Displaying publications 61 - 80 of 504 in total

Abstract:
Sort:
  1. Ooi DJ, Iqbal S, Ismail M
    Molecules, 2012 Sep 17;17(9):11139-45.
    PMID: 22986924 DOI: 10.3390/molecules170911139
    This study presents the proximate and mineral composition of Peperomia pellucida L., an underexploited weed plant in Malaysia. Proximate analysis was performed using standard AOAC methods and mineral contents were determined using atomic absorption spectrometry. The results indicated Peperomia pellucida to be rich in crude protein, carbohydrate and total ash contents. The high amount of total ash (31.22%)suggests a high-value mineral composition comprising potassium, calcium and iron as the main elements. The present study inferred that Peperomia pellucida would serve as a good source of protein and energy as well as micronutrients in the form of a leafy vegetable for human consumption.
    Matched MeSH terms: Plant Leaves/chemistry
  2. Uddin MK, Juraimi AS, Ali ME, Ismail MR
    Int J Mol Sci, 2012;13(8):10257-67.
    PMID: 22949859 DOI: 10.3390/ijms130810257
    The main objective of this research was to appraise the changes in mineral content and antioxidant attributes of Portulaca oleracea over different growth stages. The antioxidant activity was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP) assays. The iodine titration method was used to determine the ascorbic acid content (AAC). DPPH scavenging (IC(50)) capacity ranged from 1.30 ± 0.04 to 1.71 ± 0.04 mg/mL, while the ascorbic acid equivalent antioxidant activity (AEAC) values were 229.5 ± 7.9 to 319.3 ± 8.7 mg AA/100 g, total phenol content (TPC) varied from 174.5 ± 8.5 to 348.5 ± 7.9 mg GAE/100 g. AAC 60.5 ± 2.1 to 86.5 ± 3.9 mg/100 g and FRAP 1.8 ± 0.1 to 4.3 ± 0.1 mg GAE/g. There was good correlation between the results of TPC and AEAC, and between IC(50) and FRAP assays (r(2) > 0.9). The concentrations of Ca, Mg, K, Fe and Zn increased with plant maturity. Calcium (Ca) was negatively correlated with sodium (Na) and chloride (Cl), but positively correlated with magnesium (Mg), potassium (K), iron (Fe) and zinc (Zn). Portulaca olerecea cultivars could be used as a source of minerals and antioxidants, especially for functional food and nutraceutical applications.
    Matched MeSH terms: Plant Leaves/chemistry*
  3. Panhwar QA, Radziah O, Zaharah AR, Sariah M, Razi IM
    J Environ Biol, 2011 Sep;32(5):607-12.
    PMID: 22319876
    Use of phosphate-solubilizing bacteria (PSB) as inoculants has concurrently increased phosphorous uptake in plants and improved yields in several crop species. The ability of PSB to improve growth of aerobic rice (Oryza sativa L.) through enhanced phosphorus (P) uptake from Christmas island rock phosphate (RP) was studied in glasshouse experiments. Two isolated PSB strains; Bacillus spp. PSB9 and PSB16, were evaluated with RP treatments at 0, 30 and 60 kg ha(-1). Surface sterilized seeds of aerobic rice were planted in plastic pots containing 3 kg soil and the effect of treatments incorporated at planting were observed over 60 days of growth. The isolated PSB strains (PSB9 and PSB16) solubilized significantly high amounts of P (20.05-24.08 mg kg(-1)) compared to non-inoculated (19-23.10 mg kg(-1)) treatments. Significantly higher P solubilization (24.08 mg kg(-1)) and plant P uptake (5.31 mg plant(-1)) was observed with the PSB16 strain at the highest P level of 60 kg ha(-1). The higher amounts of soluble P in the soil solution increased P uptake in plants and resulted in higher plant biomass (21.48 g plant(-1)). PSB strains also increased plant height (80 cm) and improved root morphology in aerobic rice. The results showed that inoculation of aerobic rice with PSB improved phosphate solubilizing activity of incorporated RP.
    Matched MeSH terms: Plant Leaves/chemistry
  4. Guangul FM, Sulaiman SA, Ramli A
    Bioresour Technol, 2012 Dec;126:224-32.
