Displaying publications 61 - 80 of 145 in total

Abstract:
Sort:
  1. Abu-Alnaeem MF, Yusoff I, Ng TF, Alias Y, Raksmey M
    Sci Total Environ, 2018 Feb 15;615:972-989.
    PMID: 29751448 DOI: 10.1016/j.scitotenv.2017.09.320
    A comprehensive study was conducted to identify the salinization origins and the major hydrogeochemical processes controlling the salinization and deterioration of the Gaza coastal aquifer system through a combination approaches of statistical and geostatistical techniques, and detailed hydrogeochemical assessments. These analyses were applied on ten physicochemical variables for 219 wells using STATA/SE12 and Surfer softwares. Geostatistical analysis of the groundwater salinity showed that seawater intrusion along the coastline, and saltwater up-coning inland highly influenced the groundwater salinity of the study area. The hierarchical cluster analysis (HCA) technique yielded seven distinct hydrogeochemical signature clusters; (C1&C2: Eocene brackish water invasion, C3 saltwater up-coning, C4 human inputs, C5 seawater intrusion, C6 & C7 rainfall and mixing inputs). Box plot shows a wide variation of most of the ions while Chadha's plot elucidates the predominance of Na-Cl (71.6%) and Ca/Mg-Cl (25%) water types. It is found that, the highest and the lowest levels of salinization and the highest level of nitrate pollution were recorded in the northern area. This result reflects the sensitivity of this area to the human activities and/or natural actions. Around 90.4% of the wells are nitrate polluted. The main source of nitrate pollution is the sewage inputs while the farming inputs are very limited and restricted mostly in the sensitive northern area. Among the hydrogeochemical processes, ion exchange process was the most effective process all over the study area. Carbonate dissolution was common in the study area with the highest level in clusters 6, 7, 4 and 2 in the north while Gypsum dissolution was significant only in cluster 1 in the south and limited in the other clusters. This integrated multi-techniques research should be of benefit for effective utilization and management of the Gaza coastal aquifer system as well as for future work in other similar aquifers systems.
    Matched MeSH terms: Salinity*
  2. Amin-Safwan A, Muhd-Farouk H, Nadirah M, Ikhwanuddin M
    Pak J Biol Sci, 2016;19(5):219-226.
    PMID: 29023026 DOI: 10.3923/pjbs.2016.219.226
    BACKGROUND AND OBJECTIVE: Mud crab from the genus Scylla are considered as one of the most demanded seafood items nowadays as their flesh has high quality, tasty and higher growth rate thus support and boosted expansion in aquaculture sector especially in Malaysia. Present study was designed to focus on the effect of water salinity on the ovarian maturation of orange mud crab, Scylla olivacea based on morphological characteristics.

    METHODOLOGY: Samples were collected from Setiu wetlands, Terengganu, Malaysia from July-September, 2015. Ovarian maturation of S. olivacea was classified into four stages based on previous study which were: Immature (Stage 1), early mature (Stage 2), late mature (Stage 3) and fully mature (Stage 4).

    RESULTS: Morphologically as the ovary develop the colouration start to change from translucent or whitish in colour and sometimes creamy to pale yellow, follow by light orange and lastly reddish orange. Stage 1 ovary was translucent and whitish in colour, stage 2 ovary was pale yellow in colour, stage 3 was light orange and stage 4 ovary was reddish orange in colour. Gonad Somatic Index (GSI) of S. olivacea remained low at stage 1 and 2 and began to increase started at stage 3. This present study involved three different salinities treatments, which treatment 1 (10 ppt), treatment 2 (20 ppt) and treatment 3 (30 ppt). Treatment 2 produce the highest number of stage 4 ovarian maturation based on colouration and the highest GSI recorded, follow by treatment 1 and lastly treatment 3.

    CONCLUSION: This present study proved that salinity does affected the ovarian maturation of S. olivacea in captivity and provides important information regarding the effect of water salinity on ovarian maturation for further studies on reproductive biology of this species.
    Matched MeSH terms: Salinity*
  3. Amirul Alam M, Juraimi AS, Rafii MY, Hamid AA, Aslani F, Alam MZ
    Food Chem, 2015 Feb 15;169:439-47.
