Displaying publications 61 - 80 of 170 in total

Abstract:
Sort:
  1. Alkhatib SE, Tarlochan F, Mehboob H, Singh R, Kadirgama K, Harun WSBW
    Artif Organs, 2019 Jul;43(7):E152-E164.
    PMID: 30805945 DOI: 10.1111/aor.13444
    The mismatch between stiffness of the femoral dense stem and host bone causes complications to patients, such as aseptic loosening and bone resorption. Three-dimensional finite-element models of homogeneous porous (HGP) and functionally graded porous (FGP) stems incorporating body-centered cubic (BCC) structures are proposed in this article as an alternative to the dense stems. The relationship between the porosity and strut thickness of the BCC structure was developed to construct the finite-element models. Three levels of porosities (20%, 50%, and 80%) were modeled in HGP and FGP stems. The porosity of the stems was decreased distally according to the sigmoid function (n = 0.1, n = 1 and n = 10) with 3 grading exponents. The results showed that FGP stems transferred 120%-170% higher stresses to the femur (Gruen zone 7) as compared to the solid stem. Conversely, the stresses in HGP and FGP stems were 12%-34% lower than the dense stem. The highest micromotions (105-147 µm) were observed for stems of 80% overall porosity, and the lowest (42-46 µm) was for stems of 20% overall porosity. Finally, FGP stems with a grading exponent of n = 10 resulted in an 11%-28% reduction in micromotions.
    Matched MeSH terms: Stress, Mechanical
  2. Elnafar AA, Alam MK, Hasan R
    J Orthod, 2014 Sep;41(3):201-7.
    PMID: 25143559 DOI: 10.1179/1465313314Y.0000000097
    The aim of this study was to assess the effects of four enamel preparation techniques on shear bond strength (SBS) of brackets bonded with a resin-modified glass ionomer cement (RMGIC). Adhesive Remnant Index (ARI) and enamel surface roughness (Ra) were also investigated after cement removal.
    Matched MeSH terms: Stress, Mechanical
  3. Mohd Ariffin NH, Hasham R
    Heliyon, 2020 May;6(5):e03955.
    PMID: 32478187 DOI: 10.1016/j.heliyon.2020.e03955
    Skin is the largest external organ of the human body. It acts as a barrier to protect the human body from environmental pollution, mechanical stress, and excessive water loss. The defensive function resides primarily on top of the epidermis layer commonly known as stratum corneum (SC). Human SC consists of three major lipids, namely ceramide, free fatty acid, and cholesterol that comprise approximately 50%, 25%, and 25% of the total lipid mass, respectively. The optimal composition of SC lipids is the vital epidermal barrier function of the skin. On the other hand, skin barrier serves to limit passive water loss from the body, reduces chemical absorption from the environment, and prevents microbial infection. In contrast, epidermal lipids are important to maintain the cell structure, growth and differentiation, cohesion and desquamation as well as formation of a permeability barrier. Multiple non-invasive in vivo approaches were implemented on a regular basis to monitor skin physiological and intercellular lipid properties. The measurement of different parameters such as transepidermal water loss (TEWL), hydration level, skin elasticity, collagen intensity, melanin content, sebum, pH, and tape stripping is essential to evaluate the epidermal barrier function. Novel non-invasive techniques such as tape stripping, ultrasound imaging, and laser confocal microscopy offer higher possibility of accurate and detailed characterisation of skin barrier. To date, these techniques have also been widely used to determine the effects of herbal plants in dermatology. Herbal plants have been traditionally used for ages to treat a variety of skin diseases, as reported by the World Health Organisation (WHO). Their availability, lower cost, and minimal or no side effects have created awareness among society, thus increase the demand for natural sources as the remedy to treat various skin diseases. This paper reviews several non-invasive techniques and evaluations of herbal-based product in dermatology.
    Matched MeSH terms: Stress, Mechanical
  4. Ismail AS, Jawaid M, Hamid NH, Yahaya R, Hassan A
    Molecules, 2021 Feb 03;26(4).
    PMID: 33546097 DOI: 10.3390/molecules26040773
    Polymer blends is a well-established and suitable method to produced new polymeric materials as compared to synthesis of a new polymer. The combination of two different types of polymers will produce a new and unique material, which has the attribute of both polymers. The aim of this work is to analyze mechanical and morphological properties of bio-phenolic/epoxy polymer blends to find the best formulation for future study. Bio-phenolic/epoxy polymer blends were fabricated using the hand lay-up method at different loading of bio-phenolic (5 wt%, 10 wt%, 15 wt%, 20 wt%, and 25 wt%) in the epoxy matrix whereas neat bio-phenolic and epoxy samples were also fabricated for comparison. Results indicated that mechanical properties were improved for bio-phenolic/epoxy polymer blends compared to neat epoxy and phenolic. In addition, there is no sign of phase separation in polymer blends. The highest tensile, flexural, and impact strength was shown by P-20(biophenolic-20 wt% and Epoxy-80 wt%) whereas P-25 (biophenolic-25 wt% and Epoxy-75 wt%) has the highest tensile and flexural modulus. Based on the finding, it is concluded that P-20 shows better overall mechanical properties among the polymer blends. Based on this finding, the bio-phenolic/epoxy blend with 20 wt% will be used for further study on flax-reinforced bio-phenolic/epoxy polymer blends.
