Displaying publications 61 - 80 of 176 in total

Abstract:
Sort:
  1. Othman F, M E AE, Mohamed I
    J Environ Monit, 2012 Dec;14(12):3164-73.
    PMID: 23128415 DOI: 10.1039/c2em30676j
    Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as agricultural or urban runoff and commercial activity.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data*
  2. Fulazzaky MA
    Environ Monit Assess, 2013 Jan;185(1):523-35.
    PMID: 22373956 DOI: 10.1007/s10661-012-2572-6
    Surface water is one of the essential resources for supporting sustainable development. The suitability of such water for a given use depends both on the available quantity and tolerable quality. Temporary status for a surface water quality has been identified extensively. Still the suitability of the water for different purposes needs to be verified. This study proposes a water quality evaluation system to assess the aptitude of the Selangor River water for aquatic biota, drinking water production, leisure and aquatic sport, irrigation use, livestock watering, and aquaculture use. Aptitude of the water has been classified in many parts of the river segment as unsuitable for aquatic biota, drinking water production, leisure and aquatic sport as well as aquaculture use. The water quality aptitude classes of the stream water for nine locations along the river are evaluated to contribute to decision support system. The suitability of the water for five different uses and its aquatic ecosystem are verified.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  3. Fauziah SH, Agamuthu P
    Waste Manag Res, 2012 Jul;30(7):656-63.
    PMID: 22455994 DOI: 10.1177/0734242X12437564
    In Malaysia, landfills are being filled up rapidly due to the current daily generation of approximately 30,000 tonnes of municipal solid waste. This situation creates the crucial need for improved landfilling practices, as sustainable landfilling technology is yet to be achieved here. The objective of this paper is to identify and evaluate the development and trends in landfilling practices in Malaysia. In 1970, the disposal sites in Malaysia were small and prevailing waste disposal practices was mere open-dumping. This network of relatively small dumps, typically located close to population centres, was considered acceptable for a relatively low population of 10 million in Malaysia. In the 1980s, a national programme was developed to manage municipal and industrial wastes more systematically and to reduce adverse environmental impacts. The early 1990s saw the privatization of waste management in many parts of Malaysia, and the establishment of the first sanitary landfills for MSW and an engineered landfill (called 'secure landfill' in Malaysia) for hazardous waste. A public uproar in 2007 due to contamination of a drinking water source from improper landfilling practices led to some significant changes in the government's policy regarding the country's waste management strategy. Parliament passed the Solid Waste and Public Cleansing Management (SWPCM) Act 2007 in August 2007. Even though the Act is yet to be implemented, the government has taken big steps to improve waste management system further. The future of the waste management in Malaysia seems somewhat brighter with a clear waste management policy in place. There is now a foundation upon which to build a sound and sustainble waste management and disposal system in Malaysia.
    Matched MeSH terms: Water Pollution/prevention & control
  4. Suratman S, Tahir NM, Latif MT
    Bull Environ Contam Toxicol, 2012 May;88(5):755-8.
    PMID: 22392007 DOI: 10.1007/s00128-012-0574-2
    The distribution of total petrogenic hydrocarbon was investigated in the subsurface water of Setiu Wetland from July to October 2008. The concentration was quantified by UV-fluorescence spectroscopy and ranged from 4 to 121 μg/L (mean 60 ± 41 μg/L). Higher total petrogenic hydrocarbon concentrations were found in area with high boating activities suggesting that the contribution is likely related to fossil fuel combustion. The present study also revealed that the total petrogenic hydrocarbon values are still lower that those reported in Malaysian coastal waters.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  5. Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B
    J Environ Manage, 2011 Oct;92(10):2355-88.