    PMID: 25236249 DOI: 10.1016/j.foodchem.2014.08.019
    Dry matter (DM), total phenolics, flavonoids, carotenoid contents, and antioxidant activity of 12 purslane accessions were investigated against five levels of salinity (0, 8, 16, 24 and 32dSm(-1)). In untreated plants, the DM contents ranged between 8.0-23.4g/pot; total phenolics contents (TPC) between 0.96-9.12mgGAEg(-1)DW; total flavonoid contents (TFC) between 0.15-1.44mgREg(-1)DW; and total carotenoid contents (TCC) between 0.52BCEg(-1)DW. While FRAP activity ranged from 8.64-104.21mgTEg(-1)DW (about 12-fold) and DPPH activity between 2.50-3.30mgmL(-1) IC50 value. Different levels of salinity treatment resulted in 8-35% increases in TPC; about 35% increase in TFC; and 18-35% increases in FRAP activity. Purslane accessions Ac4, Ac5, Ac6 and Ac8 possessed potentials for salinity-induced augmented production of bioactive compounds which in turn can be harnessed for possible human health benefits.
    Matched MeSH terms: Salinity
  4. Sheikhy Narany T, Ramli MF, Aris AZ, Sulaiman WN, Fakharian K
    Environ Monit Assess, 2014 Sep;186(9):5797-815.
    PMID: 24891071 DOI: 10.1007/s10661-014-3820-8
    In recent years, groundwater quality has become a global concern due to its effect on human life and natural ecosystems. To assess the groundwater quality in the Amol-Babol Plain, a total of 308 water samples were collected during wet and dry seasons in 2009. The samples were analysed for their physico-chemical and biological constituents. Multivariate statistical analysis and geostatistical techniques were applied to assess the spatial and temporal variabilities of groundwater quality and to identify the main factors and sources of contamination. Principal component analysis (PCA) revealed that seven factors explained around 75% of the total variance, which highlighted salinity, hardness and biological pollution as the dominant factors affecting the groundwater quality in the Plain. Two-way analysis of variance (ANOVA) was conducted on the dataset to evaluate the spatio-temporal variation. The results showed that there were no significant temporal variations between the two seasons, which explained the similarity between six component factors in dry and wet seasons based on the PCA results. There are also significant spatial differences (p > 0.05) of the parameters under study, including salinity, potassium, sulphate and dissolved oxygen in the plain. The least significant difference (LSD) test revealed that groundwater salinity in the eastern region is significantly different to the central and western side of the study area. Finally, multivariate analysis and geostatistical techniques were combined as an effective method for demonstrating the spatial structure of multivariate spatial data. It was concluded that multiple natural processes and anthropogenic activities were the main sources of groundwater salinization, hardness and microbiological contamination of the study area.
    Matched MeSH terms: Salinity
  5. Lee CW, Lim JH, Heng PL
    Environ Monit Assess, 2013 Dec;185(12):9697-704.
    PMID: 23748919 DOI: 10.1007/s10661-013-3283-3
    We sampled extensively (29 stations) at the Klang estuarine system over a 3-day scientific expedition. We measured physical and chemical variables (temperature, salinity, dissolved oxygen, total suspended solids, dissolved inorganic nutrients) and related them to the spatial distribution of phototrophic picoplankton (Ppico). Multivariate analysis of variance of the physicochemical variables showed the heterogeneity of the Klang estuarine system where the stations at each transect were significantly different (Rao's F₁₈, ₃₆ = 8.401, p < 0.001). Correlation analyses also showed that variables related to Ppico abundance and growth were mutually exclusive. Distribution of Ppico was best explained by the physical mixing between freshwater and seawater whereas Ppico growth was correlated with temperature.
    Matched MeSH terms: Salinity
  6. Koh MK, Sathiamurthy E, Suratman S, Tahir NM
    Environ Monit Assess, 2012 Dec;184(12):7653-64.
    PMID: 22302401
    Influences of river hydrodynamic behaviours on hydrochemistry (salinity, pH, dissolved oxygen saturations and dissolved phosphorus) were evaluated through high spatial and temporal resolution study of a sandbar-regulated coastal river. River hydrodynamic during sandbar-closed event was characterized by minor dependency on tidal fluctuations, very gradual increase of water level and continual low flow velocity. These hydrodynamic behaviours established a hydrochemistry equilibrium, in which water properties generally were characterized by virtual absence of horizontal gradients while vertical stratifications were significant. In addition, the river was in high trophic status as algae blooms were visible. Conversely, river hydrodynamic in sandbar-opened event was tidal-controlled and showed higher flow velocity. Horizontal gradients of water properties became significant while vertically more homogenised and with lower trophic status. In essence, this study reveals that estuarine sandbar directly regulates river hydrodynamic behaviours which in turn influences river hydrochemistry.