    Matched MeSH terms: Stress, Mechanical*
  5. Mehmood OU, Norzie Mustapha, Sharidan Shafie, Hayat T
    Sains Malaysiana, 2014;43:1109-1118.
    This research looks at the effects of partial slip on heat and mass transfer of peristaltic transport. The magnetohydrodynamic (MHD) flow of viscous fluid in a porous asymmetric channel has been considered. The exact solutions for the stream function, longitudinal pressure gradient, longitudinal velocity, shear stress, temperature and concentration fields are derived by adopting long wavelength and small Reynolds number approximations. The results showed that peristaltic pumping and trapping are reduced with increasing velocity slip parameter. Furthermore, temperature increases with increasing thermal slip parameter. Moreover, the concentration profile decreases with increasing porosity parameter, Schmidt number and concentration slip parameter. Comparisons with published results are found to be in good agreement.
    Matched MeSH terms: Stress, Mechanical
  6. Moo EK, Han SK, Federico S, Sibole SC, Jinha A, Abu Osman NA, et al.
    J Biomech, 2014 Mar 21;47(5):1004-13.
    PMID: 24480705 DOI: 10.1016/j.jbiomech.2014.01.003
    Cartilage lesions change the microenvironment of cells and may accelerate cartilage degradation through catabolic responses from chondrocytes. In this study, we investigated the effects of structural integrity of the extracellular matrix (ECM) on chondrocytes by comparing the mechanics of cells surrounded by an intact ECM with cells close to a cartilage lesion using experimental and numerical methods. Experimentally, 15% nominal compression was applied to bovine cartilage tissues using a light-transmissible compression system. Target cells in the intact ECM and near lesions were imaged by dual-photon microscopy. Changes in cell morphology (N(cell)=32 for both ECM conditions) were quantified. A two-scale (tissue level and cell level) Finite Element (FE) model was also developed. A 15% nominal compression was applied to a non-linear, biphasic tissue model with the corresponding cell level models studied at different radial locations from the centre of the sample in the transient phase and at steady state. We studied the Green-Lagrange strains in the tissue and cells. Experimental and theoretical results indicated that cells near lesions deform less axially than chondrocytes in the intact ECM at steady state. However, cells near lesions experienced large tensile strains in the principal height direction, which are likely associated with non-uniform tissue radial bulging. Previous experiments showed that tensile strains of high magnitude cause an up-regulation of digestive enzyme gene expressions. Therefore, we propose that cartilage degradation near tissue lesions may be due to the large tensile strains in the principal height direction applied to cells, thus leading to an up-regulation of catabolic factors.
    Matched MeSH terms: Stress, Mechanical
  7. Moo EK, Amrein M, Epstein M, Duvall M, Abu Osman NA, Pingguan-Murphy B, et al.
    Biophys J, 2013 Oct 1;105(7):1590-600.
    PMID: 24094400 DOI: 10.1016/j.bpj.2013.08.035
    Impact loading of articular cartilage causes extensive chondrocyte death. Cell membranes have a limited elastic range of 3-4% strain but are protected from direct stretch during physiological loading by their membrane reservoir, an intricate pattern of membrane folds. Using a finite-element model, we suggested previously that access to the membrane reservoir is strain-rate-dependent and that during impact loading, the accessible membrane reservoir is drastically decreased, so that strains applied to chondrocytes are directly transferred to cell membranes, which fail when strains exceed 3-4%. However, experimental support for this proposal is lacking. The purpose of this study was to measure the accessible membrane reservoir size for different membrane strain rates using membrane tethering techniques with atomic force microscopy. We conducted atomic force spectroscopy on isolated chondrocytes (n = 87). A micron-sized cantilever was used to extract membrane tethers from cell surfaces at constant pulling rates. Membrane tethers could be identified as force plateaus in the resulting force-displacement curves. Six pulling rates were tested (1, 5, 10, 20, 40, and 80 μm/s). The size of the membrane reservoir, represented by the membrane tether surface areas, decreased exponentially with increasing pulling rates. The current results support our theoretical findings that chondrocytes exposed to impact loading die because of membrane ruptures caused by high tensile membrane strain rates.
    Matched MeSH terms: Stress, Mechanical*
  8. Abas A, Mokhtar NH, Ishak MH, Abdullah MZ, Ho Tian A
    Comput Math Methods Med, 2016;2016:6143126.
    PMID: 27239221 DOI: 10.1155/2016/6143126
    This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.
    Matched MeSH terms: Stress, Mechanical
  9. Athani A, Ghazali NNN, Anjum Badruddin I, Kamangar S, Salman Ahmed NJ, Honnutagi A
    Biomed Mater Eng, 2023;34(1):13-35.
    PMID: 36278331 DOI: 10.3233/BME-211333
    BACKGROUND: Coronary arteries disease has been reported as one of the principal roots of deaths worldwide.