    PMID: 21708421 DOI: 10.1016/j.jenvman.2011.06.009
    The contamination of groundwater by heavy metal, originating either from natural soil sources or from anthropogenic sources is a matter of utmost concern to the public health. Remediation of contaminated groundwater is of highest priority since billions of people all over the world use it for drinking purpose. In this paper, thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes. Comparison tables have been provided at the end of each process for a better understanding of each category. Selection of a suitable technology for contamination remediation at a particular site is one of the most challenging job due to extremely complex soil chemistry and aquifer characteristics and no thumb-rule can be suggested regarding this issue. In the past decade, iron based technologies, microbial remediation, biological sulphate reduction and various adsorbents played versatile and efficient remediation roles. Keeping the sustainability issues and environmental ethics in mind, the technologies encompassing natural chemistry, bioremediation and biosorption are recommended to be adopted in appropriate cases. In many places, two or more techniques can work synergistically for better results. Processes such as chelate extraction and chemical soil washings are advisable only for recovery of valuable metals in highly contaminated industrial sites depending on economical feasibility.
    Matched MeSH terms: Water Pollution*
  6. Sapari P, Ismail BS
    Environ Monit Assess, 2012 Oct;184(10):6347-56.
    PMID: 22089624 DOI: 10.1007/s10661-011-2424-9
    The purpose of this study was to investigate the potential risk of pretilachlor, thiobencarb, and propanil pollutants in the water system of the rice fields of the Muda area. The study included two areas that used different irrigation systems namely non-recycled (N-RCL) and recycled (RCL) water. Regular water sampling was carried out at the drainage canals during the weeding period from September to October 2006 in the main season of 2006/2007 and April-May 2007 in off season of 2007. The herbicides were extracted by the solid-phase extraction method and identified using a GC-ECD. Results showed that the procedure for identification of the three herbicides was acceptable based on the recovery test values, which ranged from 84.1% to 96.9%. A wide distribution pattern where more than 79% of the water samples contained the herbicide pollutants was observed at both the areas where N-RCL and RCL water was supplied for the two seasons. During September to October 2006, high weedicide residue concentration was observed at the N-RCL area and it ranged from 0.05 to 1.00 μg/L for pretilachlor and propanil and 10-25 μg/L for thiobencarb. In the case of the area with RCL water, the weedicide residue ranged from 1 to 5 μg/L for pretilachlor and propanil and 10-25 μg/L for thiobencarb. The highest residue level reached was 25-50, 50-100, and 100-200 μg/L for pretilachlor, propanil, and thiobencarb, respectively. During April to May 2007, high residue concentration frequently occurred at the area supplied with N-RCL irrigation water and it ranged from 0.05 to 1.00, 10 to 25, and 25 to 50 μg/L for pretilachlor, propanil, and thiobencarb, respectively. The highest residue level reached was 25-50 μg/L for pretilachlor and 100-200 μg/L for propanil and thiobencarb. There was an accelerated increase in the concentration of the herbicide residues, with the maximum levels reached at the early period of weedicide application, followed by a sharp decrease after the rice fields were completely covered with the rice crop. During the main season of 2006/2007, the concentration of propanil residue gradually rose, although that of the other herbicides declined.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  7. Al-Shami S, Rawi CS, Nor SA, Ahmad AH, Ali A
    Environ Entomol, 2010 Feb;39(1):210-22.
    PMID: 20146859 DOI: 10.1603/EN09109
    Morphological deformities in parts of the head capsule of Chironomus spp. larvae inhabiting three polluted rivers (Permatang Rawa [PRR], Pasir [PR], and Kilang Ubi [KUR]) in the Juru River Basin, northeastern peninsular Malaysia, were studied. Samples of the fourth-instar larvae at one location in each river were collected monthly from November 2007 to March 2008 and examined for deformities of the mentum, antenna, mandible, and epipharyngis. At each sample location, in situ measurements of water depth, river width, water pH, dissolved oxygen, and water temperature were made. Samples of river water and benthic sediments were also collected monthly from each larval sample location in each river and taken to the laboratory for appropriate analysis. Total suspended solids (TSSs), ammonium-N, nitrate-N, phosphate-P, chloride, sulfate, and aluminum content in water were analyzed. Total organic matter and nonresidual metals in the sediment samples were also analyzed. Among the three rivers, the highest mean deformity (47.17%) was recorded in larvae collected from KUR that received industrial discharges from surrounding garment and rubber factories, followed by PRR (33.71%) receiving primarily residues of fertilizers and pesticides from adjacent rice fields, and PR (30.34%) contaminated primarily by anthropogenic wastes from the surrounding residential areas. Among the various head capsule structures, deformity of the mentum was strongly reflective of environmental stress and amounted to 27.9, 20.87, and 30.19% in the PRR, PR, and KUR, respectively. Calculated Lenat's toxic score index satisfactorily explained the influence of prevailing environmental variables on the severity of mentum deformities. Redundancy analysis and forward selection selected TSSs, sediment Zn, Mn, Cu, and Ni, and water pH, dissolved oxygen, water temperature, total organic matter, nitrate-N, chloride, phosphate-P, ammonium-N, sulfate, and aluminum as parameters that significantly affected some proportion of deformities. The total deformities correlated closely with deformities of mentum but only weakly with deformities in other parts of head. The total deformity incidence was strongly correlated with high contents of sediment Mn and Ni. The mentum and epipharyngis deformities incidence was highly correlated with an increase of TSSs, total aluminum, and ammonium-N and a decrease in pH and dissolved oxygen.
