Displaying publications 61 - 80 of 85 in total

Abstract:
Sort:
  1. Hoque MM, Omar AR, Hair-Bejo M, Aini I
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):93-9.
    PMID: 12186763
    Previously we have shown that very virulent infectious bursal disease viruses (vvIBDV) that are SspI, TaqI and StyI positive (92/04, 97/61 and 94/B551) but not SspI and TaqI positive and StyI negative (94/273) cause high mortality, up to 80% in specific-pathogen-free chickens with significant damage of the bursal as well as nonbursal tissues. In this study, we sequenced the VP2 gene (1351 bp) of the 92/04, 94/273 and 94/B551 and compared them with other IBDV strains. All the isolates have the unique amino acid residues at positions 222A, 256I, 294I and 299S found in other vvIBDV strains. The deduced VP2 amino acids encoded by 92/04 is identical to the vvIBDV strains from Israel (IBDVKS), Japan (OKYM) and Europe (UK661), whereas the 94/273 and 94/B551 isolates have one to three amino acid substitutions. The 94/273 has two amino acid substitutions at positions 254 G to S and at 270 A to E that have not been reported before from vvIBDV strains. The 94/B551 also has one amino acid substitution at position 300 E to S, which is uncommon among other vvIBDV strains. However, phylogenetic analysis suggested that the isolates are very close to each other and all of them may have derived from the same origin as vvIBDV strains isolated from China, Japan and Europe. Even though antigenic index analysis of the 94/273 and 94/B551 indicated that the isolates are unique compared to other IBDV strains, their antigenic variation remain to be determined by monoclonal antibody study.
    Matched MeSH terms: Sequence Homology, Amino Acid
  2. Chong SP, Jangi MS, Wan KL
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):123-8.
    PMID: 12186768
    VCP (Valosin-Containing Protein), a member of the AAA (ATPases Associated to a variety of cellular Activities) family of proteins, possesses a duplicated highly conserved ATPase domain. An expressed sequence tag (EST), representing a clone from the Eimeria tenella merozoite cDNA library, was found to have high similarity to VCP genes from other organisms. A complete sequence derived from the corresponding clone (designated eth060) shows amino acid identity of 42-62% with other members of the VCP subfamily. Sequence analysis identified a putative ATPase domain in the eth060 sequence. This domain was PCR-amplified using gene-specific primers and cloned into a pBAD/Thio-TOPO expression vector. Expression in Escherichia coli demonstrated that the putative ATPase domain, which consists of 414 amino acid residues, produced a fusion protein of approximately 60 kDa in size.
    Matched MeSH terms: Sequence Homology, Amino Acid
  3. Barloy F, Lecadet MM, Delécluse A
    Gene, 1998 May 12;211(2):293-9.
    PMID: 9602158
    Three new open reading frames were found downstream from cbm71, a toxin gene from Clostridium bifermentans malaysia (Cbm) strain CH18. The first one (91bp downstream) called cbm72, is 1857bp long and encodes a 71727-Da protein (Cbm72) with a sequence similar to that of Bacillus thuringiensis delta-endotoxins. This protein shows no significant toxicity to mosquito larvae. The two others, cbm17.1 (462bp) and cbm17.2 (459bp), are copies of the same gene encoding Cbm P18 and P16 polypeptides and located 426bp and 1022bp downstream from cbm72, respectively. They encode 17189-Da and 17451-Da proteins with sequences 44.6% similar to that of Aspergillus fumigatus hemolysin; however, they were not hemolytic in the conditions tested.
    Matched MeSH terms: Sequence Homology, Amino Acid
  4. Jeyaseelan K, Armugam A, Lachumanan R, Tan CH, Tan NH
    Biochim. Biophys. Acta, 1998 Apr 10;1380(2):209-22.