    PMID: 23073112 DOI: 10.1016/j.biortech.2012.09.018
    Oil palm frond biomass is abundantly available in Malaysia, but underutilized. In this study, gasifiers were evaluated based on the available literature data and downdraft gasifiers were found to be the best option for the study of oil palm fronds gasification. A downdraft gasifier was constructed with a novel height adjustment mechanism for changing the position of gasifying air and steam inlet. The oil palm fronds gasification results showed that preheating the gasifying air improved the volumetric percentage of H(2) from 8.47% to 10.53%, CO from 22.87% to 24.94%, CH(4) from 2.02% to 2.03%, and higher heating value from 4.66 to 5.31 MJ/Nm(3) of the syngas. In general, the results of the current study demonstrated that oil palm fronds can be used as an alternative energy source in the energy diversification plan of Malaysia through gasification, along with, the resulting syngas quality can be improved by preheating the gasifying air.
    Matched MeSH terms: Plant Leaves/chemistry*
  5. Loo YY, Chieng BW, Nishibuchi M, Radu S
    Int J Nanomedicine, 2012;7:4263-7.
    PMID: 22904632 DOI: 10.2147/IJN.S33344
    The development of the biological synthesis of nanoparticles using microorganisms or plant extracts plays an important role in the field of nanotechnology as it is environmentally friendly and does not involve any harmful chemicals. In this study, the synthesis of silver nanoparticles using the leaves extract of Chinese tea from Camellia sinensis is reported. The synthesized nanoparticles were characterized using UV-vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The XRD analysis shows that the synthesized silver nanoparticles are of face-centered cubic structure. Well-dispersed silver nanoparticles with an approximate size of 4 nm were observed in the TEM image. The application of the green synthesized nanoparticles can be used in many fields such as cosmetics, foods, and medicine.
    Matched MeSH terms: Plant Leaves/chemistry
  6. Tahir NI, Shaari K, Abas F, Parveez GK, Ishak Z, Ramli US
    J Agric Food Chem, 2012 Nov 14;60(45):11201-10.
    PMID: 23116142 DOI: 10.1021/jf303267e
    The palm oil industry generates several byproducts, and more than half of the dry weight of the waste is of oil palm leaf whereby the tissue is underutilized. Recently, several research studies found promising potential of oil palm fronds as a source of nutraceutical due to its bioactive properties. However, the chemical composition of the tissue is still not deciphered. Using reversed-phase liquid chromatography (LC) electrospray mass spectrometry (ESI-MS), glycosylated apigenin and luteolin were separated and identified from oil palm (Elaeis guineensis Jacq.) leaf and structures of the constituents were elucidated by collision-induced dissociation (CID) tandem MS. From 28 derivatives of the flavones, 9 compounds were conjugated with hydroxymethylglutaric (HMG) acid. Improved knowledge on oil palm especially on bioactive component of the leaf tissue will allow correlation of its beneficial effects and further promotes efficient utilization of this agriculture byproduct.
    Matched MeSH terms: Plant Leaves/chemistry
  7. Ibrahim MH, Jaafar HZ
    Molecules, 2012;17(5):5195-211.
    PMID: 22628041 DOI: 10.3390/molecules17055195
    A split plot 3 by 3 experiment was designed to investigate the relationships among production of primary metabolites (soluble sugar and starch), secondary metabolites (total flavonoids, TF; total phenolics, TP), phenylalanine lyase (PAL) activity (EC 4.3.1.5), protein and antioxidant activity (FRAP) of three progenies of oil palm seedlings, namely Deli AVROS, Deli Yangambi and Deli URT, under three levels of CO₂ enrichment (400, 800 and 1,200 μmol·mol⁻¹) for 15 weeks of exposure. During the study, the treatment effects were solely contributed by CO₂ enrichment levels; no progenies and interaction effects were observed. As CO₂ levels increased from 400 to 1,200 μmol·mol⁻¹, the production of carbohydrate increased steadily, especially for starch more than soluble sugar. The production of total flavonoids and phenolics contents, were the highest under 1,200 and lowest at 400 μmol·mol⁻¹. It was found that PAL activity was peaked under 1,200 μmol·mol⁻¹ followed by 800 μmol·mol⁻¹ and 400 μmol·mol⁻¹. However, soluble protein was highest under 400 μmol·mol⁻¹ and lowest under 1,200 μmol·mol⁻¹. The sucrose/starch ratio, i.e., the indication of sucrose phosphate synthase actvity (EC 2.4.1.14) was found to be lowest as CO₂ concentration increased from 400 > 800 > 1,200 μmol·mol⁻¹. The antioxidant activity, as determined by the ferric reducing/antioxidant potential (FRAP) activity, increased with increasing CO₂ levels, and was significantly lower than vitamin C and α-tocopherol but higher than butylated hydroxytoluene (BHT). Correlation analysis revealed that nitrogen has a significant negative correlation with carbohydrate, secondary metabolites and FRAP activity indicating up-regulation of production of carbohydrate, secondary metabolites and antioxidant activity of oil palm seedling under elevated CO₂ was due to reduction in nitrogen content in oil palm seedling expose to high CO₂ levels.
