Displaying publications 61 - 80 of 516 in total

Abstract:
Sort:
  1. Noor MJ, Muyibi SA, Ahmed T, Ghazall AH, Jusoh A, Idris A, et al.
    Water Sci Technol, 2002;46(9):331-8.
    PMID: 12448486
    A laboratory study was conducted on an Extended Aeration-Microfiltration (EAM) reactor in treating a food industry wastewater. The reactor contained horizontally laid hollow fibre microfiltration (MF) units that were fully submerged. The MF units were connected to a peristaltic pump that was used to extract permeate continuously under suction pressure. Continuous aeration from beneath the modules provided the crossflow effect to the MF units. Active activated sludge was used in the start-up where the sludge was mixed together with the feed water at a Food/Microorganisms (F/M) value of about 0.1. Primary effluent with Chemical Oxygen Demand (COD) values ranged between 1,500 and 3,000 mg/l was used as feed water. The EAM reactor was operated for nearly three months without initiating cleaning of the MF units. A suction pressure of 0.9 bar and Mixed Liquor Suspended Solids (MLSS) of over 5,500 mg/l were reached when nearing the end of the three month operation period. Permeate COD and turbidity reduction of over 97% and 99% respectively, were achieved. Prior to this, the MF module arrangements were studied; where vertically arranged modules were found to perform poorly as compared to the horizontally laid modules, in terms of clean water permeate flux.
    Matched MeSH terms: Water Purification/methods*
  2. Priya AK, Pachaiappan R, Kumar PS, Jalil AA, Vo DN, Rajendran S
    Environ Pollut, 2021 Apr 15;275:116598.
    PMID: 33581625 DOI: 10.1016/j.envpol.2021.116598
    Anthropogenic activities and population growth have resulted in a reduced availability of drinking water. To ensure consistency in the existence of drinking water, it is inevitable to establish wastewater treatment plants (WWTPs). 70% of India's rural population was found to be without WWTP, waste disposal, and good sanitation. Wastewater has emerged from kitchens, washrooms, etc., with industry activities. This scenario caused severe damage to water resources, leading to degradation of water quality and pathogenic insects. Thus, it is a need of an hour to prompt for better WWTPs for both rural and urban areas. Many parts of the world have started to face severe water shortages in recent years, and wastewater reuse methods need to be updated. Clean water supply is not enough to satisfy the needs of the planet as a whole, and the majority of freshwater in the polar regions takes the form of ice and snow. The increasing population requires clean water for drinks, hygiene, irrigation, and various other applications. Lack of water and contamination of water result from human activities. 90% of wastewater is released to water systems without treatment in developing countries. Studies show that about 730 megatons of waste are annually discharged into water from sewages and other effluents. The sustenance of water resources, applying wastewater treatment technologies, and calling down the percentage of potable water has to be strictly guided by mankind. This review compares the treatment of domestic sewage to its working conditions, energy efficiency, etc. In this review, several treatment methods with different mechanisms involved in waste treatment, industrial effluents, recovery/recycling were discussed. The feasibility of bioaugmentation should eventually be tested through data from field implementation as an important technological challenge, and this analysis identifies many promising areas to be explored in the future.
    Matched MeSH terms: Water Purification*
  3. Chua SC, Show PL, Chong FK, Ho YC
    Water Sci Technol, 2020 Nov;82(9):1833-1847.