    Matched MeSH terms: Salinity
  7. Polgar G, Sacchetti A, Galli P
    J Fish Biol, 2010 Nov;77(7):1645-64.
    PMID: 21078024 DOI: 10.1111/j.1095-8649.2010.02807.x
    During several surveys made in the region of the lower Fly River and delta, Papua New Guinea, nine species of oxudercine gobies (Gobiidae: Oxudercinae) were recorded: Boleophthalmus caeruleomaculatus, Oxuderces wirzi, Periophthalmodon freycineti, Periophthalmus darwini, Periophthalmus novaeguineaensis, Periophthalmus takita, Periophthalmus weberi, Scartelaos histophorus and Zappa confluentus. An exploratory multivariate analysis of their habitat conditions discriminated five guilds, differentially distributed in habitats with different quantities of environmental water and three guilds corresponding to different levels of salinity. A partial correspondence between phylogenetic and ecological categories suggested the presence of parallel adaptive radiations within different genera. In particular, the species found in the most terrestrial habitats (P. weberi) was also found in the widest range of conditions, suggesting that colonization of extreme semi-terrestrial and freshwater habitats by this species was facilitated by eurytypy. It is proposed that these findings provide insight into convergent adaptations for the vertebrate eco-evolutionary transition from sea to land.
    Matched MeSH terms: Salinity
  8. Alam MA, Juraimi AS, Rafii MY, Abdul Hamid A
    Biomed Res Int, 2015;2015:105695.
    PMID: 25802833 DOI: 10.1155/2015/105695
    13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m(-1). Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P < 0.05) reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m(-1) salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m(-1) salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession.
    Matched MeSH terms: Salinity
  9. Al Harthy, K. M., Siti Aishah, H., Yahya, A., Roslan, I., Al Yahyai, R.
    MyJurnal
    Banana is one of the most important food crops after rice, wheat and corn around the world. It is susceptible to a wide spectrum of non-infectious problems such as abiotic stresses resulting in restricting growth and production. Studies were conducted to determine the effects of four salinity levels (0.17 (control), 3.0, 6.0, and 9.0 dS m-1) on morphological characteristics of four banana cultivars at vegetative growth stage. Banana cultivars from the Cavendish group (Williams, Malindi) and plantains group (FHIA18 and Diwan) were grown in 61 x 76 cm polyethylene bags filled with soil mixture comprising of top soil, sand and peat moss (3:1:2 v/v), with pH ranging from 6 - 6.5 and EC 0.02 mScm-1. The experiment was carried out under a rain-shelter in split-plot design with three replicates. Plants were irrigated manually. Data were collected at 3, 6 and 9 months after transplanting. The results revealed that, the number of leaves, stem height, stem girth and total leaf area were significantly affected by salinity, variety and plant age. Significant interaction was also found between salinity and variety, salinity and plant age, as well as variety and plant age. The morphological characteristics of banana were negatively affected by higher salinity levels (6.0 and 9.0 dS m-1). Under similar salinity level, cultivar Malindi had higher number of leaves, stem height, stem girth and total leaf area as compared to cultivar Williams. Among plantains banana, cultivar FHIA18 was more tolerance to high salinity levels than Diwan cultivar, while Malindi from Cavendish group shows high salt tolerant than Williams. Therefore cultivars Malindi and FHIA18 could be grown in arid and semiarid environment depend on their tolerance to high salinity level above 1.0 dS m-1.
    Matched MeSH terms: Salinity
  10. Alkhayat FA, Ahmad AH, Rahim J, Dieng H, Ismail BA, Imran M, et al.
    Saudi J Biol Sci, 2020 Sep;27(9):2358-2365.