    OBJECTIVE: The aim of this study is to analyze the multiphase pulsatile blood flow in the left coronary artery tree with stenosis.

    METHODS: The 3D left coronary artery model was reconstructed using 2D computerized tomography (CT) scan images. The Red Blood Cell (RBC) and varying hemodynamic parameters for single and multiphase blood flow conditions were analyzed.

    RESULTS: Results asserted that the multiphase blood flow modeling has a maximum velocity of 1.017 m/s and1.339 m/s at the stenosed region during the systolic and diastolic phases respectively. The increase in Wall Shear Stress (WSS) observed at the stenosed region during the diastole phase as compared during the systolic phase. It was also observed that the highest Oscillatory Shear Index (OSI) regions are found in the downstream area of stenosis and across the bifurcations. The increase in RBCs velocity from 0.45 m/s to 0.6 m/s across the stenosis was also noticed.

    CONCLUSION: The computational multiphase blood flow analysis improves the understanding and accuracy of the complex flow conditions of blood elements (RBC and Plasma) and provides the progression of the disease development in the coronary arteries. This study helps to enhance the diagnosis of the blocked (stenosed) arteries more precisely compared to the single-phase blood flow modeling.

    Matched MeSH terms: Stress, Mechanical
  10. Mousa MA, Abdullah JY, Jamayet NB, Alam MK, Husein A
    Biomed Res Int, 2021;2021:6419774.
    PMID: 34447852 DOI: 10.1155/2021/6419774
    Aim: This systematic review is aimed at investigating the biomechanical stress that develops in the maxillofacial prostheses (MFP) and supporting structures and methods to optimize it. Design and Methods. A literature survey was conducted for full-text English articles which used FEA to examine the stress developed in conventional and implant-assisted MFPs from January 2010 to December 2020.

    Results: 87 articles were screened to get an update on the desired information. 74 were excluded based on a complete screening, and finally, 13 articles were recruited for complete reviewing. Discussion. The MFP is subjected to stress, which is reflected in the form of compressive and tensile strengths. The stress is mainly concentrated the resection line and around the apices of roots of teeth next to the defect. Diversity of designs and techniques were introduced to optimize the stress distribution, such as modification of the clasp design, using materials with different mechanical properties for dentures base and retainer, use of dental (DI) and/or zygomatic implants (ZI), and free flap reconstruction before prosthetic rehabilitation.

    Conclusion: Using ZI in the defective side of the dentulous maxillary defect and defective and nondefective side of the edentulous maxillary defect was found more advantageous, in terms of compression and tensile stress and retention, when compared with DI and free flap reconstruction.

    Matched MeSH terms: Stress, Mechanical
  11. Pearson SJ, Mohammed ASA, Hussain SR
    J Biomech, 2017 08 16;61:45-50.
    PMID: 28736078 DOI: 10.1016/j.jbiomech.2017.06.038
    PURPOSE: Descriptive data on the aspects of site specific in vivo tendon strain with varying knee joint angle are non-existent. The present study determines and compares surface and deep layer strain of the patellar tendon during isometric contractions across a range of knee joint angles.

    METHODS: Male participants (age 22.0±3.4) performed ramped isometric knee extensions at knee joint angles of 90°, 70°, 50° and 30° of flexion. Strain patterns of the anterior and posterior regions of the patellar tendon were determined using real-time B-mode ultrasonography at each knee joint angle. Regional strain measures were compared using an automated pixel tracking method.