    PMID: 33201847 DOI: 10.2166/wst.2020.409
    Increasing agricultural irrigation to counteract a soil moisture deficit has resulted in the production of hazardous agricultural wastewater with high turbidity and chemical oxygen demand (COD). An innovative, sustainable, and effective solution is needed to overcome the pollution and water scarcity issues caused by the agricultural anthropogenic processes. This research focused on a sustainable solution that utilized a waste (broken lentil) as natural coagulant for turbidity and COD removal in agricultural wastewater treatment. The efficiency of the lentil extract (LE), grafted lentil extract (LE-g-DMC) and aluminium sulphate (alum) coagulants was optimized through the response surface methodology. Three-level Box-Behnken design was used to statistically visualize the complex interactions of pH, concentration of coagulants and settling time. LE achieved a significant 99.55% and 79.87% removal of turbidity and COD at pH 4, 88.46 mg/L of LE and 6.9 minutes of settling time, whereas LE-g-DMC achieved 99.83% and 80.32% removal of turbidity and COD at pH 6.7, 63.08 mg/L of LE-g-DMC and 5 minutes of settling time. As compared to alum, LE-g-DMC required approximately 30% less concentration. Moreover, LE and LE-g-DMC also required 75% and 65% less settling time as compared to the alum. Both LE and LE-g-DMC produced flocs with excellent settling ability (5.77 mg/L and 4.48 mL/g) and produced a significant less volume of sludge (10.60 mL/L and 8.23 mL/L) as compared with the alum. The economic analysis and assessments have proven the feasibility of both lentil-based coagulants in agricultural wastewater treatment.
    Matched MeSH terms: Water Purification*
  4. Al-Raad AA, Hanafiah MM, Naje AS, Ajeel MA
    Environ Pollut, 2020 Oct;265(Pt B):115049.
    PMID: 32599327 DOI: 10.1016/j.envpol.2020.115049
    In this study, a novel rotating anode-based reactor (RAR) was designed to investigate its effectiveness in removing dissolved salts (i.e., Br-, Cl-, TDS, and SO42-) from saline water samples. Two configurations of an impeller's rotating anode with various operation factors, such as operating time (min), rotating speed (rpm), current density (mA/cm2), temperature (°C), pH, and inter-electrode space (cm), were used in the desalination process. The total cost consumed was calculated on the basis of the energy consumption and aluminum (Al) used in the desalination. In this respect, operating costs were calculated using optimal operating conditions. Salinity was removed electrochemically from saline water through electrocoagulation (EC). Results showed that the optimal adjustments for treating saline water were carried out at the following conditions: 150 and 75 rpm rotating speeds for the impeller's rod anode and plate anode designs, respectively; 2 mA/cm2 current density (I), 1 cm2 inter-electrode space, 25 °C temperature, 10 min operation time, and pH 8. The results indicated that EC technology with impeller plates of rotating anode can be considered a very cost-effective technique for treating saline water.
    Matched MeSH terms: Water Purification*
  5. Abdullah FH, Abu Bakar NHH, Abu Bakar M
    J Hazard Mater, 2021 03 15;406:124779.
    PMID: 33338763 DOI: 10.1016/j.jhazmat.2020.124779
    Zinc oxide (ZnO) photocatalysts were successfully synthesized via chemical and green, environmentally-benign methods. The work highlights the valorization of banana peel (BP) waste extract as the reducing and capping agents to produce pure, low temperature, highly crystalline, and effective ZnO nanoparticles with superior photocatalytic activities for the removal of hazardous Basic Blue 9 (BB9), crystal violet (CV), and cresol red (CR) dyes in comparison to chemically synthesized ZnO. Their formation and morphologies were verified by various optical spectroscopic and electron microscopic techniques. XRD results revealed that the biosynthesized ZnO exhibited 15.3 nm crystallite size when determined by Scherrer equation, which was smaller than the chemically synthesized ZnO. The FTIR spectra confirmed the presence of biomolecules in the green-mediated catalyst. EDX and XPS analyses verified the purity and chemical composition of ZnO. Nitrogen sorption analysis affirmed the high surface area of bio-inspired ZnO. Maximum removal efficiencies were achieved with 30 mg green ZnO catalyst, 2.0 × 10-5 M BB9 solution, alkaline pH 12, and irradiation time 90 min. Green-mediated ZnO showed superior photodegradation efficiency and reusability than chemically synthesized ZnO. Therefore, this economical, environment-friendly photocatalyst is applicable for the removal of organic contaminants in wastewater treatment under visible light irradiation.
