting of quercetin 3-O-arabinofuranoside, quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, and quercetin 3-O-xyloside, were identified as the major bioactive metabolites. The metabolites were identified by NMR spectroscopy (J-resolve, HSQC and HMBC experiments) and further supported by dereplication via LC-MS/MS.

    CONCLUSION: For high phytomedicinal quality, the 10th week is recommended as the best time to harvest C. caudatus leaves with respect to its glucose lowering potential.

    Matched MeSH terms: Plant Extracts/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links