    Matched MeSH terms: Water Pollution/adverse effects*
  8. Zahed MA, Nabi Bidhendi G, Pardakhti A, Esmaili-Sari A, Mohajeri S
    Bull Environ Contam Toxicol, 2009 Dec;83(6):899-902.
    PMID: 19760353 DOI: 10.1007/s00128-009-9874-6
    Polychlorinated biphenyl (PCB) was detected as isomer groups (congener numbers 28, 52, 101, 118, 138, 153 and 180) in the coastal water and sediment of four stations around Shadegan wetland protected area in the northwestern part of the Persian Gulf. Total PCB concentration range was 8-375 ng/L in water and 3.4-50.2 μg/g in sediment. Concentration of different congeners and chromatogram indicates that the source of PCB in this area can be Clophen A60; it used for long time in Iranian electronic industries. Other chlorinated hydrocarbons such as lindane, DDT and their metabolites were also present in the samples.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  9. Prasanna MV, Chidambaram S, Shahul Hameed A, Srinivasamoorthy K
    Environ Monit Assess, 2010 Sep;168(1-4):63-90.
    PMID: 19609693 DOI: 10.1007/s10661-009-1092-5
    Gadilam river basin has gained its importance due to the presence of Neyveli Lignite open cast mines and other industrial complexes. It is also due to extensive depressurization of Cuddalore aquifer, and bore wells for New Veeranam Scheme are constructed downstream of the basin. Geochemical indicators of groundwater were used to identify the chemical processes that control hydrogeochemistry. Chemical parameters of groundwater such as pH, electrical conductivity, total dissolved solids, sodium (Na(+)), potassium (K(+)), calcium (Ca(+)), magnesium (Mg(+)), bicarbonate (HCO(-)(3)), sulfate (SO(-)(4)), phosphate (PO(-)(4)), and silica (H(4)SiO(4)) were determined. Interpretation of hydrogeochemical data suggests that leaching of ions followed by weathering and anthropogenic impact controls the chemistry of the groundwater. Isotopic study reveals that recharge from meteoric source in sedimentary terrain and rock-water interaction with significant evaporation prevails in hard rock region.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  10. Zulkifli SZ, Mohamat-Yusuff F, Arai T, Ismail A, Miyazaki N
    Environ Monit Assess, 2010 Oct;169(1-4):457-72.
    PMID: 19856123 DOI: 10.1007/s10661-009-1189-x
    Concentrations of 11 trace elements (V, Cr, Co, Ni, Cu, Zn, As, Ag, Cd, Pb, and U) were determined in the intertidal surface sediments of Peninsular Malaysia. The average trace element concentrations are ranked as follows: Zn>V>As>Cr>Pb>Cu>Ni>Co>U>g>Cd. Interim Sediment Quality Guidelines (ISQGs) employed in present study are the Australia and New Zealand joint guideline (ANZECC/ARMCANZ), and the Hong Kong authorities. From the pooled data, none of these trace elements have the average concentration above the ISQG-high values. However, As and Ag average concentrations were over the ISQG-low values. Some elements were found to have the average concentration above the ISQG-high and/or ISQG-low in certain locations, including Kampung Pasir Putih (JPP), Lumut Port (ALP), Kuala Perai (PKP), Port Dickson (NPD), and others. The lowest and highest concentrations in a specific sampling location and maritime area varied among the elements, variations that were greatly affected by natural and anthropogenic activities in a given area. For each trace element, there were various levels of concentration among the sampling locations and maritime areas. These patterns indicated pollutant sources of an element for each area perhaps derived from nearby areas and did not widely distributed to other locations. It is necessary for Malaysia to develop an ISQG for effective quick screening and evaluation of the coastal environment of Peninsular Malaysia.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  11. Fulazzaky MA
    Environ Monit Assess, 2010 Sep;168(1-4):669-84.