    Matched MeSH terms: Water Purification*
  6. Mengting Z, Kurniawan TA, Avtar R, Othman MHD, Ouyang T, Yujia H, et al.
    J Hazard Mater, 2021 03 05;405:123999.
    PMID: 33288338 DOI: 10.1016/j.jhazmat.2020.123999
    We test the feasibility of TiO2(B)@carbon composites as adsorbents, derived from wheat straws, for tetracycline (TC) adsorption from aqueous solutions. Hydrochar (HC), biochar (BC), and hydrochar-derived pyrolysis char (HDPC) are synthesized hydrothermally from the waste and then functionalized with TiO2(B), named as 'Composite-1', 'Composite-2', and 'Composite-3', respectively. A higher loading of TiO2(B) into the HC was also synthesized for comparison, named as 'Composite-4'. To compare their physico-chemical changes before and after surface modification, the composites are characterized using FESEM-EDS, XRD, BET, FRTEM, and FTIR. The effects of H2O2 addition on TC removal are investigated. Adsorption kinetics and isotherms of TC removal are studied, while TC adsorption mechanisms are elaborated. We found that the Composite-4 has the highest TC removal (93%) at pH 7, 1 g/L of dose, and 4 h of reaction time at 50 mg/L of TC after adding H2O2 (10 mM). The TC adsorption capacities of the Composite-1 and Composite-4 are 40.65 and 49.26 mg/g, respectively. The TC removal by the Composite-1 follows the pseudo-second order. Overall, this suggests that converting the wheat straw into HC and then functionalizing its surface with TiO2(B) as a composite has added values to the waste as an adsorbent for wastewater treatment.
    Matched MeSH terms: Water Purification*
  7. Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, et al.
    J Hazard Mater, 2021 08 15;416:125912.
    PMID: 34492846 DOI: 10.1016/j.jhazmat.2021.125912
    Emerging contaminants (ECs) in wastewater have recently attracted the attention of researchers as they pose significant risks to human health and wildlife. This paper presents the state-of-art technologies used to remove ECs from wastewater through a comprehensive review. It also highlights the challenges faced by existing EC removal technologies in wastewater treatment plants and provides future research directions. Many treatment technologies like biological, chemical, and physical approaches have been advanced for removing various ECs. However, currently, no individual technology can effectively remove ECs, whereas hybrid systems have often been found to be more efficient. A hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides. Despite the lack of extensive research, nanotechnology may be a promising approach as nanomaterial incorporated technologies have shown potential in removing different contaminants from wastewater. Nevertheless, most existing technologies are highly energy and resource-intensive as well as costly to maintain and operate. Besides, most proposed advanced treatment technologies are yet to be evaluated for large-scale practicality. Complemented with techno-economic feasibility studies of the treatment techniques, comprehensive research and development are therefore necessary to achieve a full and effective removal of ECs by wastewater treatment plants.
    Matched MeSH terms: Water Purification*
  8. Kanakaraju D, Glass BD, Oelgemöller M
    J Environ Manage, 2018 Aug 01;219:189-207.
    PMID: 29747102 DOI: 10.1016/j.jenvman.2018.04.103
    Pharmaceuticals, which are frequently detected in natural and wastewater bodies as well as drinking water have attracted considerable attention, because they do not readily biodegrade and may persist and remain toxic. As a result, pharmaceutical residues pose on-going and potential health and environmental risks. To tackle these emerging contaminants, advanced oxidation processes (AOPs) such as photo-Fenton, sonolysis, electrochemical oxidation, radiation and ozonation etc. have been applied to remove pharmaceuticals. These processes utilize the high reactivity of hydroxyl radicals to progressively oxidize organic compounds to innocuous products. This review provides an overview of the findings from recent studies, which have applied AOPs to degrade pharmaceutical compounds. Included is a discussion that links various factors of TiO2-mediated photocatalytic treatment to its effectiveness in degrading pharmaceutical residues. This review furthermore highlights the success of AOPs in the removal of pharmaceuticals from different water matrices and recommendations for future studies are outlined.
