Displaying publications 61 - 80 of 170 in total

  1. Al-Makramani BM, Razak AA, Abu-Hassan MI
    J Appl Oral Sci, 2010 Dec;18(6):607-12.
    PMID: 21308292
    Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures.

    OBJECTIVES: The aim of this study was to compare the biaxial flexural strength of three core ceramic materials.

    MATERIAL AND METHODS: Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995) were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M) Sdn Bhd, Puchong, Selangor, Malaysia)], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany) and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany), which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in an universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872.

    RESULTS: The mean biaxial flexural strength values were: Turkom-Cera: 506.8 ± 87.01 MPa, In-Ceram: 347.4 ± 28.83 MPa and Vitadur-N: 128.7 ± 12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA ) at a preset significance level of 5% because of unequal group variances (P<0.001). There was statistically significant difference between the three core ceramics (P<0.05). Turkom-Cera showed the highest biaxial flexural strength, followed by In-Ceram and Vitadur-N.

    CONCLUSIONS: Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials.

    Matched MeSH terms: Stress, Mechanical
  2. Kadir MR, Syahrom A, Ochsner A
    Med Biol Eng Comput, 2010 May;48(5):497-505.
    PMID: 20224954 DOI: 10.1007/s11517-010-0593-2
    Human bones can be categorised into one of two types--the compact cortical and the porous cancellous. Whilst the cortical is a solid structure macroscopically, the structure of cancellous bone is highly complex with plate-like and strut-like structures of various sizes and shapes depending on the anatomical site. Reconstructing the actual structure of cancellous bone for defect filling is highly unfeasible. However, the complex structure can be simplified into an idealised structure with similar properties. In this study, two idealised architectures were developed based on morphological indices of cancellous bone: the tetrakaidecahedral and the prismatic. The two architectures were further subdivided into two types of microstructure, the first consists of struts only and the second consists of a combination of plates and struts. The microstructures were transformed into finite element models and displacement boundary condition was applied to all four idealised cancellous models with periodic boundary conditions. Eight unit cells extracted from the actual cancellous bone obtained from micro-computed tomography were also analysed with the same boundary conditions. Young's modulus values were calculated and comparison was made between the idealised and real cancellous structures. Results showed that all models with a combination of plates and struts have higher rigidity compared to the one with struts only. Values of Young's modulus from eight unit cells of cancellous bone varied from 42 to 479 MPa with an average of 234 MPa. The prismatic architecture with plates and rods closely resemble the average stiffness of a unit cell of cancellous bone.
    Matched MeSH terms: Stress, Mechanical
  3. Lim KS, Yang HZ, Chong WY, Cheong YK, Lim CH, Ali NM, et al.
    Opt Express, 2013 Feb 11;21(3):2551-62.
    PMID: 23481713 DOI: 10.1364/OE.21.002551
    When an optical fiber is dipped in an etching solution, the internal stress profile in the fiber varies with the fiber diameter. We observed a physical contraction as much as 0.2% in the fiber axial dimension when the fiber was reduced from its original diameter to ~6 µm through analysis using high resolution microscope images of the grating period of an etched FBG at different fiber diameters. This axial contraction is related to the varying axial stress profile in the fiber when the fiber diameter is reduced. On top of that, the refractive index of fiber core increases with reducing fiber diameter due to stress-optic effect. The calculated index increment is as much as 1.8 × 10(-3) at the center of fiber core after the diameter is reduced down to ~6 µm. In comparison with the conventional model that assumes constant grating period and neglects the variation in stress-induced index change in fiber core, our proposed model indicates a discrepancy as much as 3nm in Bragg wavelength at a fiber diameter of ~6 µm.
    Matched MeSH terms: Stress, Mechanical
  4. Wan Abas WA
    Biomed Mater Eng, 1994;4(7):473-86.
    PMID: 7881331
    The response of human skin to biaxial stretch tests in vivo was investigated and compared to the response to uniaxial tension. The results obtained illustrate the nonlinear, anisotropic, and viscoelastic (time-dependent) properties of skin under biaxial stretch. Preconditioning in the load-extension response was found not to be prominent. The results also suggest that the response of skin to a biaxial stretch in vivo is qualitatively similar to that in vitro. Values of the terminal stiffness and limit strain of skin under a biaxial stretch are found.