    PMID: 19728125 DOI: 10.1007/s10661-009-1142-z
    Water quality degradation in the Citarum river will increase from the year to year due to increasing pollutant loads when released particularly from Bandung region of the upstream areas into the river without treatment. This will be facing the problems on water quality status to use for multi-purposes in the downstream areas. The water quality evaluation system is used to evaluate the available water condition that distinguishes into two categories, i.e., the water quality index (WQI) and water quality aptitude (WQA). The assessment of water quality for the Citarum river from 10 selected stations was found that the WQI situates in the bad category generally and the WQA ranges from the suitable quality for agriculture and livestock watering uses to the unsuitable for biological potential function, drinking water production, and leisure activities and sports in the upstream areas of Saguling dam generally.
    Matched MeSH terms: Water Pollution/statistics & numerical data
  12. Alkarkhi AF, Ahmad A, Ismail N, Easa AM
    Environ Monit Assess, 2008 Aug;143(1-3):179-86.
    PMID: 17899414
    Multivariate statistical techniques such as multivariate analysis of variance (MANOVA) and discriminant analysis (DA) were applied for analyzing the data obtained from two rivers in the Penang State of Malaysia for the concentration of heavy metal ions (As, Cr, Cd, Zn, Cu, Pb, and Hg) using a flame atomic absorption spectrometry (F-AAS) for Cr, Cd, Zn, Cu, Pb, As and cold vapor atomic absorption spectrometry (CV-AAS) for Hg. The two locations of interest with 20 sampling points of each location were Kuala Juru (Juru River) and Bukit Tambun (Jejawi River). MANOVA showed a strong significant difference between the two rivers in terms of heavy metal concentrations in water samples. DA gave the best result to identify the relative contribution for all parameters in discriminating (distinguishing) the two rivers. It provided an important data reduction as it used four parameters (Zn, Pb, Cd and Cr) affording 100% correct assignations. Results indicated that the two rivers were different in terms of heavy metals concentrations in water, and the major difference was due to the contribution of Zn. A negative correlation was found between discriminate functions (DF) and Cr and As, whereas positive correlation was exhibited with other heavy metals. Therefore, DA allowed a reduction in the dimensionality of the data set, delineating a few indicator parameters responsible for large variations in heavy metal concentrations. Correlation matrix between the parameters exhibited a strong evidence of mutual dependence of these metals.
    Matched MeSH terms: Water Pollution/analysis*
  13. Praveena SM, Aris AZ
    Mar Pollut Bull, 2013 Feb 15;67(1-2):196-9.
    PMID: 23260650 DOI: 10.1016/j.marpolbul.2012.11.037
    Tidal variation in tropical coastal water plays an important role on physicochemical characteristics and nutrients concentration. Baseline measurements were made for nutrients concentration and physicochemical properties of coastal water, Port Dickson, Malaysia. pH, temperature, oxidation reduction potential, salinity and electrical conductivity have high values at high tides. Principal Components Analysis (PCA) was used to understand spatial variation of nutrients and physicochemical pattern of Port Dickson coastal water at high and low tide. Four principal components of PCA were extracted at low and high tides. Positively loaded nutrients with negative loadings of DO, pH and ORP in PCA outputs indicated nutrients contribution related with pollution sources. This study output will be a baseline frame for future studies in Port Dickson involving water and sediment samples. Water and sediment samples of future monitoring studies in Port Dickson coastal water will help in understanding of coastal water chemistry and pollution sources.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  14. Arai T
    Mar Pollut Bull, 2013 Feb 15;67(1-2):166-76.