    Matched MeSH terms: Water Purification*
  9. Ooi TY, Yong EL, Din MFM, Rezania S, Aminudin E, Chelliapan S, et al.
    J Environ Manage, 2018 Dec 15;228:13-19.
    PMID: 30212670 DOI: 10.1016/j.jenvman.2018.09.008
    For decades, water treatment plants in Malaysia have widely employed aluminium-based coagulant for the removal of colloidal particles in surface water. This generates huge amount of by-product, known as sludge that is either reused for land applications or disposed to landfills. As sludge contains high concentration of aluminium, both can pose severe environmental issues. Therefore, this study explored the potential to recover aluminium from water treatment sludge using acid leaching process. The evaluation of aluminium recovery efficiency was conducted in two phases. The first phase used the one factor at a time (OFAT) approach to study the effects of acid concentration, solid to liquid ratio, temperature and heating time. Meanwhile, second phase emphasized on the optimization of aluminium recovery using Response Surface Methodology (RSM). OFAT results indicated that aluminium recovery increased with the rising temperature and heating time. Acid concentration and solid to liquid ratio, however, showed an initial increment followed by reduction of recovery with increasing concentration and ratio. Due to the solidification of sludge when acid concentration exceeded 4 M, this variable was fixed in the optimization study. RSM predicted that aluminium recovery can achieve 70.3% at optimal values of 4 M, 20.9%, 90 °C and 4.4 h of acid concentration, solid to liquid ratio, temperature and heating time, respectively. Experimental validation demonstrated a recovery of 68.8 ± 0.3%. The small discrepancy of 2.2 ± 0.4% between predicted and validated recovery suggests that RSM was a suitable tool in optimizing aluminium recovery conditions for water treatment sludge.
    Matched MeSH terms: Water Purification/methods
  10. Siyal AA, Shamsuddin MR, Low A, Rabat NE
    J Environ Manage, 2020 Jan 15;254:109797.
    PMID: 31731028 DOI: 10.1016/j.jenvman.2019.109797
    The pollution of the world's water resources is a growing issue which requires remediation. Surfactants used in many domestic and industrial applications are one of the emerging contaminants that require immediate attention. Treating water contaminated with surfactants using adsorption provides better performance when compared to other techniques. A variety of materials have been developed for adsorbing surfactants. Activated carbon is the most suitable adsorbent for removing surfactants but is expensive to synthesize and difficult to regenerate. Therefore, a variety of new adsorbents such as zeolites, nanomaterials, resins, biomaterials and clays have been developed as alternatives. The developed adsorbents are promising but considerable research is still required to develop highly efficient, economical, environment friendly and sustainable adsorbents to replace activated carbon. This paper critically reviews the characteristics of adsorbents, the performance of adsorbents, kinetics, isotherms and thermodynamics, mechanisms of adsorption, regeneration of adsorbents and future perspectives in the adsorption of surfactants. Developing novel adsorbents, testing adsorbents in real wastewaters and recycling the adsorbents are required in future studies in the removal of surfactants.
    Matched MeSH terms: Water Purification*
  11. Chang JS, Chong MN, Poh PE, Ocon JD, Md Zoqratt MZH, Lee SM
    Environ Pollut, 2020 Apr;259:113867.