    PMID: 32884417 DOI: 10.1016/j.sjbs.2020.07.006
    Mosquito borne diseases have remained a grave threat to human health and are posing a significant burden on health authorities around the globe. The understanding and insight of mosquito breeding habitats features is crucial for their effective management. Comprehensive larval surveys were carried out at 14 sites in Qatar. A total of 443 aquatic habitats were examined, among these 130 were found positive with Culex pipiens, Cx. quinquefasciatus, Cx. mattinglyi, Ochlerotatus dorsalis, Oc. caspius and Anopheles stephensi. The majority of positive breeding habitats were recorded in urban areas (67.6%), followed by livestock (13.8%), and least were in agriculture (10.7%). An. stephensi larvae were positively correlated with Cx. pipien, Cx. quinquefasciatus, and negatively with water salinity. Large and shaded habitats were the most preferred by An. stephensi. In addition, Cx. pipiens was positively associated with the turbidity and pH, and was negatively associated with vegetation and habitat size. A negative association of Cx. quinquefasciatus with dissolved oxygen, water temperature, and salinity, while positive with habitat surface area was observed. Oc. dorsalis was negatively correlated with pH, water temperature, depth, and habitat surface area, whereas salinity water was more preferable site for females to lay their eggs. These results demonstrate that environmental factors play a significant role in preference of both anopheline and culicine for oviposition, while their effective management must be developed as the most viable tool to minimize mosquito borne diseases.
    Matched MeSH terms: Salinity
  11. Zauki NAM, Satyanarayana B, Fairuz-Fozi N, Nelson BR, Martin MB, Akbar-John B, et al.
    Data Brief, 2019 Feb;22:458-463.
    PMID: 30619923 DOI: 10.1016/j.dib.2018.12.027
    The data available in this repository were gathered from Balok, the only most productive spawning site for horseshoe crabs Tachypleus gigas and Carcinoscorpius rotundicauda in East Coast of Peninsular Malaysia. The mangrove horseshoe crab, C. rotundicauda population and spawning data are available in the first table. The horseshoe crabs were retrieved from Balok River using 11.43 cm mesh size gill nets installed at the river mouth, the confluence and last meander. The arthropods were inspected for damage, abnormality and growth before their release into Balok River, particularly at the site of capture. Sediment samples were retrieved at their spawning grounds to ascertain sediment composition and size classifications which were also processed using Logarithmic Method of Moments. Water parameters like temperature, pH and salinity were also investigated during year 2016. All these information are compiled into the second table and arranged according to the period of data availability. The horseshoe crab catch data of years 2012, 2013, 2014, 2015 and 2016 were made available by artisanal fisher and compiled in the third and fourth table for inter-species comparison.
    Matched MeSH terms: Salinity
  12. Soon TK, Julian Ransangan
    Sains Malaysiana, 2016;45:865-877.
    Marudu Bay, north coast of Sabah is characterized with mesotrophic water body and typical environmental parameters
    throughout the year. The current study was undertaken to evaluate the effect of environmental parameters and nutrients
    in mesotrophic water on the occurrence and distribution of potentially harmful phytoplankton species. The samplings
    were conducted over a period of thirteen months, covering southwest monsoon (SWM), inter-monsoon (IM), and northeast
    monsoon (NEM), at ten stations throughout the bay. Physical parameters (temperature, salinity, pH, dissolved oxygen,
    current speed and secchi depth), biological parameters (cell densities of phytoplankton) and chemical parameters
    (phosphate, nitrate, silicate and ammonia) were examined. The results indicated at least eight potentially harmful
    phytoplankton species (Dinophysis caudata, D. miles, Ceratium furca, C. fursus, Prorocentrum micans, P. sigmoides, P.
    triestinum and Pseudo-nitzschia sp.) were detected in north coast of Sabah. However, the potentially harmful phytoplankton
    species contributed only about 1.3% of the total phytoplankton community. Under nutrient deprivation conditions, the
    potentially harmful phytoplankton species distribution was mainly influenced by the ability to utilize other nitrogen
    sources, cell mobility and toleration to low nutrients environments.
    Matched MeSH terms: Salinity
  13. Akbari S, Mahmood SM, Ghaedi H, Al-Hajri S
    Polymers (Basel), 2019 Jun 14;11(6).