    PMID: 23246303 DOI: 10.1016/j.marpolbul.2012.11.006
    The bioaccumulation of organochlorines (OCs) in the muscle tissue of sea-run (anadromous) and freshwater-resident (fluvial) white-spotted charr (Salvelinus leucomaenis) was determined to assess the ecological risk related to intraspecies variations in diadromous fish life history as they migrate between sea and freshwater. Generally, there were significant correlations between the accumulation of OCs such as DDTs, HCB, HCHs and CHLs. In addition, various biological characteristics, such as total length (TL), body weight (BW) and age, and number of downstream migration (NDM) were correlated. A positive correlation occurred between the lipid content and the OC concentrations. Close linear relationships were found between TL, BW and NDM and the lipid content. Although they are both the same species, the OCs concentrations in the anadromous fish were significantly higher than those in the fluvial individuals. These results suggest that anadromous S. leucomaenis have a higher ecological risk for OCs exposure than the fluvial fish.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  15. Ryan PG
    Mar Pollut Bull, 2013 Apr 15;69(1-2):128-36.
    PMID: 23415747 DOI: 10.1016/j.marpolbul.2013.01.016
    A size and distance-based technique was used to assess the distribution, abundance and composition of floating marine debris in the northeast Indian Ocean. Densities of floating litter (>1 cm) were greater and more variable in the Straits of Malacca (578±219 items km(-2)) than in oceanic waters of the Bay of Bengal (8.8±1.4 items km(-2)). The density of debris in the Straits was correlated with terrestrial vegetation, and peaked close to urban centres, indicating the predominance of land-based sources. In the Bay of Bengal, debris density increased north of 17°N mainly due to small fragments probably carried in run-off from the Ganges Delta. The low densities in the Bay of Bengal relative to model predictions may result from biofouling-induced sinking and wind-driven export of debris items. Standardised data collection protocols are needed for counts of floating debris, particularly as regards the size classes used, to facilitate comparisons among studies.
    Matched MeSH terms: Water Pollution/statistics & numerical data
  16. Ali HR, Arifin MM, Sheikh MA, Mohamed Shazili NA, Bachok Z
    Mar Pollut Bull, 2013 May 15;70(1-2):253-7.
    PMID: 23490347 DOI: 10.1016/j.marpolbul.2013.02.024
    Emerging booster biocides contamination raises particular attention in the marine ecosystem health. This study provides the baseline data on the occurrence of Irgarol-1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamiono-s-triazine) in the selected coastal water around Malaysia. The maximum detected concentration of Irgarol was 2021 ng/L at Klang West, commercial and cargo port. Coral reef Islands (Redang and Bidong) were relatively less contaminated compared to other coastal areas. The temporal variation revealed that only 1% of 28 stations sampled on November, 2011 was above the environmental risk limit of 24 ng/L as suggested by Dutch Authorities, while in January and April, 2012; 46% and 92% of the stations were above the limit respectively. The present findings demonstrate the wide detection of novel antifouling materials Irgarol-1051 which advocates the need for proper monitoring and conservation strategies for the coastal resources.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  17. Retnam A, Zakaria MP, Juahir H, Aris AZ, Zali MA, Kasim MF
    Mar Pollut Bull, 2013 Apr 15;69(1-2):55-66.
    PMID: 23452623 DOI: 10.1016/j.marpolbul.2013.01.009
    This study investigated polycyclic aromatic hydrocarbons (PAHs) pollution in surface sediments within aquaculture areas in Peninsular Malaysia using chemometric techniques, forensics and univariate methods. The samples were analysed using soxhlet extraction, silica gel column clean-up and gas chromatography mass spectrometry. The total PAH concentrations ranged from 20 to 1841 ng/g with a mean of 363 ng/g dw. The application of chemometric techniques enabled clustering and discrimination of the aquaculture sediments into four groups according to the contamination levels. A combination of chemometric and molecular indices was used to identify the sources of PAHs, which could be attributed to vehicle emissions, oil combustion and biomass combustion. Source apportionment using absolute principle component scores-multiple linear regression showed that the main sources of PAHs are vehicle emissions 54%, oil 37% and biomass combustion 9%. Land-based pollution from vehicle emissions is the predominant contributor of PAHs in the aquaculture sediments of Peninsular Malaysia.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  18. Leo CP, Yahya MZ, Kamal SN, Ahmad AL, Mohammad AW
    Water Sci Technol, 2013;67(4):831-7.