    PMID: 9565688
    Cardiotoxins are the most abundant toxin components of cobra venom. Although many cardiotoxins have been purified and characterized by amino acid sequencing and other pharmacological and biochemical studies, to date only five cardiotoxin cDNAs from Taiwan cobra (Naja naja atra), three cDNAs from Chinese cobra (Naja atra) and two more of uncertain origin (either Chinese or Taiwan cobra) have been reported. In this paper we show the existence of four isoforms of cardiotoxin by protein analysis and nine cDNA sequences encoding six isoforms of cardiotoxins (CTX 1-3, 4a, 4b and 5) from N. n. sputatrix by cDNA cloning. This forms the first report on the cloning and characterization of several cardiotoxin genes from a single species of a spitting cobra. The cDNAs encoding these isoforms, obtained by reverse transcription-polymerase chain reaction (RT-PCR), were subsequently expressed in Escherichia coli. The native and recombinant cardiotoxins were first characterized by Western blotting and N-terminal protein sequencing. These proteins were also found to have different levels of cytolytic activity on cultured baby hamster kidney cells. Four of the isoforms (CTX 1, 2, 4 and 5) are unique to N. n. sputatrix, with CTX 2 being the most abundant species constituting about 50% of the total cardiotoxins. The isoform CTX 3 (20% constitution) is highly homologous to the cardiotoxins of N. n. atra and N. n. naja, indicating that it may be universally present in all Naja naja subspecies. Our studies suggest that the most hydrophilic isoform (CTX 5) could have evolved first followed by the hydrophobic isoforms (CTX 1, 2, 3 and 4). We also speculate that Asiatic cobras could be the modern descendants of the African and Egyptian counterparts.
    Matched MeSH terms: Sequence Homology, Amino Acid
  5. Chee HY, AbuBakar S
    Biochem Biophys Res Commun, 2004 Jul 16;320(1):11-7.
    PMID: 15207695
    Binding of dengue virus 2 (DENV-2) to C6/36 mosquito cells protein was investigated. A 48 kDa DENV-2-binding C6/36 cells protein (D2BP) was detected in a virus overlay protein-binding assay. The binding occurred only to the C6/36 cells cytosolic protein fraction and it was inhibited by free D2BP. D2BP was shown to bind to DENV-2 E in the far-Western-binding studies and using mass spectrometry (MS) and MS/MS, peptide masses of the D2BP that matched to beta-tubulin and alpha-tubulin chains were identified. These findings suggest that DENV-2 through DENV-2 E binds directly to a 48 kDa tubulin or tubulin-like protein of C6/36 mosquito cells.
    Matched MeSH terms: Sequence Homology, Amino Acid
  6. Meng SL, Yan JX, Xu GL, Nadin-Davis SA, Ming PG, Liu SY, et al.
    Virus Res, 2007 Mar;124(1-2):125-38.
    PMID: 17129631
    A group of 31 rabies viruses (RABVs), recovered primarily from dogs, one deer and one human case, were collected from various areas in China between 1989 and 2006. Complete G gene sequences determined for these isolates indicated identities of nucleotide and amino acid sequences of >or=87% and 93.8%, respectively. Phylogenetic analysis of these and some additional Chinese isolates clearly supported the placement of all Chinese viruses in Lyssavirus genotype 1 and divided all Chinese isolates between four distinct groups (I-IV). Several variants identified within the most commonly encountered group I were distributed according to their geographical origins. A comparison of representative Chinese viruses with other isolates retrieved world-wide indicated a close evolutionary relationship between China group I and II viruses and those of Indonesia while China group III viruses formed an outlying branch to variants from Malaysia and Thailand. China group IV viruses were closely related to several vaccine strains. The predicted glycoprotein sequences of these RABVs variants are presented and discussed with respect to the utility of the anti-rabies biologicals currently employed in China.