    Matched MeSH terms: Stress, Mechanical
  5. Wan Abas WA, Asseli MR
    Biomed Mater Eng, 1994;4(7):463-71.
    PMID: 7881330
    Local strains acting across an area of skin loaded uniaxially in vivo are converted to stresses using the standard elastic formulae. The stress values are compared to those obtained using the classical Bossinesq and Michell stress functions. The results indicate that these functions are capable of describing the response of the skin, both in the low load and the high load regions.
    Matched MeSH terms: Stress, Mechanical
  6. Jiang H, Peng H, Guo H, Zeng Y, Li L, Zhang Y, et al.
    ACS Appl Mater Interfaces, 2020 Nov 18;12(46):51344-51356.
    PMID: 33146507 DOI: 10.1021/acsami.0c13139
    Thin-film lithium-ion microbatteries with a high energy density and long lifespan are exceedingly desired for developing self-powered integrated micro-nano devices and systems. However, exploring high-performance thin-film anodes still remains a challenge. Herein, a double-layer-structure diamond-like carbon-ZnS (DLC-ZnS) thin-film anode fabricated by radio frequency magnetron sputtering exhibits high specific capacity and good cycling stability up to 1000 cycles, superior to the pure ZnS thin-film anode. To understand the mechanism, the bimodal amplitude modulated-frequency modulated atomic force microscopy was used to explore the mechanical properties of the thin films, and the DLC layer shows significantly higher Young's modulus than the ZnS thin film. The DLC interface with a high Young's modulus can effectively buffer the mechanical stress originating from the huge volume changes of the ZnS layer during lithiation/delithiation processes; therefore, the DLC interface maintains the higher mechanical integrity of the DLC-ZnS thin film and improves the utilization of ZnS. In addition, the electrochemical kinetics of the DLC-ZnS and ZnS thin films were also investigated by electrochemical methods. Electrochemical impedance spectroscopy tests indicate the obstacle of the DLC interface to Li+ ion diffusion in the initial charge/discharge processes; however, the DLC-ZnS thin film exhibits lower total resistance than the ZnS thin film afterward. In particular, galvanostatic intermittent titration technique tests were performed to find out the differences between the two thin films during the galvanostatical charge/discharge processes. The results demonstrate the obviously enhanced conversion reaction reversibility and decreased alloy reaction polarization of the DLC-ZnS thin film; therefore, it delivers higher reversible capacity.
    Matched MeSH terms: Stress, Mechanical
  7. Hashim AN, Salleh MAAM, Sandu AV, Ramli MM, Yee KC, Mohd Mokhtar NZ, et al.
    Materials (Basel), 2021 Feb 05;14(4).
    PMID: 33562471 DOI: 10.3390/ma14040738
    The evolution of internal compressive stress from the intermetallic compound (IMC) Cu6Sn5 growth is commonly acknowledged as the key inducement initiating the nucleation and growth of tin (Sn) whisker. This study investigates the effect of Sn-0.7Cu-0.05Ni on the nucleation and growth of Sn whisker under continuous mechanical stress induced. The Sn-0.7Cu-0.05Ni solder joint has a noticeable effect of suppression by diminishing the susceptibility of nucleation and growth of Sn whisker. By using a synchrotron micro X-ray fluorescence (µ-XRF) spectroscopy, it was found that a small amount of Ni alters the microstructure of Cu6Sn5 to form a (Cu,Ni)6Sn5 intermetallic layer. The morphology structure of the (Cu,Ni)6Sn5 interfacial intermetallic layer and Sn whisker growth were investigated by scanning electron microscope (SEM) in secondary and backscattered electron imaging mode, which showed that there is a strong correlation between the formation of Sn whisker and the composition of solder alloy. The thickness of the (Cu,Ni)6Sn5 IMC interfacial layer was relatively thinner and more refined, with a continuous fine scallop-shaped IMC interfacial layer, and consequently enhanced a greater incubation period for the nucleation and growth of the Sn whisker. These verification outcomes proposes a scientifically foundation to mitigate Sn whisker growth in lead-free solder joint.
    Matched MeSH terms: Stress, Mechanical
  8. Patil PG, Seow LL, Uddanwadikar R, Ukey PD
    J Prosthet Dent, 2021 Jan;125(1):138.e1-138.e8.
    PMID: 33393474 DOI: 10.1016/j.prosdent.2020.09.015
    STATEMENT OF PROBLEM: Mini implants (<3 mm in diameter) are being used as an alternative to standard implants for implant-retained mandibular overdentures; however, they may exhibit higher stresses at the crestal level.