    PMID: 31207965 DOI: 10.3390/polym11061046
    Copolymers of acrylamide with the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid-known as sulfonated polyacrylamide polymers-had been shown to produce very promising results in the enhancement of oil recovery, particularly in polymer flooding. The aim of this work is to develop an empirical model through the use of a design of experiments (DOE) approach for bulk viscosity of these copolymers as a function of polymer characteristics (i.e., sulfonation degree and molecular weight), oil reservoir conditions (i.e., temperature, formation brine salinity and hardness) and field operational variables (i.e., polymer concentration, shear rate and aging time). The data required for the non-linear regression analysis were generated from 120 planned experimental runs, which had used the Box-Behnken construct from the typical Response Surface Methodology (RSM) design. The data were collected during rheological experiments and the model that was constructed had been proven to be acceptable with the Adjusted R-Squared value of 0.9624. Apart from showing the polymer concentration as being the most important factor in the determination of polymer solution viscosity, the evaluation of the model terms as well as the Sobol sensitivity analysis had also shown a considerable interaction between the process parameters. As such, the proposed viscosity model can be suitably applied to the optimization of the polymer solution properties for the polymer flooding process and the prediction of the rheological data required for polymer flood simulators.
    Matched MeSH terms: Salinity
  14. Abdullah NA, Radzi SNF, Asri LN, Idris NS, Husin S, Sulaiman A, et al.
    Biodivers Data J, 2019;7:e35679.
    PMID: 31582889 DOI: 10.3897/BDJ.7.e35679
    Riparian areas hold vast number of flora and fauna with exceptional contributions to the ecosystem. A study was conducted in Sungai Sepetang, Sungai Rembau and Sungai Chukai to identify the insect community in a riparian zone of Peninsular Malaysia. Sampling was conducted in six consecutive months from December 2017 to May 2018 during both day and night using sweep nets. Twenty sampling stations (S1-S20) had been assembled along the riverbanks with an average distance of 200 m between each station. The 17,530 collected insects were from 11 orders and consisted of Diptera, Coleoptera, Hemiptera, Hymenoptera, Lepidoptera, Neuroptera, Orthoptera, Blattodea, Thysanoptera, Mantodea and Odonata. The three most abundant orders were Diptera (33.84%; 5933 individuals), Coleoptera (28.82%; 5053 individuals) and Hemiptera (25.62%: 4491 individuals). The collected insect community consisted of different guilds such as the scavenger, predator, herbivore, pollinator and parasitoid. Sungai Sepetang and Sungai Rembau were dominated by mangrove flora, Sonneratia caseolaris (Myrtales: Lythraceae), while Sungai Chukai was dominated by Barringtonia racemosa. There was a significant difference (p < 0.05) in the composition of insects between the three rivers though clustering analysis showed that the insect communities in Sungai Sepetang and Sungai Rembau were 100% similar compared to Sungai Chukai which consisted of a totally different community. There is a significant negative correlation between abundance of insects with salinity and wind speed at Sungai Chukai and Sungai Sepetang.
    Matched MeSH terms: Salinity
  15. Mat Zauki NA, Satyanarayana B, Fairuz-Fozi N, Nelson BR, Martin MB, Akbar-John B, et al.
    J Environ Manage, 2019 Feb 15;232:1012-1020.
    PMID: 33395753 DOI: 10.1016/j.jenvman.2018.12.002
    Carcinoscorpius rotundicauda and Tachypleus gigas may co-exist and share common spawning grounds elsewhere but at Balok (East Coast of Peninsular Malaysia), C. rotundicauda is an understudied species. Neglected as research candidate because of inaccessible spawning grounds, smaller size and less commercial value than T. gigas and also, difficulty to attain from the wild has made C. rotundicauda population status remaining unidentified at Balok. This standpoint drove the present attempt because anthropic activities like structure placement and mining are point-source for runoffs that load sediments into Balok River. While erosion-accretion events have altered Balok River width, the shore sediments in Balok Beach were transitioned between medium-fine and fine sand between years 2012 and 2016. Eventually by year 2016, the C. rotundicauda were depositing 5117 eggs in 91 nests from 200 to 1000 m range along this corridor facing South China Sea. From this yield, C. rotundicauda released 2880 eggs in 56 nests during the Southwest monsoon, 1254 eggs in 19 nests during the Northeast monsoon and 983 eggs in 16 nests during the Inter-monsoon seasons. Though female C. rotundicauda opted to lay their eggs in shallow burrows at lower shorelines, the absence of erosion and substantial silt and clay (>20%) deposition facilitates C. rotundicauda embryogenesis with brief periods of temperature and salinity shocks during day-time falling tides. This encourages C. rotundicauda to emerge with increasing abundance and carry out bi-monthly spawning at Balok Beach. In short, shore restoration initiatives like systematic boat docking, proper disposal of nets and waste and, periodic fish-catching operations were effectively led by the Balok fisher citizen scientist. This successful community joint-cooperation proves that citizen-led caretaking of degraded beaches offers marine life protection and are practical for coastal area management especially at areas where other oviparous animals such as turtles and crocodiles are harboured.