    Matched MeSH terms: Sequence Homology, Amino Acid
  7. Khong HK, Kuah MK, Jaya-Ram A, Shu-Chien AC
    PMID: 19272315 DOI: 10.1016/j.cbpb.2009.01.005
    Prolactin (PRL) has been shown to directly influence parental-care associated behavior in many vertebrate species. The discus fish (Symphysodon aequifasciata) displays extensive parental care behavior through utilization of epidermal mucosal secretion to raise free-swimming fry. Here, we cloned the full-length cDNA sequence of the S. aequifasciata prolactin receptor (dfPRLR) and investigated the mRNA expression pattern in several adult tissues. Bioinformatic analysis showed the dfPRLR shared rather high identity (79 and 67%) with the Nile tilapia PRLR 1 and black seabream PRLR 1, respectively. The presence of dfPRLR in several osmoregulatory tissues including kidney, gill and intestine is consistent with the known role of PRL in mediating hydromineral balance in teleosts. In addition, upregulated expression of PRLR mRNA was observed in skin of parental fish compared to non-parental fish, indicating possibility of a role of the PRL hormonal signaling in regulation of mucus production in relation to parental care behaviour.
    Matched MeSH terms: Sequence Homology, Amino Acid
  8. Rahman RN, Mahamad S, Salleh AB, Basri M
    J Ind Microbiol Biotechnol, 2007 Jul;34(7):509-17.
    PMID: 17492323
    Five out of the nine benzene-toulene-ethylbenzene-xylene (BTEX) tolerant bacteria that demonstrated high protease activity on skim milk agar were isolated. Among them, isolate 115b identified as Bacillus pumilus exhibited the highest protease production. The protease produced was stable in 25% (v/v) benzene and toluene and it was activated 1.7 and 2.5- fold by n-dodecane and n-tetradecane, respectively. The gene encoding the organic solvent tolerant protease was cloned and its nucleotide sequence determined. Sequence analysis revealed an open reading frame (ORF) of 1,149 bp that encoded a polypeptide of 383 amino acid residues. The polypeptide composed of 29 residues of signal peptide, a propeptide of 79 residues and a mature protein of 275 amino acids with a calculated molecular mass of 27,846 Da. This is the only report available to date on organic solvent tolerant protease from B. pumilus.
    Matched MeSH terms: Sequence Homology, Amino Acid
  9. Choong YS, Lim TS, Chew AL, Aziah I, Ismail A
    J Mol Graph Model, 2011 Apr;29(6):834-42.
    PMID: 21371926 DOI: 10.1016/j.jmgm.2011.01.008
    The high typhoid incidence rate in developing and under-developed countries emphasizes the need for a rapid, affordable and accessible diagnostic test for effective therapy and disease management. TYPHIDOT®, a rapid dot enzyme immunoassay test for typhoid, was developed from the discovery of a ∼50 kDa protein specific for Salmonella enterica serovar Typhi. However, the structure of this antigen remains unknown till today. Studies on the structure of this antigen are important to elucidate its function, which will in turn increase the efficiency of the development and improvement of the typhoid detection test. This paper described the predictive structure and function of the antigenically specific protein. The homology modeling approach was employed to construct the three-dimensional structure of the antigen. The built structure possesses the features of TolC-like outer membrane protein. Molecular docking simulation was also performed to further probe the functionality of the antigen. Docking results showed that hexamminecobalt, Co(NH(3))(6)(3+), as an inhibitor of TolC protein, formed favorable hydrogen bonds with D368 and D371 of the antigen. The single point (D368A, D371A) and double point (D368A and D371A) mutations of the antigen showed a decrease (single point mutation) and loss (double point mutations) of binding affinity towards hexamminecobalt. The architecture features of the built model and the docking simulation reinforced and supported that this antigen is indeed the variant of outer membrane protein, TolC. As channel proteins are important for the virulence and survival of bacteria, therefore this ∼50 kDa channel protein is a good specific target for typhoid detection test.
    Matched MeSH terms: Sequence Homology, Amino Acid
  10. Saiful AJ, Mastura M, Zarizal S, Mazurah MI, Shuhaimi M, Ali AM
    J Basic Microbiol, 2008 Aug;48(4):245-51.