    PMID: 31896479 DOI: 10.1016/j.envpol.2019.113867
    This study aimed to evaluate the impacts of morphological-controlled ZnO nanoarchitectures on aerobic microbial communities during real wastewater treatment in an aerobic-photocatalytic system. Results showed that the antibacterial properties of ZnO nanoarchitectures were significantly more overwhelming than their photocatalytic properties. The inhibition of microbial activities in activated sludge by ZnO nanoarchitectures entailed an adverse effect on wastewater treatment efficiency. Subsequently, the 16S sequencing analysis were conducted to examine the impacts of ZnO nanoarchitectures on aerobic microbial communities, and found the significantly lower microbial diversity and species richness in activated sludge treated with 1D-ZnO nanorods as compared to other ZnO nanoarchitectures. Additionally, 1D-ZnO nanorods reduced the highest proportion of Proteobacteria phylum in activated sludge due to its higher proportion of active polar surfaces that facilitates Zn2+ ions dissolution. Pearson correlation coefficients showed that the experimental data obtained from COD removal efficiency and bacterial log reduction were statistically significant (p-value 
    Matched MeSH terms: Water Purification*
  12. Sha'arani S, Azizan SNF, Md Akhir FN, Muhammad Yuzir MA, Othman N, Zakaria Z, et al.
    Water Sci Technol, 2019 Nov;80(9):1787-1795.
    PMID: 32039910 DOI: 10.2166/wst.2019.433
    Staphylococcus sp. as Gram-positive and Escherichia coli as Gram-negative are bacterial pathogens and can cause primary bloodstream infections and food poisoning. Coagulation, flocculation, and sedimentation processes could be a reliable treatment for bacterial removal because suspended, colloidal, and soluble particles can be removed. Chemical coagulants, such as alum, are commonly used. However, these chemical coagulants are not environmentally friendly. This present study evaluated the effectiveness of coagulation, flocculation, and sedimentation processes for removing Staphylococcus sp. and E. coli using diatomite with standard jar test equipment at different pH values. Staphylococcus sp. demonstrated 85.61% and 77.23% significant removal in diatomite and alum, respectively, at pH 5. At pH 7, the removal efficiency decreased to 79.41% and 64.13% for Staphylococcus sp. and E. coli, respectively. At pH 9, there was a decrease in Staphylococcus sp. after adding diatomite or alum compared with that of E. coli. The different removal efficiencies of the Gram-positive and Gram-negative bacteria could be owing to the membrane composition and different structures in the bacteria. This study indicates that diatomite has higher efficiency in removing bacteria at pH 5 and can be considered as a potential coagulant to replace alum for removing bacteria by the coagulation process.
    Matched MeSH terms: Water Purification*
  13. Ibrahim RK, El-Shafie A, Hin LS, Mohd NSB, Aljumaily MM, Ibraim S, et al.
    J Environ Manage, 2019 Apr 01;235:521-534.
    PMID: 30716672 DOI: 10.1016/j.jenvman.2019.01.070
    In this study two deep eutectic solvents (DESs) were prepared using ethylene glycol (EG) and two different ammonium-based salts. The potential of these DESs as novel agents for CNTs functionalization was examined by performing a comprehensive characterization study to identify the changes developing after the functionalization process. The impact of DESs was obvious by increasing the surface area of CNTs to reach 197.8 (m2/g), and by adding new functional groups to CNTs surface without causing any damage to the unique structure of CNTs. Moreover, CNTs functionalized with DESs were applied as new adsorbents for the removal of methyl orange (MO) from water. The adsorption conditions were optimized using RSM-CCD experimental design. The kinetics and the equilibrium adsorption data were analyzed using different kinetic and isotherm models. According to the regression results, adsorption kinetics data were well described by pseudo-second order model, whereas adsorption isotherm data were best represented by Langmuir isotherm model. The highest recorded maximum adsorption capacity (qmax) value was found to be 310.2 mg/g.
    Matched MeSH terms: Water Purification*
  14. Zaied BK, Rashid M, Nasrullah M, Zularisam AW, Pant D, Singh L
    Sci Total Environ, 2020 Jul 15;726:138095.
