Displaying publications 61 - 80 of 120 in total

Abstract:
Sort:
  1. Khan SU, Ullah N, Ahmed I, Ahmad I, Mahsud MI
    Curr Med Imaging Rev, 2019;15(3):243-254.
    PMID: 31989876 DOI: 10.2174/1573405614666180726124952
    BACKGROUND: Medical imaging is to assume greater and greater significance in an efficient and precise diagnosis process.

    DISCUSSION: It is a set of various methodologies which are used to capture internal or external images of the human body and organs for clinical and diagnosis needs to examine human form for various kind of ailments. Computationally intelligent machine learning techniques and their application in medical imaging can play a significant role in expediting the diagnosis process and making it more precise.

    CONCLUSION: This review presents an up-to-date coverage about research topics which include recent literature in the areas of MRI imaging, comparison with other modalities, noise in MRI and machine learning techniques to remove the noise.

    Matched MeSH terms: Tomography, X-Ray Computed/methods
  2. Khoo CS, Kim SE, Lee BI, Shin KJ, Ha SY, Park J, et al.
    Eur Neurol, 2020;83(1):56-64.
    PMID: 32320976 DOI: 10.1159/000506591
    INTRODUCTION: Seizures as acute stroke mimics are a diagnostic challenge.

    OBJECTIVE: The aim of the study was to characterize the perfusion patterns on perfusion computed tomography (PCT) in patients with seizures masquerading as acute stroke.

    METHODS: We conducted a study on patients with acute seizures as stroke mimics. The inclusion criteria for this study were patients (1) initially presenting with stroke-like symptoms but finally diagnosed to have seizures and (2) with PCT performed within 72 h of seizures. The PCT of seizure patients (n = 27) was compared with that of revascularized stroke patients (n = 20) as the control group.

    RESULTS: Among the 27 patients with seizures as stroke mimics, 70.4% (n = 19) showed characteristic PCT findings compared with the revascularized stroke patients, which were as follows: (1) multi-territorial cortical hyperperfusion {(73.7% [14/19] vs. 0% [0/20], p = 0.002), sensitivity of 73.7%, negative predictive value (NPV) of 80%}, (2) involvement of the ipsilateral thalamus {(57.9% [11/19] vs. 0% [0/20], p = 0.007), sensitivity of 57.9%, NPV of 71.4%}, and (3) reduced perfusion time {(84.2% [16/19] vs. 0% [0/20], p = 0.001), sensitivity of 84.2%, NPV of 87%}. These 3 findings had 100% specificity and positive predictive value in predicting patients with acute seizures in comparison with reperfused stroke patients. Older age was strongly associated with abnormal perfusion changes (p = 0.038), with a mean age of 66.8 ± 14.5 years versus 49.2 ± 27.4 years (in seizure patients with normal perfusion scan).

    CONCLUSIONS: PCT is a reliable tool to differentiate acute seizures from acute stroke in the emergency setting.

    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  3. Loong S, Selvarajan S, Khor LY
    Malays J Pathol, 2019 Dec;41(3):327-331.
    PMID: 31901917
    INTRODUCTION: The increasing use of radiological imaging studies has given rise to 'incidentalomas'.

    CASE REPORT: We describe two unusual and diverse incidental adrenal gland lesions, an adenomatoid nodule and a mature ganglioneuroma. Both are deemed 'indeterminate' on radiological assessment. On histology, an adenomatoid nodule is composed of variably-dilated thin-walled cysts lined by bland flattened cells and solid areas of tubules lined by eosinophilic cells with plump nuclei and prominent nucleoli. The lining cells are immunoreactive for calretinin and WT1 while negative for CK5/6, ERG and CD31. Mature ganglioneuroma features fascicles of bland spindle cells with intermixed mature ganglion cells disposed within a background myxoid stroma with no immature neuroblastic component. These spindled Schwann cells are S100 positive.