    PURPOSE: The purpose of this finite element analysis study was to evaluate the biomechanical behavior (stress distribution pattern) in the mandibular overdenture, mucosa, bone, and implants when retained with 2 standard implants or 2 mini implants under unilateral or bilateral loading conditions.

    MATERIAL AND METHODS: A patient with edentulous mandible and his denture was scanned with cone beam computed tomography (CBCT), and a 3D mandibular model was created in the Mimics software program by using the CBCT digital imaging and communications in medicine (DICOM) images. The model was transferred to the 3Matics software program to form a 2-mm-thick mucosal layer and to assemble the denture DICOM file. A 12-mm-long standard implant (Ø3.5 mm) and a mini dental implant (Ø2.5 mm) along with the LOCATOR male attachments (height 4 mm) were designed by using the SOLIDWORKS software program. Two standard or 2 mini implants in the canine region were embedded separately in the 3D assembled model. The base of the mandible was fixed, and vertical compressive loads of 100 N were applied unilaterally and bilaterally in the first molar region. The material properties for acrylic resin (denture), titanium (implants), mucosa (tissue), and bone (mandible) were allocated. Maximum von Mises stress and strain values were obtained and analyzed.

    RESULTS: Maximum stresses of 9.78 MPa (bilaterally) and 11.98 MPa (unilaterally) were observed in 2 mini implants as compared with 3.12 MPa (bilaterally) and 3.81 MPa (unilaterally) in 2 standard implants. The stress values in the mandible were observed to be almost double the mini implants as compared with the standard implants. The stresses in the denture were in the range of 3.21 MPa and 3.83 MPa and in the mucosa of 0.68 MPa and 0.7 MPa for 2 implants under unilateral and bilateral loading conditions. The strain values shown similar trends with both implant types under bilateral and unilateral loading.

    CONCLUSIONS: Two mini implants generated an average of 68.15% more stress than standard implants. The 2 standard implant-retained overdenture showed less stress concentration in and around implants than mini implant-retained overdentures.

    Matched MeSH terms: Stress, Mechanical
  9. Alkhatib SE, Tarlochan F, Mehboob H, Singh R, Kadirgama K, Harun WSBW
    Artif Organs, 2019 Jul;43(7):E152-E164.
    PMID: 30805945 DOI: 10.1111/aor.13444
    The mismatch between stiffness of the femoral dense stem and host bone causes complications to patients, such as aseptic loosening and bone resorption. Three-dimensional finite-element models of homogeneous porous (HGP) and functionally graded porous (FGP) stems incorporating body-centered cubic (BCC) structures are proposed in this article as an alternative to the dense stems. The relationship between the porosity and strut thickness of the BCC structure was developed to construct the finite-element models. Three levels of porosities (20%, 50%, and 80%) were modeled in HGP and FGP stems. The porosity of the stems was decreased distally according to the sigmoid function (n = 0.1, n = 1 and n = 10) with 3 grading exponents. The results showed that FGP stems transferred 120%-170% higher stresses to the femur (Gruen zone 7) as compared to the solid stem. Conversely, the stresses in HGP and FGP stems were 12%-34% lower than the dense stem. The highest micromotions (105-147 µm) were observed for stems of 80% overall porosity, and the lowest (42-46 µm) was for stems of 20% overall porosity. Finally, FGP stems with a grading exponent of n = 10 resulted in an 11%-28% reduction in micromotions.
    Matched MeSH terms: Stress, Mechanical
  10. Abdulkader YC, Kamaruddin AF, Mydin RBSMN
    Saudi Dent J, 2020 Sep;32(6):306-313.
    PMID: 32874071 DOI: 10.1016/j.sdentj.2019.09.010
    Objectives: This study compared the effects of normal salivary pH, and acidic pH found in patients with poor oral hygiene, on the durability of aesthetic archwire coated with epoxy resin and polytetrafluoroethylene (PTFE).