    PMID: 18720500 DOI: 10.1002/jobm.200700387
    Efflux-mediated resistance has been recognized as an important contributor of antibiotic resistance in bacteria, especially in methicillin-resistant Staphylococcus aureus (MRSA) isolates. This study was carried out to detect and analyze efflux genes (norA and mdeA) and active efflux activity in a collection of Malaysian MRSA and methicillin-sensitive S. aureus (MSSA) clinical isolates. Nineteen isolates including three ATCC S. aureus reference strains were subjected to PCR detection and DNA sequence analysis for norA and mdeA and active efflux detection using modified minimum inhibitory concentration (MIC) assay. From the 19 isolates, 18 isolates harboured the mdeA gene while 16 isolates contained norA gene. DNA sequence analysis reveals 98-100% correlation between the PCR product and the published DNA sequences in GenBank. In addition, 16 isolates exhibited active efflux activity using the ethidium bromide (EtBr)-reserpine combination MIC assay. To our knowledge, this is the first report on the detection of efflux genes and active efflux activity amongst Malaysian clinical isolates of MRSA/MSSA. Detection of active efflux activity may explain the previous report on efflux-mediated drug resistance profile amongst the local clinical isolates.
    Matched MeSH terms: Sequence Homology, Amino Acid
  11. Kang IN, Musa M, Harun F, Junit SM
    Biochem Genet, 2010 Feb;48(1-2):141-51.
    PMID: 20094846 DOI: 10.1007/s10528-009-9306-7
    The FOXE1 gene was screened for mutations in a cohort of 34 unrelated patients with congenital hypothyroidism, 14 of whom had thyroid dysgenesis and 18 were normal (the thyroid status for 2 patients was unknown). The entire coding region of the FOXE1 gene was PCR-amplified, then analyzed using single-stranded conformational polymorphism, followed by confirmation by direct DNA sequencing. DNA sequencing analysis revealed a heterozygous A>G transition at nucleotide position 394 in one of the patients. The nucleotide transition changed asparagine to aspartate at codon 132 in the highly conserved region of the forkhead DNA binding domain of the FOXE1 gene. This mutation was not detected in a total of 104 normal healthy individuals screened. The binding ability of the mutant FOXE1 protein to the human thyroperoxidase (TPO) promoter was slightly reduced compared with the wild-type FOXE1. The mutation also caused a 5% loss of TPO transcriptional activity.
    Matched MeSH terms: Sequence Homology, Amino Acid
  12. Islam MT, Rahman MA, Saeed M, Ul-Haq Z, Alam MJ, Mondal M, et al.
    Cell Mol Biol (Noisy-le-grand), 2020 Jun 25;66(4):243-249.
    PMID: 32583783
    Phytol (PHY), a chlorophyll-derived diterpenoid, exhibits numerous pharmacological properties, including antioxidant, antimicrobial, and anticancer activities. This study evaluates the anti-diarrheal effect of phytol (PHY) along with its possible mechanism of action through in-vivo and in-silico models. The effect of PHY was investigated on castor oil-induced diarrhea in Swiss mice by using prazosin, propranolol, loperamide, and nifedipine as standards with or without PHY. PHY at 50 mg/kg (p.o.) and all other standards exhibit significant (p < 0.05) anti-diarrheal effect in mice. The effect was prominent in the loperamide and propranolol groups. PHY co-treated with prazosin and propranolol was found to increase in latent periods along with a significant reduction in diarrheal section during the observation period than other individual or combined groups. Furthermore, molecular docking studies also suggested that PHY showed better interactions with the α- and β-adrenergic receptors, especially with α-ADR1a and β-ADR1. In the former case, PHY showed interaction with hydroxyl group of Ser192 at a distance of 2.91Å, while in the latter it showed hydrogen bond interactions with Thr170 and Lys297 with a distance of 2.65 and 2.72Å, respectively. PHY exerted significant anti-diarrheal effect in Swiss mice, possibly through blocking α- and β-adrenergic receptors.
    Matched MeSH terms: Sequence Homology, Amino Acid
  13. Dzaki N, Wahab W, Azlan A, Azzam G
    Biochem Biophys Res Commun, 2018 10 20;505(1):106-112.