    DISCUSSION: Both adenomatoid nodule and mature ganglioneuroma are rare benign adrenal tumours that need to be differentiated from other, more common adrenal lesions. The management of adrenal incidentalomas is challenging. Surgical excision is indicated if an adrenal incidentaloma is more than 4 cm in size, shows malignant features on imaging or evidence of hormone excess.

    Matched MeSH terms: Tomography, X-Ray Computed/methods
  4. Cheah PK, Krisnan T, Abdul Kadir MH, Steven EM
    Emerg Med J, 2020 Aug;37(8):467.
    PMID: 32546476 DOI: 10.1136/emermed-2020-209851
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  5. Annuar BR, Liew CK, Chin SP, Ong TK, Seyfarth MT, Chan WL, et al.
    Eur J Radiol, 2008 Jan;65(1):112-9.
    PMID: 17466480
    To compare the assessment of global and regional left ventricular (LV) function using 64-slice multislice computed tomography (MSCT), 2D echocardiography (2DE) and cardiac magnetic resonance (CMR).
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  6. Khajotia RR, Raman S
    Aust Fam Physician, 2017 Nov;46(11):845-846.
    PMID: 29101921
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  7. Thong JF, Low D, Tham A, Liew C, Tan TY, Yuen HW
    Am J Otolaryngol, 2017 Mar-Apr;38(2):218-221.
    PMID: 28139318 DOI: 10.1016/j.amjoto.2017.01.015
    OBJECTIVE: Recent studies demonstrated the utility of high-resolution computed tomography (HRCT) scans in measuring basal cochlear length and cochlear insertion depths. These studies showed significant variations in the anatomy of the cochlea amongst humans. The aim of our study was to investigate for gender and racial variations in the basal turn length of the human cochlea in an Asian population.

    METHOD: HRCT temporal bone data from year 1997 till 2012 of patients with normally developed cochleae who reported with otologic disease was obtained. Reconstruction of the full basal turn was performed for both ears. The largest distance from the midpoint of the round window, through the midmodiolar axis, to the lateral wall was measured (distance A). Length of the lateral wall of the cochlea to the first turn (360°) was calculated and statistically analyzed.

    RESULTS: HRCT temporal bone data from 161 patients was initially obtained. Four patients were subsequently excluded from the study as they were of various other racial groups. Study group therefore comprised of 157 patients (314 cochleae). Mean distance A was statistically different between the two sides of the ear (right 9.09mm; left 9.06mm; p=0.0069). Significant gender and racial differences were also found. Mean distance A was 9.17mm in males and 8.97mm in females (p=0.0016). The racial groups were Chinese (39%), Malay (38%) and Indian (22%). Between racial groups, mean distance A was 9.11mm (Chinese), 9.11mm (Malays) and 8.99mm (Indians). The mean basal turn lengths ranged from 19.71mm to 25.09mm. With gender factored in, significant variation in mean basal turn lengths was found across all three racial groups (p=0.04).

    CONCLUSION: The view of the basal turn of the cochlea from HRCT is simple to obtain and reproducible. This study found significant differences in basal cochlear length amongst male and female Asian patients, as well as amongst various racial groups. This has implications for cochlear electrode insertion as well as electrode array design.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  8. Tan VP, Macdonald HM, Gabel L, McKay HA
    Arch Osteoporos, 2018 Mar 20;13(1):31.
    PMID: 29556801 DOI: 10.1007/s11657-018-0441-9
    Physical activity is essential for optimal bone strength accrual, but we know little about interactions between physical activity, sedentary time, and bone outcomes in older adolescents. Physical activity (by accelerometer and self-report) positively predicted bone strength and the distal and midshaft tibia in 15-year-old boys and girls. Lean body mass mediated the relationship between physical activity and bone strength in adolescents.

    PURPOSE: To examine the influence of physical activity (PA) and sedentary time on bone strength, structure, and density in older adolescents.