    Methods: The posterior parts of the archwires were sectioned into 20 mm segments (N = 102) and divided among six groups. Four groups were treated with different pH levels and two served as controls. The specimens were immersed in individual test tubes containing 10 ml of artificial saliva adjusted to a pH of 6.75 or 3.5. The tubes were sealed and stored in a 37 °C water bath for 28 days. After 28 days, the specimens were ligated to brackets embedded in an acrylic block and subjected to mechanical stress using an electronic toothbrush for 210 s. The specimens were photographed, and images were measured for coating loss using AutoCAD® software. Surface morphology was observed using a scanning electron microscope (SEM).

    Results: Significant coating loss (p 

    Matched MeSH terms: Stress, Mechanical
  11. Venugopal A, Mohammad R, Koslan MFS, Sayd Bakar SR, Ali A
    Materials (Basel), 2021 May 06;14(9).
    PMID: 34066461 DOI: 10.3390/ma14092414
    The environmental condition in which the Royal Malaysian Airforce is currently operating its aircraft is prone to corrosion. This is due to the high relative humidity and temperature. With most of its aircraft being in the legacy aircraft era, the aircraft's main construction consists of the aluminium 2024 material. However, this material is prone to corrosion, thus reducing fatigue life and leading to fatigue failure. Using the concept of either Safe Life or Damage Tolerance as its fatigue design philosophy, the RMAF adopts the Aircraft Structure Integrity Program (ASIP) to monitor its structural integrity. With the current problem of not having the structural limitation on corrosion-damaged structure, the RMAF has embarked on its fatigue testing method. Finite Element (FE) studies and flight tests were conducted, and the outcome is summarized. The conclusion is that the longeron tested on the aircraft can withstand the operational load, and its yield strength is below the ultimate yield strength of the material. These research outcomes will also enhance the ASIP for other aircraft platforms in the RMAF fleet for its structure life assessment or service life extension program.
    Matched MeSH terms: Stress, Mechanical
  12. Mousa MA, Abdullah JY, Jamayet NB, Alam MK, Husein A
    Biomed Res Int, 2021;2021:6419774.
    PMID: 34447852 DOI: 10.1155/2021/6419774
    Aim: This systematic review is aimed at investigating the biomechanical stress that develops in the maxillofacial prostheses (MFP) and supporting structures and methods to optimize it. Design and Methods. A literature survey was conducted for full-text English articles which used FEA to examine the stress developed in conventional and implant-assisted MFPs from January 2010 to December 2020.

    Results: 87 articles were screened to get an update on the desired information. 74 were excluded based on a complete screening, and finally, 13 articles were recruited for complete reviewing. Discussion. The MFP is subjected to stress, which is reflected in the form of compressive and tensile strengths. The stress is mainly concentrated the resection line and around the apices of roots of teeth next to the defect. Diversity of designs and techniques were introduced to optimize the stress distribution, such as modification of the clasp design, using materials with different mechanical properties for dentures base and retainer, use of dental (DI) and/or zygomatic implants (ZI), and free flap reconstruction before prosthetic rehabilitation.

    Conclusion: Using ZI in the defective side of the dentulous maxillary defect and defective and nondefective side of the edentulous maxillary defect was found more advantageous, in terms of compression and tensile stress and retention, when compared with DI and free flap reconstruction.