    RESULTS: Strain was seen to be greatest for both the anterior and posterior regions with the knee at 90° (7.76±0.89% and 5.06±0.76%). Anterior strain was seen to be significantly greater (p<0.05) than posterior strain for all knee angles apart from 30°, 90°=(7.76vs. 5.06%), 70°=(4.77vs. 3.75%), and 50°=(3.74vs. 2.90%). The relative strain (ratio of anterior to posterior), was greatest with the knee joint angle at 90°, and decreased as the knee joint angle reduced.

    CONCLUSIONS: The results from this study indicate that not only are there greater absolute tendon strains with the knee in greater flexion, but that the knee joint angle affects the regional strain differentially, resulting in greater shear between the tendon layers with force application when the knee is in greater degrees of flexion. These results have important implications for rehabilitation and training.

    Matched MeSH terms: Stress, Mechanical*
  12. Alakbari FS, Mohyaldinn ME, Ayoub MA, Muhsan AS, Hussein IA
    PLoS One, 2021;16(4):e0250466.
    PMID: 33901240 DOI: 10.1371/journal.pone.0250466
    Sand management is essential for enhancing the production in oil and gas reservoirs. The critical total drawdown (CTD) is used as a reliable indicator of the onset of sand production; hence, its accurate prediction is very important. There are many published CTD prediction correlations in literature. However, the accuracy of most of these models is questionable. Therefore, further improvement in CTD prediction is needed for more effective and successful sand control. This article presents a robust and accurate fuzzy logic (FL) model for predicting the CTD. Literature on 23 wells of the North Adriatic Sea was used to develop the model. The used data were split into 70% training sets and 30% testing sets. Trend analysis was conducted to verify that the developed model follows the correct physical behavior trends of the input parameters. Some statistical analyses were performed to check the model's reliability and accuracy as compared to the published correlations. The results demonstrated that the proposed FL model substantially outperforms the current published correlations and shows higher prediction accuracy. These results were verified using the highest correlation coefficient, the lowest average absolute percent relative error (AAPRE), the lowest maximum error (max. AAPRE), the lowest standard deviation (SD), and the lowest root mean square error (RMSE). Results showed that the lowest AAPRE is 8.6%, whereas the highest correlation coefficient is 0.9947. These values of AAPRE (<10%) indicate that the FL model could predicts the CTD more accurately than other published models (>20% AAPRE). Moreover, further analysis indicated the robustness of the FL model, because it follows the trends of all physical parameters affecting the CTD.
    Matched MeSH terms: Stress, Mechanical
  13. Mustafa AA, Matinlinna JP, Razak AA, Hussin AS
    J Investig Clin Dent, 2015 Aug;6(3):161-9.
    PMID: 24415731 DOI: 10.1111/jicd.12083
    AIM: To evaluate in vitro the effect of different concentrations of 2-hydroxyethyl methacrylate (HEMA) in experimental silane-based primers on shear bond strength of orthodontic adhesives.

    METHODS: Different volume percentages of HEMA were tested in four experimental silane-based primer solutions (additions of HEMA: 0, 5.0 vol%, 25.0 vol% and 50.0 vol%). An experimental silane blend (primer) of 1.0 vol% 3-isocyanatopropyltrimethoxysilane (ICMS) + 0.5% bis-1,2-(triethoxysilyl) ethane (BTSE) was prepared and used. The experimental primers together with the control group were applied onto acid-etched premolars for attachment of orthodontic brackets. After artificial aging by thermocycling the shear-bond strength was measured. The fractured surfaces of all specimens were examined under scanning electron microscopy (SEM) to evaluate the failure mode on the enamel surface.

    RESULTS: The experimental primers showed the highest shear-bond strength of 21.15 MPa (SD ± 2.70 MPa) and with 25 vol% showed a highly significant increase (P < 0.05) in bond strength. The SEM images showed full penetration of adhesive agents when using silane-based primers. In addition, the SEM images suggested that the predominant failure type was not necessarily the same as for the failure propagation.

    CONCLUSIONS: This preliminary study suggested that nonacidic silane-based primers with HEMA addition might be an alternative to for use as adhesion promoting primers.