    METHODS: We used peripheral quantitative computed tomography to estimate bone strength at the distal tibia (8% site; bone strength index, BSI) and tibial midshaft (50% site; polar strength strain index, SSIp) in adolescent boys (n = 86; 15.3 ± 0.4 years) and girls (n = 106; 15.3 ± 0.4 years). Using accelerometers (GT1M, Actigraph), we measured moderate-to-vigorous PA (MVPAAccel), vigorous PA (VPAAccel), and sedentary time in addition to self-reported MVPA (MVPAPAQ-A) and impact PA (ImpactPAPAQ-A). We examined relations between PA and sedentary time and bone outcomes, adjusting for ethnicity, maturity, tibial length, and total body lean mass.

    RESULTS: At the distal tibia, MVPAAccel and VPAAccel positively predicted BSI (explained 6-7% of the variance, p 

    Matched MeSH terms: Tomography, X-Ray Computed/methods
  9. Jamaluddin S, Sulaiman AR, Imran MK, Juhara H, Ezane MA, Nordin S
    Singapore Med J, 2011 Sep;52(9):681-4.
    PMID: 21947147
    The aim of this study was to determine the reliability and accuracy of the tape measurement method (TMM) with a nearest reading of 5 mm in assessing leg length discrepancy (LLD).
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  10. Ramli N, Rahmat K, Tan GP
    Singapore Med J, 2008 Jul;49(7):e175-7.
    PMID: 18695851
    Malignant osteopetrosis is associated with petrous carotid canal and internal carotid artery stenosis in the skull base. We present a four-year-old boy with malignant osteopetrosis who developed right frontal lobe infarction as a result of bilateral internal carotid artery hypotrophy.
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  11. Abdullah KA, McEntee MF, Reed W, Kench PL
    J Med Radiat Sci, 2018 Sep;65(3):175-183.
    PMID: 29707915 DOI: 10.1002/jmrs.279
    INTRODUCTION: An ideal organ-specific insert phantom should be able to simulate the anatomical features with appropriate appearances in the resultant computed tomography (CT) images. This study investigated a 3D printing technology to develop a novel and cost-effective cardiac insert phantom derived from volumetric CT image datasets of anthropomorphic chest phantom.

    METHODS: Cardiac insert volumes were segmented from CT image datasets, derived from an anthropomorphic chest phantom of Lungman N-01 (Kyoto Kagaku, Japan). These segmented datasets were converted to a virtual 3D-isosurface of heart-shaped shell, while two other removable inserts were included using computer-aided design (CAD) software program. This newly designed cardiac insert phantom was later printed by using a fused deposition modelling (FDM) process via a Creatbot DM Plus 3D printer. Then, several selected filling materials, such as contrast media, oil, water and jelly, were loaded into designated spaces in the 3D-printed phantom. The 3D-printed cardiac insert phantom was positioned within the anthropomorphic chest phantom and 30 repeated CT acquisitions performed using a multi-detector scanner at 120-kVp tube potential. Attenuation (Hounsfield Unit, HU) values were measured and compared to the image datasets of real-patient and Catphan® 500 phantom.

    RESULTS: The output of the 3D-printed cardiac insert phantom was a solid acrylic plastic material, which was strong, light in weight and cost-effective. HU values of the filling materials were comparable to the image datasets of real-patient and Catphan® 500 phantom.

    CONCLUSIONS: A novel and cost-effective cardiac insert phantom for anthropomorphic chest phantom was developed using volumetric CT image datasets with a 3D printer. Hence, this suggested the printing methodology could be applied to generate other phantoms for CT imaging studies.