    Matched MeSH terms: Stress, Mechanical
  13. Alakbari FS, Mohyaldinn ME, Ayoub MA, Muhsan AS, Hussein IA
    PLoS One, 2021;16(4):e0250466.
    PMID: 33901240 DOI: 10.1371/journal.pone.0250466
    Sand management is essential for enhancing the production in oil and gas reservoirs. The critical total drawdown (CTD) is used as a reliable indicator of the onset of sand production; hence, its accurate prediction is very important. There are many published CTD prediction correlations in literature. However, the accuracy of most of these models is questionable. Therefore, further improvement in CTD prediction is needed for more effective and successful sand control. This article presents a robust and accurate fuzzy logic (FL) model for predicting the CTD. Literature on 23 wells of the North Adriatic Sea was used to develop the model. The used data were split into 70% training sets and 30% testing sets. Trend analysis was conducted to verify that the developed model follows the correct physical behavior trends of the input parameters. Some statistical analyses were performed to check the model's reliability and accuracy as compared to the published correlations. The results demonstrated that the proposed FL model substantially outperforms the current published correlations and shows higher prediction accuracy. These results were verified using the highest correlation coefficient, the lowest average absolute percent relative error (AAPRE), the lowest maximum error (max. AAPRE), the lowest standard deviation (SD), and the lowest root mean square error (RMSE). Results showed that the lowest AAPRE is 8.6%, whereas the highest correlation coefficient is 0.9947. These values of AAPRE (<10%) indicate that the FL model could predicts the CTD more accurately than other published models (>20% AAPRE). Moreover, further analysis indicated the robustness of the FL model, because it follows the trends of all physical parameters affecting the CTD.
    Matched MeSH terms: Stress, Mechanical
  14. Saba N, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M
    Int J Biol Macromol, 2017 Apr;97:190-200.
    PMID: 28082223 DOI: 10.1016/j.ijbiomac.2017.01.029
    Present study, deals about isolation and characterization of cellulose nanofibers (CNFs) from the Northern Bleached Softwood Kraft (NBSK) pulp, fabrication by hand lay-up technique and characterization of fabricated epoxy nanocomposites at different filler loadings (0.5%, 0.75%, 1% by wt.). The effect of CNFs loading on mechanical (tensile, impact and flexural), morphological (scanning electron microscope and transmission electron microscope) and structural (XRD and FTIR) properties of epoxy composites were investigated. FTIR analysis confirms the introduction of CNFs into the epoxy matrix while no considerable change in the crystallinity and diffraction peaks of epoxy composites were observed by the XRD patterns. Additions of CNFs considerably enhance the mechanical properties of epoxy composites but a remarkable improvement is observed for 0.75% CNFs as compared to the rest epoxy nanocomposites. In addition, the electron micrographs revealed the perfect distribution and dispersion of CNFs in the epoxy matrix for the 0.75% CNFs/epoxy nanocomposites, while the existence of voids and agglomerations were observed beyond 0.75% CNFs filler loadings. Overall results analysis clearly revealed that the 0.75% CNFs filler loading is best and effective with respect to rest to enhance the mechanical and structural properties of the epoxy composites.
    Matched MeSH terms: Stress, Mechanical
  15. Zin, M.H., Abdan, K., Norizan, M.N., Mazlan, N.
    The main focus of this study was to obtain the optimum alkaline treatment for banana fibre and the its effect on the mechanical and chemical properties of banana fibre, its surface topography, its heat resistivity, as well as its interfacial bonding with epoxy matrix. Banana fibre was treated with sodium hydroxide (NaOH) under various treatment conditions. The treated fibres were characterised using FTIR spectroscopy. The morphology of a single fibre observed under a Digital Image Analyser indicated slight reduction in fibre diameter with increasing NaOH concentration. The Scanning Electron Microscope (SEM) results showed the deteriorating effect of alkali, which can be seen from the removal of impurities and increment in surface roughness. The mechanical analysis indicates that 6% NaOH treatment with a two-hour immersion time gave the highest tensile strength. The adhesion between single fibre and epoxy resin was analysed through the micro-droplet test. It was found that 6% NaOH treatment with a two-hour immersion yielded the highest interfacial shear stress of 3.96 MPa. The TGA analysis implies that alkaline treatment improved the thermal and heat resistivity of the fibre.
    Matched MeSH terms: Stress, Mechanical
  16. Chin KY, Ima-Nirwana S
    Front Pharmacol, 2018;9:946.
    PMID: 30186176 DOI: 10.3389/fphar.2018.00946