    Matched MeSH terms: Plant Leaves/chemistry
  8. Afzan A, Abdullah NR, Halim SZ, Rashid BA, Semail RH, Abdullah N, et al.
    Molecules, 2012 Apr 10;17(4):4326-42.
    PMID: 22491681 DOI: 10.3390/molecules17044326
    Carica papaya L. leaves have been used in ethnomedicine for the treatment of fevers and cancers. Despite its benefits, very few studies on their potential toxicity have been described. The aim of the present study was to characterize the chemical composition of the leaf extract from 'Sekaki' C. papaya cultivar by UPLC-TripleTOF-ESI-MS and to investigate the sub-acute oral toxicity in Sprague Dawley rats at doses of 0.01, 0.14 and 2 g/kg by examining the general behavior, clinical signs, hematological parameters, serum biochemistry and histopathology changes. A total of twelve compounds consisting of one piperidine alkaloid, two organic acids, six malic acid derivatives, and four flavonol glycosides were characterized or tentatively identified in the C. papaya leaf extract. In the sub-acute study, the C. papaya extract did not cause mortality nor were treatment-related changes in body weight, food intake, water level, and hematological parameters observed between treatment and control groups. Some biochemical parameters such as the total protein, HDL-cholesterol, AST, ALT and ALP were elevated in a non-dose dependent manner. Histopathological examination of all organs including liver did not reveal morphological alteration. Other parameters showed non-significant differences between treatment and control groups. The present results suggest that C. papaya leaf extract at a dose up to fourteen times the levels employed in practical use in traditional medicine in Malaysia could be considered safe as a medicinal agent.
    Matched MeSH terms: Plant Leaves/chemistry*
  9. Qader SW, Abdulla MA, Chua LS, Sirat HM, Hamdan S
    Int J Mol Sci, 2012;13(2):1481-96.
    PMID: 22408403 DOI: 10.3390/ijms13021481
    The leaves of Polygonum minus were fractionated using an eluting solvent to evaluate the pharmacological mechanisms underlying the anti-ulcerogenic activity of P. minus. Different P. minus fractions were obtained and evaluated for their ulcer preventing capabilities using the ethanol induction method. In this study, Sprague Dawley rats weighing 150-200 g were used. Different parameters were estimated to identify the active fraction underlying the mechanism of the gastroprotective action of P. minus: the gastric mucus barrier, as well as superoxide dismutase, total hexosamine, and prostaglandin synthesis. Amongst the five fractions from the ethanolic extract of P. minus, the ethyl acetate:methanol 1:1 v/v fraction (F2) significantly (p < 0.005) exhibited better inhibition of ulcer lesions in a dose-dependent manner. In addition, rats pre-treated with F2 showed a significant elevation in superoxide dismutase (SOD), hexosamine and PGE2 levels in the stomach wall mucosa in a dose-dependent matter. Based on these results, the ethyl acetate:methanol 1:1 v/v fraction was considered to be the best fraction for mucous protection in the ethanol induction model. The mechanisms underlying this protection were attributed to the synthesis of antioxidants and PGE2.
    Matched MeSH terms: Plant Leaves/chemistry*
  10. Reddy NS, Navanesan S, Sinniah SK, Wahab NA, Sim KS
    PMID: 22898370 DOI: 10.1186/1472-6882-12-128
    The leaves of Leea indica (Vitaceae), commonly known as 'Huo Tong Shu' in Malaysia, have been traditionally used as natural remedy in folk medicine by the locals. The current study reports the outcome of antioxidant and cytotoxic investigation of L. indica leaves. To the best of our knowledge, this is the first report of L. indica leaf crude ethanol and its fractionated extracts (hexane, ethyl acetate and water) for evaluation of total phenolic content, antioxidant effect and cytotoxic activity against colon cancer cell lines.
    Matched MeSH terms: Plant Leaves/chemistry
  11. Ghalib RM, Hashim R, Sulaiman O, Mehdi SH, Anis Z, Rahman SZ, et al.
    Nat Prod Res, 2012;26(22):2155-8.