    PMID: 32481207 DOI: 10.1016/j.scitotenv.2020.138095
    The pharmaceuticals are emergent contaminants, which can create potential threats for human health and the environment. All the pharmaceutical contaminants are becoming enormous in the environment as conventional wastewater treatment cannot be effectively implemented due to toxic and intractable action of pharmaceuticals. For this reason, the existence of pharmaceutical contaminants has brought great awareness, causing significant concern on their transformation, occurrence, risk, and fate in the environments. Electrocoagulation (EC) treatment process is effectively applied for the removal of contaminants, radionuclides, pesticides, and also harmful microorganisms. During the EC process, an electric current is employed directly, and both electrodes are dissoluted partially in the reactor under the special conditions. This electrode dissolution produces the increased concentration of cation, which is finally precipitated as hydroxides and oxides. Different anode materials usage like aluminum, stainless steel, iron, etc. are found more effective in EC operation for efficient removal of pharmaceutical contaminants. Due to the simple procedure and less costly material, EC method is extensively recognized for pharmaceutical wastewater treatment over further conventional treatment methods. The EC process has more usefulness to destabilize the pharmaceutical contaminants with the neutralization of charge and after that coagulating those contaminants to produce flocs. Thus, the review places particular emphasis on the application of EC process to remove pharmaceutical contaminants. First, the operational parameters influencing EC efficiency with the electroanalysis techniques are described. Second, in this review emerging challenges, current developments and techno-economic concerns of EC are highlighted. Finally, future recommendations and prospective on EC are envisioned.
    Matched MeSH terms: Water Purification*
  15. Salehmin MNI, Hil Me MF, Daud WRW, Mohd Yasin NH, Abu Bakar MH, Sulong AB, et al.
    Sci Total Environ, 2023 Jan 10;855:158527.
    PMID: 36096221 DOI: 10.1016/j.scitotenv.2022.158527
    Microbial electrodialysis cells (MEDCs) offer simultaneous wastewater treatment, water desalination, and hydrogen production. In a conventional design of MEDCs, the overall performance is retarded by the accumulation of protons on the anode due to the integration of an anion exchange membrane (AEM). The accumulation of protons reduces the anolyte pH to become acidic, affecting the microbial viability and thus limiting the charge carrier needed for the cathodic reaction. This study has modified the conventional MEDC with an internal proton migration pathway, known as the internal proton migration pathway-MEDC (IP-MEDC). Simulation tests under abiotic conditions demonstrated that the pH changes in the anolyte and catholyte of IP-MEDC were smaller than the pH changes in the anolyte and catholyte without the proton pathways. Under biotic conditions, the performance of the IP-MEDC agreed well with the simulation test, showing a significantly higher chemical oxygen demand (COD) removal rate, desalination rate, and hydrogen production than without the migration pathway. This result is supported by the lowest charge transfer resistance shown by EIS analysis and the abundance of microbes on the bioanode through field emission scanning electron microscopy (FESEM) observation. However, hydrogen production was diminished in the second-fed batch cycle, presumably due to the active diffusion of high Cl¯ concentrations from desalination to the anode chamber, which was detrimental to microbial growth. Enlarging the anode volume by threefold improved the COD removal rate and hydrogen production rate by 1.7- and 3.4-fold, respectively, owing to the dilution effect of Cl¯ in the anode. This implied that the dilution effect satisfies both the microbial viability and conductivity. This study also suggests that the anolyte and catholyte replacement frequencies can be reduced, typically at a prolonged hydraulic retention time, thus minimizing the operating cost (e.g., solution pumping). The use of a high concentration of NaCl (35 g L-1) in the desalination chamber and catholyte provides a condition that is close to practicality.
    Matched MeSH terms: Water Purification*
  16. Al-Gheethi AA, Azhar QM, Senthil Kumar P, Yusuf AA, Al-Buriahi AK, Radin Mohamed RMS, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132080.