    PMID: 23306262 DOI: 10.2166/wst.2012.625
    Aquaculture activities in developing countries have raised deep concern about nutrient pollution, especially excess phosphorus in wastewater, which leads to eutrophication. NF, NF90, NF450 and XLE membranes were studied to forecast the potential of nanofiltration and low pressure reverse osmosis in the removal of phosphorus from aquaculture wastewater. Cross-sectional morphology, water contact angle, water permeability and zeta potential of these membranes were first examined. Membrane with higher porosity and greater hydrophilicity showed better permeability. Membrane samples also commonly exhibited high zeta potential value in the polyphosphate-rich solution. All the selected membranes removed more than 90% of polyphosphate from the concentrated feed (75 mg/L) at 12 bar. The separation performance of XLE membrane was well maintained at 94.6% even at low pressure. At low feed concentration, more than 70.0% of phosphorus rejection was achieved using XLE membrane. The formation of intermolecular bonds between polyphosphate and the acquired membranes probably had improved the removal of polyphosphate at high feed concentration. XLE membrane was further tested and its rejection of polyphosphate reduced with the decline of pH and the addition of ammonium nitrate.
    Matched MeSH terms: Water Pollution, Chemical/prevention & control*
  19. Obaid HA, Shahid S, Basim KN, Chelliapan S
    Water Sci Technol, 2015;72(6):1029-42.
    PMID: 26360765 DOI: 10.2166/wst.2015.297
    Water pollution during festival periods is a major problem in all festival cities across the world. Reliable prediction of water pollution is essential in festival cities for sewer and wastewater management in order to ensure public health and a clean environment. This article aims to model the biological oxygen demand (BOD(5)), and total suspended solids (TSS) parameters in wastewater in the sewer networks of Karbala city center during festival and rainy days using structural equation modeling and multiple linear regression analysis methods. For this purpose, 34 years (1980-2014) of rainfall, temperature and sewer flow data during festival periods in the study area were collected, processed, and employed. The results show that the TSS concentration increases by 26-46 mg/l while BOD(5) concentration rises by 9-19 mg/l for an increase of rainfall by 1 mm during festival periods. It was also found that BOD(5) concentration rises by 4-17 mg/l for each increase of 10,000 population.
    Matched MeSH terms: Water Pollution/analysis
  20. Serrano O, Davis G, Lavery PS, Duarte CM, Martinez-Cortizas A, Mateo MA, et al.
    Sci Total Environ, 2016 Jan 15;541:883-894.
    PMID: 26437357 DOI: 10.1016/j.scitotenv.2015.09.017
    The study of a Posidonia australis sedimentary archive has provided a record of changes in element concentrations (Al, Fe, Mn, Pb, Zn, Cr, Cd, Co, As, Cu, Ni and S) over the last 3000 years in the Australian marine environment. Human-derived contamination in Oyster Harbor (SW Australia) started ~100 years ago (AD ~1900) and exponentially increased until present. This appears to be related to European colonization of Australia and the subsequent impact of human activities, namely mining, coal and metal production, and extensive agriculture. Two contamination periods of different magnitude have been identified: Expansion period (EXP, AD ~1900-1970) and Establishment period (EST, AD ~1970 to present). Enrichments of chemical elements with respect to baseline concentrations (in samples older than ~115 cal years BP) were found for all elements studied in both periods, except for Ni, As and S. The highest enrichment factors were obtained for the EST period (ranging from 1.3-fold increase in Cu to 7.2-fold in Zn concentrations) compared to the EXP period (1.1-fold increase for Cu and Cr to 2.4-fold increase for Pb). Zinc, Pb, Mn and Co concentrations during both periods were 2- to 7-fold higher than baseline levels. This study demonstrates the value of Posidonia mats as long-term archives of element concentrations and trends in coastal ecosystems. We also provide preliminary evidence on the potential for Posidonia meadows to act as significant long-term biogeochemical sinks of chemical elements.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links