    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  12. Liew TS, Schilthuizen M
    PLoS One, 2016;11(6):e0157069.
    PMID: 27280463 DOI: 10.1371/journal.pone.0157069
    Quantitative analysis of organismal form is an important component for almost every branch of biology. Although generally considered an easily-measurable structure, the quantification of gastropod shell form is still a challenge because many shells lack homologous structures and have a spiral form that is difficult to capture with linear measurements. In view of this, we adopt the idea of theoretical modelling of shell form, in which the shell form is the product of aperture ontogeny profiles in terms of aperture growth trajectory that is quantified as curvature and torsion, and of aperture form that is represented by size and shape. We develop a workflow for the analysis of shell forms based on the aperture ontogeny profile, starting from the procedure of data preparation (retopologising the shell model), via data acquisition (calculation of aperture growth trajectory, aperture form and ontogeny axis), and data presentation (qualitative comparison between shell forms) and ending with data analysis (quantitative comparison between shell forms). We evaluate our methods on representative shells of the genera Opisthostoma and Plectostoma, which exhibit great variability in shell form. The outcome suggests that our method is a robust, reproducible, and versatile approach for the analysis of shell form. Finally, we propose several potential applications of our methods in functional morphology, theoretical modelling, taxonomy, and evolutionary biology.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  13. Yusof ANM, Thong HK, Kamalden TMIT
    Med Arch, 2020 Aug;74(4):312-314.
    PMID: 33041452 DOI: 10.5455/medarh.2020.74.312-314
    INTRODUCTION: Chondroblastoma is an uncommon benign, locally destructive tumor that usually arises from epiphyses of the long bones. Temporal bone chondroblastoma is an extremely rare occurrence. Chondroblastoma arise from immature cartilage cells and it may display certain malignant features by invading surrounding structures and metastasizing to adjacent sites.

    AIM: To present a case of extradural temporal bone chondroblastoma and discuss the clinical presentation, radiographic findings, histology and particularly the surgical management of the case.

    CASE REPORT: We report a case of a 31-year-old man who presented with a painless left temporal swelling and left sided hearing loss for four months. Computed tomography (CT) scan revealed an aggressive mass involving the left preauricular region with temporal mastoid bone erosion. Magnetic resonance imaging (MRI) showed an extra-axial left temporal mastoid mass pushing the left temporal lobe superiorly. The patient underwent complete excision of the temporal bone tumor. The final histopathological diagnosis was in keeping with chondroblastoma.

    CONCLUSION: Temporal bone chondroblastoma is rare but an aggressive condition. Complete tumor resection via an appropriate approach that enables adequate exposure will lead to a favorable outcome.

    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  14. Hashim N, Jamalludin Z, Ung NM, Ho GF, Malik RA, Phua VC
    Asian Pac J Cancer Prev, 2014;15(13):5259-64.
    PMID: 25040985
    BACKGROUND: CT based brachytherapy allows 3-dimensional (3D) assessment of organs at risk (OAR) doses with dose volume histograms (DVHs). The purpose of this study was to compare computed tomography (CT) based volumetric calculations and International Commission on Radiation Units and Measurements (ICRU) reference-point estimates of radiation doses to the bladder and rectum in patients with carcinoma of the cervix treated with high-dose-rate (HDR) intracavitary brachytherapy (ICBT).

    MATERIALS AND METHODS: Between March 2011 and May 2012, 20 patients were treated with 55 fractions of brachytherapy using tandem and ovoids and underwent post-implant CT scans. The external beam radiotherapy (EBRT) dose was 48.6 Gy in 27 fractions. HDR brachytherapy was delivered to a dose of 21 Gy in three fractions. The ICRU bladder and rectum point doses along with 4 additional rectal points were recorded. The maximum dose (DMax) to rectum was the highest recorded dose at one of these five points. Using the HDR plus 2.6 brachytherapy treatment planning system, the bladder and rectum were retrospectively contoured on the 55 CT datasets. The DVHs for rectum and bladder were calculated and the minimum doses to the highest irradiated 2cc area of rectum and bladder were recorded (D2cc) for all individual fractions. The mean D2cc of rectum was compared to the means of ICRU rectal point and rectal DMax using the Student's t-test. The mean D2cc of bladder was compared with the mean ICRU bladder point using the same statistical test .The total dose, combining EBRT and HDR brachytherapy, were biologically normalized to the conventional 2 Gy/fraction using the linear-quadratic model. (α/β value of 10 Gy for target, 3 Gy for organs at risk).