    Matched MeSH terms: Stress, Mechanical
  14. Chin KY, Ima-Nirwana S
    Front Pharmacol, 2018;9:946.
    PMID: 30186176 DOI: 10.3389/fphar.2018.00946
    Osteoarthritis is a debilitating disease of the joint involving cartilage degeneration and chondrocytes apoptosis. Oxidative stress is one of the many proposed mechanisms underpinning joint degeneration in osteoarthritis. The current pharmacotherapies emphasize pain and symptomatic management of the patients but do not alter the biological processes underlying the cartilage degeneration. Vitamin E is a potential agent to prevent or treat osteoarthritis due to its antioxidant and anti-inflammatory effects. This review aims to summarize the current evidence on the relationship between vitamin E and osteoarthritis derived from preclinical and human studies. Cellular studies showed that vitamin E mitigated oxidative stress in cartilage explants or chondrocyte culture invoked by mechanical stress or free radicals. Animal studies suggested that vitamin E treatment prevented cartilage degeneration and improve oxidative status in animal models of osteoarthritis. Low circulating or synovial vitamin E was observed in human osteoarthritic patients compared to healthy controls. Observational studies also demonstrated that vitamin E was related to induction or progression of osteoarthritis in the general population. Vitamin E supplementation might improve the outcomes in patients with osteoarthritis, but negative results were also reported. Different isomers of vitamin E might possess distinct anti-osteoarthritic effects. As a conclusion, vitamin E may retard the progression of osteoarthritis by ameliorating oxidative stress and inflammation of the joint. Further studies are warranted to develop vitamin E as an anti-osteoarthritis agent to reduce the global burden of this disease.
    Matched MeSH terms: Stress, Mechanical
  15. Najib N, Bachok N, Arifin NM, Ishak A
    Sci Rep, 2014;4:4178.
    PMID: 24569547 DOI: 10.1038/srep04178
    This paper is about the stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder. The governing partial differential equations in cylindrical form are transformed into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using a shooting method. Results for the skin friction coefficient, Schmidt number, velocity profiles as well as concentration profiles are presented for different values of the governing parameters. Effects of the curvature parameter, stretching/shrinking parameter and Schmidt number on the flow and mass transfer characteristics are examined. The study indicates that dual solutions exist for the shrinking cylinder but for the stretching cylinder, the solution is unique. It is observed that the surface shear stress and the mass transfer rate at the surface increase as the curvature parameter increases.
    Matched MeSH terms: Stress, Mechanical
  16. Kamruzzaman M, Jumaat MZ, Sulong NH, Islam AB
    ScientificWorldJournal, 2014;2014:702537.
    PMID: 25243221 DOI: 10.1155/2014/702537
    In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems.
    Matched MeSH terms: Stress, Mechanical*
  17. Zain NM, Ismail Z
    PLoS One, 2023;18(2):e0276576.
    PMID: 36780455 DOI: 10.1371/journal.pone.0276576
    This paper presents a numerical analysis of blood flow in a diseased vessel within the presence of an external magnetic field. The blood flow was considered to be incompressible and fully developed, in that the non-Newtonian nature of the fluid was characterised as a generalised power law model for shear-thinning, Newtonian, and shear-thickening fluids. The impact of a transverse directed external magnetic field on blood flow through a stenosed bifurcated artery was investigated. The arterial geometry was considered as a bifurcated channel with overlapping shaped stenosis. The problem was treated mathematically using the Galerkin Least-Squares (GLS) method. The implementation of this numerical method managed to overcome the numerical instability faced by the classical Galerkin technique when adopted to a highly viscous flow. The benefit of GLS in circumventing the Ladyzhenskaya-Babuška-Brezzi (LBB) condition was utilized by evaluating both the velocity and pressure components at corner nodes of a unstructured triangular element. The non-linearity that emerged from the convective terms was then treated using the Newton-Raphson method, while the numerical integrals were computed using a Gaussian quadrature rule with six quadrature points. The findings obtained from this study were then compared with available results from the literature as well as Comsol multiphysics software to verify the accuracy and validity of the numerical algorithms. It was found that the application of magnetic field was able to overcome flow reversal by 39% for a shear-thinning fluid, 26% for a Newtonian fluid, and 27% for a shear-thickening fluid. The negative pressure and steep wall shear stress which occurs at the extremities of an overlapping stenosis throat were diminished by rise in magnetic intensity. This prevented thrombosis occurrence and produced a uniform calm flow.
    Matched MeSH terms: Stress, Mechanical
  18. Mustafa AA, Matinlinna JP, Saidin S, Kadir MR
    J Prosthet Dent, 2014 Dec;112(6):1498-506.
    PMID: 24993375 DOI: 10.1016/j.prosdent.2014.05.011
    STATEMENT OF PROBLEM: The inconsistency of dentin bonding affects retention and microleakage.