    Osteoarthritis is a debilitating disease of the joint involving cartilage degeneration and chondrocytes apoptosis. Oxidative stress is one of the many proposed mechanisms underpinning joint degeneration in osteoarthritis. The current pharmacotherapies emphasize pain and symptomatic management of the patients but do not alter the biological processes underlying the cartilage degeneration. Vitamin E is a potential agent to prevent or treat osteoarthritis due to its antioxidant and anti-inflammatory effects. This review aims to summarize the current evidence on the relationship between vitamin E and osteoarthritis derived from preclinical and human studies. Cellular studies showed that vitamin E mitigated oxidative stress in cartilage explants or chondrocyte culture invoked by mechanical stress or free radicals. Animal studies suggested that vitamin E treatment prevented cartilage degeneration and improve oxidative status in animal models of osteoarthritis. Low circulating or synovial vitamin E was observed in human osteoarthritic patients compared to healthy controls. Observational studies also demonstrated that vitamin E was related to induction or progression of osteoarthritis in the general population. Vitamin E supplementation might improve the outcomes in patients with osteoarthritis, but negative results were also reported. Different isomers of vitamin E might possess distinct anti-osteoarthritic effects. As a conclusion, vitamin E may retard the progression of osteoarthritis by ameliorating oxidative stress and inflammation of the joint. Further studies are warranted to develop vitamin E as an anti-osteoarthritis agent to reduce the global burden of this disease.
    Matched MeSH terms: Stress, Mechanical
  17. Mohd Ariffin NH, Hasham R
    Heliyon, 2020 May;6(5):e03955.
    PMID: 32478187 DOI: 10.1016/j.heliyon.2020.e03955
    Skin is the largest external organ of the human body. It acts as a barrier to protect the human body from environmental pollution, mechanical stress, and excessive water loss. The defensive function resides primarily on top of the epidermis layer commonly known as stratum corneum (SC). Human SC consists of three major lipids, namely ceramide, free fatty acid, and cholesterol that comprise approximately 50%, 25%, and 25% of the total lipid mass, respectively. The optimal composition of SC lipids is the vital epidermal barrier function of the skin. On the other hand, skin barrier serves to limit passive water loss from the body, reduces chemical absorption from the environment, and prevents microbial infection. In contrast, epidermal lipids are important to maintain the cell structure, growth and differentiation, cohesion and desquamation as well as formation of a permeability barrier. Multiple non-invasive in vivo approaches were implemented on a regular basis to monitor skin physiological and intercellular lipid properties. The measurement of different parameters such as transepidermal water loss (TEWL), hydration level, skin elasticity, collagen intensity, melanin content, sebum, pH, and tape stripping is essential to evaluate the epidermal barrier function. Novel non-invasive techniques such as tape stripping, ultrasound imaging, and laser confocal microscopy offer higher possibility of accurate and detailed characterisation of skin barrier. To date, these techniques have also been widely used to determine the effects of herbal plants in dermatology. Herbal plants have been traditionally used for ages to treat a variety of skin diseases, as reported by the World Health Organisation (WHO). Their availability, lower cost, and minimal or no side effects have created awareness among society, thus increase the demand for natural sources as the remedy to treat various skin diseases. This paper reviews several non-invasive techniques and evaluations of herbal-based product in dermatology.
    Matched MeSH terms: Stress, Mechanical
  18. Zain NM, Ismail Z
    PLoS One, 2023;18(2):e0276576.
    PMID: 36780455 DOI: 10.1371/journal.pone.0276576
    This paper presents a numerical analysis of blood flow in a diseased vessel within the presence of an external magnetic field. The blood flow was considered to be incompressible and fully developed, in that the non-Newtonian nature of the fluid was characterised as a generalised power law model for shear-thinning, Newtonian, and shear-thickening fluids. The impact of a transverse directed external magnetic field on blood flow through a stenosed bifurcated artery was investigated. The arterial geometry was considered as a bifurcated channel with overlapping shaped stenosis. The problem was treated mathematically using the Galerkin Least-Squares (GLS) method. The implementation of this numerical method managed to overcome the numerical instability faced by the classical Galerkin technique when adopted to a highly viscous flow. The benefit of GLS in circumventing the Ladyzhenskaya-Babuška-Brezzi (LBB) condition was utilized by evaluating both the velocity and pressure components at corner nodes of a unstructured triangular element. The non-linearity that emerged from the convective terms was then treated using the Newton-Raphson method, while the numerical integrals were computed using a Gaussian quadrature rule with six quadrature points. The findings obtained from this study were then compared with available results from the literature as well as Comsol multiphysics software to verify the accuracy and validity of the numerical algorithms. It was found that the application of magnetic field was able to overcome flow reversal by 39% for a shear-thinning fluid, 26% for a Newtonian fluid, and 27% for a shear-thickening fluid. The negative pressure and steep wall shear stress which occurs at the extremities of an overlapping stenosis throat were diminished by rise in magnetic intensity. This prevented thrombosis occurrence and produced a uniform calm flow.
    Matched MeSH terms: Stress, Mechanical
  19. Ganasegeran K, Perianayagam W, Nagaraj P, Al-Dubai SA
    Occup Med (Lond), 2014 Jul;64(5):372-5.
    PMID: 24727561 DOI: 10.1093/occmed/kqu039
    Low back pain (LBP) is the most costly ailment in the work force. Risky work behaviour and psychological stress are established risk factors.