    RESULTS: The total prescribed dose was 77.5 Gy α/β10. The mean dose to the rectum was 4.58 ± 1.22 Gy for D 2cc, 3.76 ± 0.65 Gy at D ICRU and 4.75 ± 1.01 Gy at DMax. The mean rectal D 2cc dose differed significantly from the mean dose calculated at the ICRU reference point (p<0.005); the mean difference was 0.82 Gy (0.48 -1.19 Gy). The mean EQD2 was 68.52 ± 7.24 Gy α/β3 for D 2cc, 61.71 ± 2.77 Gy α/β3 at D ICRU and 69.24 ± 6.02 Gy α/β3 at DMax. The mean ratio of D 2cc rectum to D ICRU rectum was 1.25 and the mean ratio of D 2cc rectum to DMax rectum was 0.98 for all individual fractions. The mean dose to the bladder was 6.00 ± 1.90 Gy for D 2cc and 5.10 ± 2.03 Gy at D ICRU. However, the mean D 2cc dose did not differ significantly from the mean dose calculated at the ICRU reference point (p=0.307); the mean difference was 0.90 Gy (0.49-1.25 Gy). The mean EQD2 was 81.85 ± 13.03 Gy α/β3 for D 2cc and 74.11 ± 19.39 Gy α/β3 at D ICRU. The mean ratio of D 2cc bladder to D ICRU bladder was 1.24. In the majority of applications, the maximum dose point was not the ICRU point. On average, the rectum received 77% and bladder received 92% of the prescribed dose.

    CONCLUSIONS: OARs doses assessed by DVH criteria were higher than ICRU point doses. Our data suggest that the estimated dose to the ICRU bladder point may be a reasonable surrogate for the D 2cc and rectal DMax for D 2cc. However, the dose to the ICRU rectal point does not appear to be a reasonable surrogate for the D 2cc.