    PMID: 30241946 DOI: 10.1016/j.bbrc.2018.09.074
    CTP Synthase (CTPS) is a metabolic enzyme that is recognized as a catalyst for nucleotide, phospholipid and sialoglycoprotein production. Though the structural characteristics and regulatory mechanisms of CTPS are well-understood, little is known regarding the extent of its involvement during the early developmental stages of vertebrates. Zebrafish carries two CTPS genes, annotated as ctps1a and ctps1b. Phylogenetic analyses show that both genes had diverged from homologues in the ancestral Actinopterygii, Oreochromis niloticus. Conservation of common CTPS-catalytic regions further establishes that both proteins are likely to be functionally similar to hsaCTPS. Here, we show that ctps1a is more critical throughout the initial period of embryonic development than ctps1b. The effects of concurrent partial knockdown are dependent on ctps1a vs ctps1b dosage ratios. When these are equally attenuated, abnormal phenotypes acquired prior to the pharyngula period disappear in hatchlings (48hpf); however, if either gene is more attenuated than the other, these only become more pronounced in advanced stages. Generally, disruption to normal ctps1a or ctps1b expression levels by morpholinos culminates in the distortion of the early spinal column as well as multiple-tissue oedema. Other effects include slower growth rates, increased mortality rates and impaired structural formation of the young fish's extremities. Embryos grown in DON, a glutamine-analogue drug and CTPS antagonist, also exhibit similar characteristics, thus strengthening the validity of the morpholino-induced phenotypes observed. Together, our results demonstrate the importance of CTPS for the development of zebrafish embryos, as well as a disparity in activity and overall importance amongst isozymes.
    Matched MeSH terms: Sequence Homology, Amino Acid
  14. De Bruyne L, Van Poucke C, Di Mavungu DJ, Zainudin NA, Vanhaecke L, De Vleesschauwer D, et al.
    Mol Plant Pathol, 2016 Aug;17(6):805-17.
    PMID: 26456797 DOI: 10.1111/mpp.12329
    Brown spot disease, caused by Cochliobolus miyabeanus, is currently considered to be one of the most important yield reducers of rice (Oryza sativa L.). Despite its agricultural importance, little is known about the virulence mechanisms deployed by the fungus. Therefore, we set out to identify novel virulence factors with a role in disease development. This article reports, for the first time, the production of tentoxin by C. miyabeanus as a virulence factor during brown spot disease and the identification of the non-ribosomal protein synthetase (NRPS) CmNps3, responsible for tentoxin biosynthesis. We compared the chemical compounds produced by C. miyabeanus strains differing in virulence ability using ultra-high-performance liquid chromatography (UHPLC) coupled to high-resolution Orbitrap mass spectrometry (HRMS). The production of tentoxin by a highly virulent strain was revealed by principal component analysis of the detected ions and confirmed by UHPLC coupled to tandem-quadrupole mass spectrometry (MS/MS). The corresponding NRPS was identified by in silico genome analysis and confirmed by gene deletion. Infection tests with wild-type and Cmnps3 mutants showed that tentoxin acts as a virulence factor and is correlated with chlorosis development during the second phase of infection. Although rice has previously been classified as a tentoxin-insensitive plant species, our data demonstrate that tentoxin production by C. miyabeanus affects symptom development.