    To explore the associations between workplace risk factors, psychological stress and LBP among Malaysian railway workers.

    A cross-sectional study was carried out on railway workers in Malaysia. Socio-demographics, workplace risk factors for LBP, perceived psychological stress and history of LBP over the previous month were obtained by direct interviews using a structured closed-ended questionnaire. Descriptive, bivariate and logistic regression analyses were conducted.

    There were 513 study participants (70% response rate). The prevalence of LBP in the previous month was 69%. Multivariate analysis yielded four significant predictors of LBP: employment of ≥ 10 years, lifting and lowering heavy loads, prolonged standing posture and psychological stress.

    The high prevalence of LBP and its significant associations with physical and psychological stress factors in railway workers points to an urgent need for preventive measures, particularly among workers in high-risk occupations.
    Matched MeSH terms: Stress, Mechanical*
  20. Mohd Fuad D, Masbah O, Shahril Y, Jamari S, Norhamdan MY, Sahrim SH
    Med J Malaysia, 2006 Feb;61 Suppl A:27-9.
    PMID: 17042225
    Antibiotic-loaded bone cement has been used as prophylaxis against infection in total joint replacement surgery. Its effect on the mechanical strength of cement is a major concern as high dose of antibiotic was associated with a significant reduction in mechanical strength of bone cement. However, the cut-off antibiotic that weakens the mechanical strength of cement remains to be determined. This study was undertaken to observe the changes in the mechanical properties of bone cement with gradual increments of Cefuroxime antibiotic. Cefuroxime at different doses: 0, 1.5, 3.0 and 4.5gm were added to a packet of 40gm bone cement (Simplex P) and study samples were prepared by using third generation cementing technique. Mechanical impact, flexural and tensile strength were tested on each sample. Significant impact and tensile strength reduction were observed after addition of 4.5 gm of Cefuroxime. However, flexural strength was significantly reduced at a lower dose of 3.0 gm. The maximum dose of Cefuroxime to be safely added to 40mg Surgical Simplex P is 1.5gm when third generation cementing technique is used. Further study is needed to determine whether it is an effective dose as regards to microbiological parameters.
    Matched MeSH terms: Stress, Mechanical*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links