    PURPOSE: The purpose of this laboratory and finite element analysis study was to investigate the effects on the formation of a hybrid layer of an experimental silane coupling agent containing primer solutions composed of different percentages of hydroxyethyl methacrylate.

    MATERIAL AND METHODS: A total of 125 sound human premolars were restored in vitro. Simple class I cavities were formed on each tooth, followed by the application of different compositions of experimental silane primers (0%, 5%, 25%, and 50% of hydroxyethyl methacrylate), bonding agents, and dental composite resins. Bond strength tests and scanning electron microscopy analyses were performed. The laboratory experimental results were validated with finite element analysis to determine the pattern of stress distribution. Simulations were conducted by placing the restorative composite resin in a premolar tooth by imitating simple class I cavities. The laboratory and finite element analysis data were significantly different from each other, as determined by 1-way ANOVA. A post hoc analysis was conducted on the bond strength data to further clarify the effects of silane primers.

    RESULTS: The strongest bond of hybrid layer (16.96 MPa) was found in the primer with 25% hydroxyethyl methacrylate, suggesting a barely visible hybrid layer barrier. The control specimens without the application of the primer and the primer specimens with no hydroxyethyl methacrylate exhibited the lowest strength values (8.30 MPa and 11.78 MPa) with intermittent and low visibility of the hybrid layer. These results were supported by finite element analysis that suggested an evenly distributed stress on the model with 25% hydroxyethyl methacrylate.

    CONCLUSIONS: Different compositions of experimental silane primers affected the formation of the hybrid layer and its resulting bond strength.

    Matched MeSH terms: Stress, Mechanical
  19. Ramlee MH, Sulong MA, Garcia-Nieto E, Penaranda DA, Felip AR, Kadir MRA
    Med Biol Eng Comput, 2018 Oct;56(10):1925-1938.
    PMID: 29679256 DOI: 10.1007/s11517-018-1830-3
    Pilon fractures can be caused by high-energy vertical forces which may result in long-term patient immobilization. Many experts in orthopedic surgery recommend the use of a Delta external fixator for type III Pilon fracture treatment. This device can promote immediate healing of fractured bone, minimizing the rate of complications as well as allowing early mobilization. The characteristics of different types of the Delta frame have not been demonstrated yet. By using the finite element method, this study was conducted to determine the biomechanical characteristics of six different configurations (Model 1 until Model 6). CT images from the lower limb of a healthy human were used to reconstruct three-dimensional models of foot and ankle bones. All bones were assigned with isotropic material properties and the cartilages were assigned to exhibit hyperelasticity. A linear link was used to simulate 37 ligaments at the ankle joint. Axial loads of 70 and 350 N were applied at the proximal tibia to simulate the stance and swing phase. The metatarsals and calcaneus were fixed distally in order to prevent rigid body motion. A synthetic ankle bone was used to validate the finite element model. The simulated results showed that Delta3 produced the highest relative micromovement (0.09 mm, 7 μm) during the stance and swing phase, respectively. The highest equivalent von Mises stress was found at the calcaneus pin of the Delta4 (423.2 MPa) as compared to others. In conclusion, Delta1 external fixator was the most favorable option for type III Pilon fracture treatment. Graphical abstract ᅟ.
    Matched MeSH terms: Stress, Mechanical
  20. Wahab AHA, Saad APM, Syahrom A, Kadir MRA
    Comput Methods Biomech Biomed Engin, 2020 Apr;23(5):182-190.
    PMID: 31910663 DOI: 10.1080/10255842.2019.1709828
    Glenoid perforation is not the intended consequence of the surgery and must be avoided. The analysis on biomechanical aspect of glenoid vault perforation remains unknown. The purpose of this study is to determine the impact of glenoid perforation towards stress distribution and micromotion at the interfaces. Eight glenoid implant models had been constructed with various size, number and type of fixation. A load of 750 N was applied to centre, superior-anterior and superior-posterior area. Implant perforation had minimal impact on stress distribution and micromotion at the interfaces. However, cement survival rate for implant without perforation was the highest with a difference of up to 37% compared to other perforated models. Besides that, implant fixation and high stresses at the implant had more of an impact on implant instability than implant perforation. As a conclusion, glenoid perforation did not influence the stress distribution and micromotion, but, it reduced cement survival rate and increase the stress critical volume.
    Matched MeSH terms: Stress, Mechanical*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links