    Matched MeSH terms: Sequence Homology, Amino Acid
  15. Kuah MK, Jaya-Ram A, Shu-Chien AC
    PMID: 27421235 DOI: 10.1016/j.cbpa.2016.07.007
    There is a lack of understanding on how the environment and trophic niche affect the capability of long-chain polyunsaturated fatty acids (LC-PUFA) in freshwater carnivorous teleost. In this present study, we isolated and functionally characterised a fatty acyl desaturase (Fads) from the striped snakehead Channa striata. Sequence comparison and phylogenetic analysis suggested a Fads2 protein that is closely related to previously characterised Fads2 proteins from freshwater carnivorous and marine herbivorous fish species. We further demonstrated the capacity of Δ6 and Δ5 desaturation activities for this particular desaturase, with highest activities towards the conversion of omega-3 (n-3) polyunsaturated fatty acids (PUFA). Low Δ4 desaturation activity was also detected, although the significance of this at a physiological level remains to be studied. The expression of this striped snakehead Δ6/Δ5 fads2 gene was highest in brain, followed by liver and intestine. In liver, diet fortified with high LC-PUFA concentration impeded the expression of Δ6/Δ5 fads2 gene compared to vegetable oil (VO) based diets. The discovery of Δ6/Δ5 Fads2 desaturase here complements the previous discovery of a Δ4 Fads2 desaturase and an Elovl5 elongase, lending proof to the existence of all the required enzymatic machinery to biosynthesise LC-PUFA from C18 PUFA in a freshwater carnivorous species.
    Matched MeSH terms: Sequence Homology, Amino Acid
  16. Ma TH, Benzie JA, He JG, Sun CB, Chan SF
    Dev Comp Immunol, 2014 May;44(1):163-72.
    PMID: 24345607 DOI: 10.1016/j.dci.2013.12.007
    One of the major steps in the innate immune response of shrimp includes the activation of serine proteinases of the pro-phenoloxidase pathway by the prophenoloxidase activation enzyme (PPAF). In this study, the cDNA encoding a serine proteinase homologue (SPH) with prophenoloxidase activating activity of Penaeus monodon (PmPPAF) was cloned and characterized. PmPPAF cDNA consists of 1444 nucleotides encoding a protein with 394 amino acid residues. The estimated molecular weight of PmPPAF is 43.5 kDa with an isoelectric point of 5.19. PmPPAF consists of a signal peptide, a CLIP domain and a carboxyl-terminal trypsin-like serine protease domain. It is highly similar to the masquerade-like protein 2A (61% similarity) of the crayfish Pacifastacus leniusculus, other serine proteases (42.9-67% identity) of P. monodon, and the PPAF of the crab (61% similarity). Unlike other SPH of P. monodon, which express mainly in the hemocytes, PmPPAF transcripts were detected in the hemocytes, eyestalk, hypodermis, gill, swimming leg and brain. Similar to the crab PPAF, PmPPAF transcript level is high in shrimp at the premolt stages and PmPPAF expression is up-regulated in shrimp infected with white spot syndrome virus (WSSV). Gene silencing of PmPPAF decreased expression of a prophenoloxidase-like gene and injection of Anti-PmPPAF antibody causes a decrease in PO activity. Taken together, these results provided evidence that PmPPAF is a serine proteinase homologue, and is involved in the pro-PO activation pathway of the shrimp innate immune system.
    Matched MeSH terms: Sequence Homology, Amino Acid
  17. Tan CW, Chan YF, Sim KM, Tan EL, Poh CL
    PLoS One, 2012;7(5):e34589.
    PMID: 22563456 DOI: 10.1371/journal.pone.0034589
    Enterovirus 71 (EV-71) is the main causative agent of hand, foot and mouth disease (HFMD). In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers) overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD) cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50) values ranging from 6-9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.
    Matched MeSH terms: Sequence Homology, Amino Acid
  18. Thanh T, Chi VT, Abdullah MP, Omar H, Noroozi M, Napis S
    Mol Biol Rep, 2011 Nov;38(8):5297-305.