    PMID: 22181707 DOI: 10.1080/14786419.2011.633083
    The leaves of Cinnamomum iners (Reinw. ex Blume-Lauraceae) have been refluxed successively with chloroform and alcohol to get chloroform extract and alcoholic extract. Both the extracts have been assayed for cytotoxicity against human colorectal tumour cells. The chloroform extract exhibited significant cytotoxicity with IC(50) 31 µg mL(-1) (p  200 µg mL(-1). The chloroform extract has been further proceeded for chemical analysis by GC-TOFMS and 178 components were identified including acids, amines, amides, aldehydes, alcohols, esters, benzene derivatives, bicyclic compounds, terpenes, hydrocarbons, naphthalene derivatives, furan derivatives, azulenes, etc. Nine components representing 51.73% of the total chloroform extract were detected as major components. Caryophyllene (14.41%) and Eicosanoic acid ethyl ester (12.17%) are the most prominent components of the chloroform extract. β-Caryophyllene (14.41%) as most abundant compound supports potent cytotoxicity as shown by chloroform extract.
    Matched MeSH terms: Plant Leaves/chemistry*
  12. Hew CS, Gam LH
    Appl Biochem Biotechnol, 2011 Dec;165(7-8):1577-86.
    PMID: 21938418 DOI: 10.1007/s12010-011-9377-x
    Gynura procumbens (Lour.) Merr. is a traditionally used medicinal plant to decrease cholesterol level, reduce high blood pressure, control diabetics, and for treatment of cancer. In our present study, a proteomic approach was applied to study the proteome of the plant that had never analyzed before. We have identified 92 abundantly expressed proteins from the leaves of G. procumbens (Lour.) Merr. Amongst the identified proteins was miraculin, a taste-masking agent with high commercial value. Miraculin made up ∼0.1% of the total protein extracted; the finding of miraculin gave a great commercial value to G. procumbens (Lour.) Merr. as miraculin's natural source is limited while the production of recombinant miraculin faced challenges of not being able to exhibit the taste-masking effect as in the natural miraculin. We believe the discovery of miraculin in G. procumbens (Lour.) Merr., provides commercial feasibility of miraculin in view of the availability of G. procumbens (Lour.) Merr. that grow wildly and easily in tropical climate.
    Matched MeSH terms: Plant Leaves/chemistry
  13. Kong WM, Chik Z, Ramachandra M, Subramaniam U, Aziddin RE, Mohamed Z
    Molecules, 2011 Aug 29;16(9):7344-56.
    PMID: 21876481 DOI: 10.3390/molecules16097344
    The extract from Mitragyna speciosa has been widely used as an opium substitute, mainly due to its morphine-like pharmacological effects. This study investigated the effects of M. speciosa alkaloid extract (MSE) on human recombinant cytochrome P450 (CYP) enzyme activities using a modified Crespi method. As compared with the liquid chromatography-mass spectrometry method, this method has shown to be a fast and cost-effective way to perform CYP inhibition studies. The results indicated that MSE has the most potent inhibitory effect on CYP3A4 and CYP2D6, with apparent half-maximal inhibitory concentration (IC(50)) values of 0.78 µg/mL and 0.636 µg/mL, respectively. In addition, moderate inhibition was observed for CYP1A2, with an IC(50) of 39 µg/mL, and weak inhibition was detected for CYP2C19. The IC(50) of CYP2C19 could not be determined, however, because inhibition was <50%. Competitive inhibition was found for the MSE-treated CYP2D6 inhibition assay, whereas non-competitive inhibition was shown in inhibition assays using CYP3A4, CYP1A2 and CYP2C19. Quinidine (CYP2D6), ketoconazole (CYP3A4), tranylcypromine (CYP2C19) and furafylline (CYP1A2) were ACCESSused as positive controls throughout the experiments. This study shows that MSE may contribute to an herb-drug interaction if administered concomitantly with drugs that are substrates for CYP3A4, CYP2D6 and CYP1A2.
    Matched MeSH terms: Plant Leaves/chemistry*
  14. Shaari K, Zareen S, Akhtar MN, Lajis NH
    Nat Prod Commun, 2011 Mar;6(3):343-8.