    Matched MeSH terms: Salinity
  16. Hossain MB, Habib SB, Hossain MS, Jolly YN, Kamal AHM, Idris MH, et al.
    Data Brief, 2020 Aug;31:105911.
    PMID: 32637507 DOI: 10.1016/j.dib.2020.105911
    Meghna River Estuary, the largest estuarine system (GBM, Ganges-Brahmaputra-Meghna) in Bangladesh, is a major spawning ground of national fish, Hilsha shad. In this study, we collected 24 surface sediment and 24 water samples from the entire lower estuary (4 sites, 3 sampling points from each site, 2 replicas from each sampling point) to detect trace/heavy metals. Sediment samples were collected from the top surface soil (0-5 cm) using Ekman grab sampler and water samples from 5 cm below the surface layer using plastic water bottles. After collection, sediment and water samples were preserved as necessary using HNO3 (for water). Immediately after reaching the laboratory, sediment samples were dried in an oven at 70°C until the constant weight gained. The metals were then analyzed using energy-dispersive X-ray fluorescence method (EDXRF) and calculated the metal concentrations. In total, 12 metals were detected and the average value (mg/Kg) of all metals for sediment samples followed the descending order of Fe > Ca > K >Ti >Sr >Zr >Rb> Cu > Zn >Pb >As > Ni, and for water the order (µg/mL) of Fe >Ti > Ca > Co >Mn > Ni > Zn >Sr > Cu > As > Se . Besides, several physicochemical parameters i.e. water pH, soil pH, temperature, salinity, dissolved oxygen, hardness, and alkalinity of the 12 sampling points were also measured in-situ using handheld instruments.
    Matched MeSH terms: Salinity
  17. Akbari S, Mahmood SM, Tan IM, Ling OL, Ghaedi H
    Polymers (Basel), 2017 Oct 04;9(10).
    PMID: 30965788 DOI: 10.3390/polym9100480
    The viscosity of four new polymers was investigated for the effect of aging at high temperature, with varying degrees of salinity and hardness. The four sulfonated based polyacrylamide co-polymers were FLOCOMB C7035; AN132 VHM; SUPERPUSHER SAV55; and THERMOASSOCIATIF copolymers. All polymer samples were aged at 80 °C for varying times (from zero to at least 90 days) with and without isobutyl alcohol (IBA) as an antioxidant. To see the effect of divalent ions on the polymer solution viscosity, parallel experiments were performed in a mixture of CaCl₂-NaCl of the same ionic strength as 5 wt % NaCl. The polymers without IBA showed severe viscosity reduction after aging for 90 days in both types of preparation (5 wt % NaCl or CaCl₂-NaCl). In the presence of IBA, viscosity was increased when aging time was increased for 5 wt % NaCl. In CaCl₂-NaCl, on the other hand, a viscosity reduction was observed as aging time was increased. This behavior was observed for all polymers except AN132 VHM.
    Matched MeSH terms: Salinity
  18. Akbari S, Mahmood SM, Tan IM, Ghaedi H, Ling OL
    Polymers (Basel), 2017 Nov 27;9(12).