    PMID: 21287365 DOI: 10.1007/s11033-011-0679-4
    An initial study on gene cloning and characterization of unicellular green microalga Ankistrodesmus convolutus was carried out to isolate and characterize the full-length cDNA of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) as a first step towards elucidating the structure of A. convolutus RbcS gene. The full-length of A. convolutus RbcS cDNA (AcRbcS) contained 28 bp of 5' untranslated region (UTR), 225 bp of 3' non-coding region, and an open reading frame of 165 amino acids consisting of a chloroplast transit peptide with 24 amino acids and a mature protein of 141 amino acids. The amino acid sequence has high identity to those of other green algae RbcS genes. The AcRbcS contained a few conserved domains including protein kinase C phosphorylation site, tyrosine kinase phosphorylation site and N-myristoylation sites. The AcRbcS was successfully expressed in Escherichia coli and a ~21 kDa of anticipated protein band was observed on SDS-PAGE. From the phylogenetic analysis of RbcS protein sequences, it was found that the RbcS of A. convolutus has closer genetic relationship with green microalgae species compared to those of green seaweed and green macroalgae species. Southern hybridization analysis revealed that the AcRbcS is a member of a small multigene family comprising of two to six members in A. convolutus genome. Under different illumination conditions, RT-PCR analysis showed that AcRbcS transcription was reduced in the dark, and drastically recovered in the light condition. Results presented in this paper established a good foundation for further study on the photosynthetic process of A. convolutus and other green algae species where little information is known on Rubisco small subunit.
    Matched MeSH terms: Sequence Homology, Amino Acid
  19. Liew CW, Illias RM, Mahadi NM, Najimudin N
    FEMS Microbiol Lett, 2007 Nov;276(1):114-22.
    PMID: 17937670
    A Na(+)/H(+) antiporter gene was isolated from alkaliphilic Bacillus sp. G1. The full-length sequence of the Na(+)/H(+) antiporter gene was obtained using a genome walking method, and designated as g1-nhaC. An ORF preceded by a promoter-like sequence and a Shine-Dalgarno sequence, and followed by a terminator-like sequence was identified. The deduced amino acid sequence consists of 535 amino acids, and a calculated molecular mass of 57 776 Da. g1-nhaC was subsequently cloned into pET22b(+) and expressed in Escherichia coli BL21 (DE3). Recombinant E. coli harboring the g1-nhaC gene was able to grow in modified L medium at various concentrations of NaCl (0.2-2.0 M) at different pH values. The recombinant bacteria grew well in the medium with concentrations of NaCl as high as 1.75 M at pH 8.0-9.0. Minimal growth was observed at 2.0 M NaCl, pH 8.0-9.0. At pH 10, the recombinant bacteria grew well in a medium with a low concentration of NaCl (0.2 M). These results suggested that the g1-NhaC antiporter from Bacillus sp. G1 plays a role in Na(+) extrusion at lower pH values and in pH homeostasis at pH 10 under Na(+)-limiting conditions.
    Matched MeSH terms: Sequence Homology, Amino Acid
  20. Tsai IH, Chen YH, Wang YM, Liau MY, Lu PJ
    Arch Biochem Biophys, 2001 Mar 15;387(2):257-64.
    PMID: 11370849
    To investigate the geographic variations in venoms of two medically important pitvipers, we have purified and characterized the phospholipases A2 (PLA2s) from the pooled venoms of Calloselasma rhodostoma from Malaysia, Thailand, Indonesia, and Vietnam, as well as the individual venom of Trimeresurus mucrosquamatus collected from both North and South Taiwan. Enzymatic and pharmacological activities of the purified PLA2s were also investigated. The complete amino acid sequences of the purified PLA2s were determined by sequencing the corresponding cDNAs from the venom gland and shown to be consistent with their molecular weight data and the N-terminal sequences. All the geographic venom samples of C. rhodostoma contain a major noncatalytic basic PLA2-homolog and two or three acidic PLA2s in different proportions. These acidic PLA2s contain Glu6-substitutions and show distinct inhibiting specificities toward the platelets from human and rabbit. We also found that the T. mucrosquamatus venoms from North Taiwan but not those from South Taiwan contain an Arg6-PLA2 designated as TmPL-III. Its amino acid sequence is reported for the first time. This enzyme is structurally almost identical to the low- or nonexpressed Arg6-PLA2 from C. rhodostoma venom gland, and thus appears to be a regressing venom component in both of the Asian pitvipers.
    Matched MeSH terms: Sequence Homology, Amino Acid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links