    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  15. Ch'ng LS, Bux SI, Liam CK, Rahman NA, Ho CY
    Korean J Radiol, 2013 Sep-Oct;14(5):859-62.
    PMID: 24043987 DOI: 10.3348/kjr.2013.14.5.859
    Pulmonary alveolar microlithiasis (PAM) is a rare chronic disease with paucity of symptoms in contrast to the imaging findings. We present a case of a 24-year-old Malay man having an incidental abnormal pre-employment chest radiograph of dense micronodular opacities giving the classical "sandstorm" appearance. High-resolution computed tomography of the lungs showed microcalcifications with subpleural cystic changes. Open lung biopsy showed calcospherites within the alveolar spaces. The radiological and histopathological findings were characteristic of PAM.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  16. Rajion ZA, Al-Khatib AR, Netherway DJ, Townsend GC, Anderson PJ, McLean NR, et al.
    Int J Pediatr Otorhinolaryngol, 2012 Feb;76(2):227-34.
    PMID: 22136741 DOI: 10.1016/j.ijporl.2011.11.008
    The purpose of this study was to use three-dimensional computed tomography data and computer imaging technology to assess the skeletal components of the naso-pharyngeal area in patients with cleft lip and palate and to quantify anatomical variations.
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  17. Pasha MF, Hong KS, Rajeswari M
    PMID: 22255503 DOI: 10.1109/IEMBS.2011.6091280
    Automating the detection of lesions in liver CT scans requires a high performance and robust solution. With CT-scan start to become the norm in emergency department, the need for a fast and efficient liver lesions detection method is arising. In this paper, we propose a fast and evolvable method to profile the features of pre-segmented healthy liver and use it to detect the presence of liver lesions in emergency scenario. Our preliminary experiment with the MICCAI 2007 grand challenge datasets shows promising results of a fast training time, ability to evolve the produced healthy liver profiles, and accurate detection of the liver lesions. Lastly, the future work directions are also presented.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  18. Yusof MI, Ming LK, Abdullah MS
    J Orthop Surg (Hong Kong), 2007 Aug;15(2):187-90.
    PMID: 17709859
    To measure the cervical pedicles and assess the feasibility of transpedicular fixation in a Malay population.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  19. Zain JM, Fauzi AM, Aziz AA
    Conf Proc IEEE Eng Med Biol Soc, 2007 10 20;2006:5459-62.
    PMID: 17946306
    Digital watermarking medical images provides security to the images. The purpose of this study was to see whether digitally watermarked images changed clinical diagnoses when assessed by radiologists. We embedded 256 bits watermark to various medical images in the region of non-interest (RONI) and 480K bits in both region of interest (ROI) and RONI. Our results showed that watermarking medical images did not alter clinical diagnoses. In addition, there was no difference in image quality when visually assessed by the medical radiologists. We therefore concluded that digital watermarking medical images were safe in terms of preserving image quality for clinical purposes.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  20. Saba L, Than JC, Noor NM, Rijal OM, Kassim RM, Yunus A, et al.
    J Med Syst, 2016 Jun;40(6):142.
    PMID: 27114353 DOI: 10.1007/s10916-016-0504-7
    Human interaction has become almost mandatory for an automated medical system wishing to be accepted by clinical regulatory agencies such as Food and Drug Administration. Since this interaction causes variability in the gathered data, the inter-observer and intra-observer variability must be analyzed in order to validate the accuracy of the system. This study focuses on the variability from different observers that interact with an automated lung delineation system that relies on human interaction in the form of delineation of the lung borders. The database consists of High Resolution Computed Tomography (HRCT): 15 normal and 81 diseased patients' images taken retrospectively at five levels per patient. Three observers manually delineated the lungs borders independently and using software called ImgTracer™ (AtheroPoint™, Roseville, CA, USA) to delineate the lung boundaries in all five levels of 3-D lung volume. The three observers consisted of Observer-1: lesser experienced novice tracer who is a resident in radiology under the guidance of radiologist, whereas Observer-2 and Observer-3 are lung image scientists trained by lung radiologist and biomedical imaging scientist and experts. The inter-observer variability can be shown by comparing each observer's tracings to the automated delineation and also by comparing each manual tracing of the observers with one another. The normality of the tracings was tested using D'Agostino-Pearson test and all observers tracings showed a normal P-value higher than 0.05. The analysis of variance (ANOVA) test between three observers and automated showed a P-value higher than 0.89 and 0.81 for the right lung (RL) and left lung (LL), respectively. The performance of the automated system was evaluated using Dice Similarity Coefficient (DSC), Jaccard Index (JI) and Hausdorff (HD) Distance measures. Although, Observer-1 has lesser experience compared to Obsever-2 and Obsever-3, the Observer Deterioration Factor (ODF) shows that Observer-1 has less than 10% difference compared to the other two, which is under acceptable range as per our analysis. To compare between observers, this study used regression plots, Bland-Altman plots, two tailed T-test, Mann-Whiney, Chi-Squared tests which showed the following P-values for RL and LL: (i) Observer-1 and Observer-3 were: 0.55, 0.48, 0.29 for RL and 0.55, 0.59, 0.29 for LL; (ii) Observer-1 and Observer-2 were: 0.57, 0.50, 0.29 for RL and 0.54, 0.59, 0.29 for LL; (iii) Observer-2 and Observer-3 were: 0.98, 0.99, 0.29 for RL and 0.99, 0.99, 0.29 for LL. Further, CC and R-squared coefficients were computed between observers which came out to be 0.9 for RL and LL. All three observers however manage to show the feature that diseased lungs are smaller than normal lungs in terms of area.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links