    PMID: 30965947 DOI: 10.3390/polym9120647
    This research aims to test four new polymers for their stability under high salinity/high hardness conditions for their possible use in polymer flooding to improve oil recovery from hydrocarbon reservoirs. The four sulfonated based polyacrylamide co-polymers were FLOCOMB C7035; SUPERPUSHER SAV55; THERMOASSOCIATIF; and AN132 VHM which are basically sulfonated polyacrylamide copolymers of AM (acrylamide) with AMPS (2-Acrylamido-2-Methylpropane Sulfonate). AN132 VHM has a molecular weight of 9⁻11 million Daltons with 32 mol % degree of sulfonation. SUPERPUSHER SAV55 mainly has about 35 mol % sulfonation degree and a molecular weight of 9⁻11 million Daltons. FLOCOMB C7035, in addition, has undergone post-hydrolysis step to increase polydispersity and molecular weight above 18 million Daltons but it has a sulfonation degree much lower than 32 mol %. THERMOASSOCIATIF has a molecular weight lower than 12 million Daltons and a medium sulfonation degree of around 32 mol %, and also contains LCST (lower critical solution temperature) type block, which is responsible for its thermoassociative characteristics. This paper discusses the rheological behavior of these polymers in aqueous solutions (100⁻4500 ppm) with NaCl (0.1⁻10 wt %) measured at 25 °C. The effect of hardness was investigated by preparing a CaCl₂-NaCl solution of same ionic strength as the 5 wt % of NaCl. In summary, it can be concluded that the rheological behavior of the newly modified co-polymers was in general agreement to the existing polymers, except that THERMOASSOCIATIF polymers showed unique behavior, which could possibly make them a better candidate for enhanced oil recovery (EOR) application in high salinity conditions. The other three polymers, on the other hand, are better candidates for EOR applications in reservoirs containing high divalent ions. These results are expected to be helpful in selecting and screening the polymers for an EOR application.
    Matched MeSH terms: Salinity
  19. Abdulelah H, Negash BM, Yekeen N, Al-Hajri S, Padmanabhan E, Al-Yaseri A
    ACS Omega, 2020 Aug 18;5(32):20107-20121.
    PMID: 32832765 DOI: 10.1021/acsomega.0c01738
    The influence of an anionic surfactant, a cationic surfactant, and salinity on adsorbed methane (CH4) in shale was assessed and modeled in a series of systematically designed experiments. Two cases were investigated. In case 1, the crushed Marcellus shale samples were allowed to react with anionic sodium dodecyl sulfate (SDS) and brine. In case 2, another set of crushed Marcellus shale samples were treated with cetyltrimethylammonium bromide (CTAB) and brine. The surfactant concentration and salinity of brine were varied following the Box-Behnken experimental design. CH4 adsorption was then assessed volumetrically in the treated shale at varying pressures (1-50 bar) and a constant temperature of 30 °C using a pressure equilibrium cell. Mathematical analysis of the experimental data yielded two separate models, which expressed the amount of adsorbed CH4 as a function of SDS/CTAB concentration, salinity, and pressure. In case 1, the highest amount of adsorbed CH4 was about 1 mmol/g. Such an amount was achieved at 50 bar, provided that the SDS concentration is kept close to its critical micelle concentration (CMC), which is 0.2 wt %, and salinity is in the range of 0.1-20 ppt. However, in case 2, the maximum amount of adsorbed CH4 was just 0.3 mmol/g. This value was obtained at 50 bar and high salinity (∼75 ppt) when the CTAB concentration was above the CMC (>0.029 wt %). The findings provide researchers with insights that can help in optimizing the ratio of salinity and surfactant concentration used in shale gas fracturing fluid.
    Matched MeSH terms: Salinity
  20. Moradpour N, Karimova M, Pourafshary P, Zivar D
    ACS Omega, 2020 Jul 28;5(29):18155-18167.
    PMID: 32743190 DOI: 10.1021/acsomega.0c01766
    The results of many previous studies on low salinity/controlled ions water (CIW) flooding suggest that future laboratory and modeling investigations are required to comprehensively understand and interpret the achieved observations. In this work, the aim is co-optimization of the length of the injected slug and soaking time in the CIW flooding process. Furthermore, the possibility of the occurrence of several governing mechanisms is studied. Therefore, the experimental results were utilized to develop a compositional model, using CMG GEM software, in order to obtain the relative permeability curves by history matching. It was concluded that CIW slug injection, concentrated in the potential-determining ion, can increase oil recovery under a multi ion exchange (MIE) mechanism. The wettability of the carbonate rocks was changed from a mixed or oil wet state toward more water wetness. However, there is a CIW slug length, beyond which extending the length does not significantly improve the rock wettability, and consequently, the oil production, which is known as the optimum slug size. This implies that the optimization of the injection process, by minimizing the slug size, can decrease the need for the CIW supply, therefore lowering the process expenditure. Moreover, if the exposure time of the rock and CIW is increased (soaking), a higher level of ion substitution is probable, leading to more oil detachment and production. Rock dissolution/precipitation (leading to a pH change) was found to have a negligible contribution.
    Matched MeSH terms: Salinity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links