    PMID: 21485271
    Phytochemical investigations on the methanolic extract of Melicope ptelefolia Champ ex Benth. resulted in the isolation of three new compounds, identified as 3beta-stigmast-5-en-3-ol butyl tridecanedioate (melicoester) (1), (2Z, 6Z, 10Z, 14Z, 18Z, 22Z, 26E)-3', 7', 11', 15', 19', 23', 27', 31'-octamethyldotriaconta-2, 6, 10, 14, 18, 22, 26, 30-octadecanoate (melicopeprenoate) (2) and p-O-geranyl-7"-acetoxy coumaric acid (3). The compounds were isolated along with twenty-one other known compounds, lupeol (4), oleanolic acid (5), kokusaginine (6) genistein (7), p-O-geranyl coumaric acid (8), 4-stigmasten-3-one (9), 3beta-hydroxystigma-5-en-7-one (10) cis-phytyl palmitate (11), dodecane, dodecan-1-ol, ceryl alcohol, hentriacontanoic acid, eicosane, n-amyl alcohol, caprylic alcohol, octatriacontane, nonatriacontane, hexatriencontan-1-ol, methyl octacosanoate, beta-sitosterol, beta-sitosterol glucoside. Structures of all the compounds were established on the basis of MS and 1D and 2D NMR spectral data, as well as comparison with reported data.
    Matched MeSH terms: Plant Leaves/chemistry
  15. Muktar MR, Osman N, Awang K, Hazni H, Qureshi AK, Hadi AH, et al.
    Molecules, 2011 Dec 28;17(1):267-74.
    PMID: 22205092 DOI: 10.3390/molecules17010267
    A new indole alkaloid; neonaucline (1), along with six known compounds-Cadamine (2), naucledine (3), harmane, benzamide, cinnamide and blumenol A-were isolated from the leaves of Ochreinauclea maingayii (Rubiaceae). In addition to that of compound 1, (13)C-NMR data of cadamine (2) and naucledine (3) were also reported. Structural elucidations of these alkaloids were performed using spectroscopic methods especially 1D- and 2D-NMR, IR, UV and LCMS-IT-TOF. The excellent vasorelaxant activity on isolated rat aorta was observed for the alkaloids 1-3 after injection of each sample at 1 × 10(-5) M.
    Matched MeSH terms: Plant Leaves/chemistry*
  16. Saad S, Taher M, Susanti D, Qaralleh H, Rahim NA
    Asian Pac J Trop Med, 2011 Jul;4(7):523-5.
    PMID: 21803301 DOI: 10.1016/S1995-7645(11)60138-7
    OBJECTIVE: To investigate the antimicrobial activities of n-hexane, ethyl acetate and methanol extracts of the leaves of Lumnitzera littorea (L. littorea) against six human pathogenic microbes.

    METHODS: The antimicrobial activity was evaluated using disc diffusion and microdilution methods.

    RESULTS: The antimicrobial activities of the crude extracts were increased with increasing the concentration. It is clear that n-hexane extract was the most effective extract. Additionally, Gram positive Bacillus cereus (B. cereus) appear to be the most sensitive strain while Pseudomonas aeruginosa (P. aeruginosa) and the yeast strains (Candida albicans (C. albicans) and Cryptococcus neoformans (C. neoformans)) appear to be resistance to the tested concentrations since no inhibition zone was observed. The inhibition of microbial growth at concentration as low as 0.04 mg/mL indicated the potent antimicrobial activity of L. littorea extracts.

    CONCLUSIONS: The obtained results are considered sufficient for further study to isolate the compounds responsible for the activity and suggesting the possibility of finding potent antibacterial agents from L. littorea extracts.

    Matched MeSH terms: Plant Leaves/chemistry
  17. Beh HK, Seow LJ, Asmawi MZ, Abdul Majid AM, Murugaiyah V, Ismail N, et al.
    Nat Prod Res, 2012;26(16):1492-7.
    PMID: 22292423 DOI: 10.1080/14786419.2011.562208
    Morinda citrifolia L. has been used for the treatment of a wide variety of diseases, including cancer. This study was undertaken to evaluate the anti-angiogenic effect of M. citrifolia fruits and leaves. Anti-angiogenic activity was evaluated in vivo using the chick chorioallantoic membrane assay. Bioactivity-guided fractionation and isolation were performed to identify the active constituent, and high-performance liquid chromatography analysis was then used to quantify the amount of this active constituent in the active extracts and fraction. The methanol extracts of fruits and leaves of M. citrifolia and the subsequent chloroform fraction of the fruit methanolic extract were found to have potential anti-angiogenic activity and were more potent compared to suramin. Scopoletin was identified as one of the chemical constituents that may be partly responsible for the anti-angiogenic activity of M. citrifolia fruits. The present findings further support the use of M. citrifolia in cancer or other pathological conditions related to angiogenesis.
    Matched MeSH terms: Plant Leaves/chemistry
  18. Ebrahimi M, Rajion MA, Goh YM, Sazili AQ
    J Anim Physiol Anim Nutr (Berl), 2012 Dec;96(6):962-9.
    PMID: 21848848 DOI: 10.1111/j.1439-0396.2011.01206.x
    The effects of different inclusion levels of oil palm fronds (OPF) on the fatty acid profile of the longissimus dorsi (LD), biceps femoris (BF) and infraspinatus (IS) muscle of goats fed for 100 days are described. Twenty-four individually housed Kacang crossbred male goats (averaged 21.7 ± 0.97 kg BW) were allocated to three groups receiving either a 100% concentrate control diet (CON), diet with 25% inclusion level of OPF (HAF) or a diet with 50% inclusion of OPF. The diets were adjusted to be isocaloric and isonitrogenous and fed at 3.0% of BW daily. Samples of LD, BF and IS muscles were taken at slaughter for the determination of fatty acid profiles. The total saturated fatty acids (SFA) in the LD and BF muscles of the OPF group were significantly (p 
    Matched MeSH terms: Plant Leaves/chemistry*
  19. Mohamed EA, Mohamed AJ, Asmawi MZ, Sadikun A, Ebrika OS, Yam MF
    Molecules, 2011 May 04;16(5):3787-801.
    PMID: 21544041 DOI: 10.3390/molecules16053787
    Preliminary investigations were carried out to evaluate the antidiabetic effects of the leaves of O. stamineus extracted serially with solvents of increasing polarity (petroleum ether, chloroform, methanol and water); bioassay-guided purification of plant extracts using the subcutaneous glucose tolerance test (SbGTT) was also carried out. Only the chloroform extract, given at 1 g/kg body weight (b.w.), significantly reduced (P < 0.05) the blood glucose level of rats loaded subcutaneously with 150 mg/kg (b.w.) glucose. The active chloroform extract of O. stamineus was separated into five fractions using a dry flash column chromatography method. Out of the five fractions tested, only chloroform fraction 2 (Cƒ2), at the dose of 1 g/kg (b.w.) significantly inhibited (P < 0.05) blood glucose levels in SbGTT. Active Cƒ2 was split into two sub-fractions Cƒ2-A and Cƒ2-B, using a dry flash column chromatography method. The activities Cƒ2-A and Cƒ2-B were investigated using SbGTT, and the active sub-fraction was then further studied for anti-diabetic effects in a streptozotocin-induced diabetic rat model. The results clearly indicate that Cƒ2-B fraction exhibited a blood glucose lowering effect in fasted treated normal rats after glucose-loading of 150 mg/kg (b.w.). In the acute streptozotocin-induced diabetic rat model, Cƒ2-B did not exhibit a hypoglycemic effect on blood glucose levels up to 7 hours after treatment. Thus, it appears that Cƒ2-B functions similarly to metformin, which has no hypoglycemic effect but demonstrates an antihyperglycemic effect only in normogycemic models. The effect of Cƒ2-B may have no direct stimulatory effects on insulin secretion or on blood glucose levels in diabetic animal models. Verification of the active compound(s) within the active fraction (Cƒ2-B) indicated the presence of terpenoids and, flavonoids, including sinensitin.
    Matched MeSH terms: Plant Leaves/chemistry*
  20. Mustaffa F, Indurkar J, Ismail S, Shah M, Mansor SM
    Molecules, 2011 Apr 08;16(4):3037-47.
    PMID: 21478819 DOI: 10.3390/molecules16043037
    This study was designed to investigate the antimicrobial activity of Cinnamomum iners standardized leave methanolic extract (CSLE), its fractions and isolated compounds. CSLE and fractions were subjected to disc diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests using different Gram positive and Gram negative bacteria and yeast. Within the series of fractions tested, the ethyl acetate fraction was the most active, particularly against methicillin resistant Staphylococcus aureus (MRSA) and Escherichia coli, with MIC values of 100 and 200 µg/mL, respectively. The active compound in this fraction was isolated and identified as xanthorrhizol [5-(1, 5-dimethyl-4-hexenyl)-2-methylphenol] by various spectroscopic techniques. The overall results of this study provide evidence that Cinnamomum iners leaves extract as well as the isolated compound xanthorrhizol exhibit antimicrobial activity for both Gram negative and Gram positive pathogens, especially against MRSA strains.
    Matched MeSH terms: Plant Leaves/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links