    PMID: 34509011 DOI: 10.1016/j.chemosphere.2021.132080
    Rhodamine B (RhB) is among the toxic dyes due to the carcinogenic, neurotoxic effects and ability to cause several diseases for humans. The adsorption with agricultural waste adsorbent recorded high performance for the RhB removal. The current review aimed to explore the efficiency of different adsorbents which have been used in the few last years for removing RhB dye from wastewater. The data of adsorption of RhB using agricultural wastes were collected from the Scopus database in the period between 2015 and 2021. The use of agricultural wastes and adsorbents as a replacement for the activated has received high attention among researchers. The RhB removal methods by microbial enzymes and biomass occurred between 76 and 90.1%. In comparison, the adsorption with agricultural wastes such as activated carbon white sugar reached 98% within 12 min. The adsorption process has a wide range of pH (3-10) due to the zwitterionic forms of RhB. Gmelina aborea leaf activated carbon is among the agriculture wastes absorbents that exhibited 1000 mg g-1 of the adsorption capacity. It appeared that the agricultural wastes adsorbents have a high potential for removing RhB from the wastewater.
    Matched MeSH terms: Water Purification*
  17. Yusoff MS, Aziz HA, Zamri MFMA, Suja' F, Abdullah AZ, Basri NEA
    Waste Manag, 2018 Apr;74:362-372.
    PMID: 29370968 DOI: 10.1016/j.wasman.2018.01.016
    This study investigated the behavior and mechanisms of cross-linked Durio zibethinus seed starch (CDSS) flocculants for landfill leachate treatment. A physical-chemical treatment method of coagulation-flocculation process and starch modification were implemented in treating stabilized leachate from Matang Landfill, Perak, Malaysia. In practical, the removal performance of color, COD, suspended solid and turbidity for CDSS flocculants were evaluated by combining with primary coagulant of polyaluminium chloride (PAC). In this study, the application of crosslinking modification for Durio zibethinus seed waste starch flocculants showed good improvement. The impurities removal for colour, COD, suspended solid and turbidity were increased by the addition of CDSS flocculants. Furthermore, the average size of the floc was also increased from 60.24 µm to 89.5 µm. Despite, the addition of CDSS flocculants produced a reduction of PAC coagulant from 2700 mg/L to 2200 mg/L, with 500 mg/L reduction on the PAC dosage dependency. Therefore, these results affirmed the potentials of crosslinked modification for Durio zibethinus seed waste starch flocculants in landfill leachate treatment.
    Matched MeSH terms: Water Purification*
  18. Basri HF, Anuar AN, Halim MHA, Yuzir MA, Muda K, Omoregie AI, et al.
    Environ Monit Assess, 2023 Feb 21;195(3):420.
    PMID: 36809517 DOI: 10.1007/s10661-023-11028-9
    This paper presents an assessment of the start-up performance of aerobic granular sludge (AGS) for the treatment of low-strength (chemical oxygen demand, COD 
    Matched MeSH terms: Water Purification*
  19. Hena S, Rozi R, Tabassum S, Huda A
    Environ Sci Pollut Res Int, 2016 Aug;23(15):14868-80.
    PMID: 27072032 DOI: 10.1007/s11356-016-6540-5
    Cyanotoxins, microcystins and cylindrospermopsin, are potent toxins produced by cyanobacteria in potable water supplies. This study investigated the removal of cyanotoxins from aqueous media by magnetophoretic nanoparticle of polypyrrole adsorbent. The adsorption process was pH dependent with maximum adsorption occurring at pH 7 for microcystin-LA, LR, and YR and at pH 9 for microcystin-RR and cylindrospermopsin (CYN). Kinetic studies and adsorption isotherms reflected better fit for pseudo-second-order rate and Langmuir isotherm model, respectively. Thermodynamic calculations showed that the cyanotoxin adsorption process is endothermic and spontaneous in nature. The regenerated adsorbent can be successfully reused without appreciable loss of its original capacity.
    Matched MeSH terms: Water Purification/methods*
  20. Mohtar SS, Sharuddin SSN, Saman N, Lye JWP, Othman NS, Mat H
    Environ Sci Pollut Res Int, 2020 Jun;27(16):20173-20186.
    PMID: 32236809 DOI: 10.1007/s11356-019-06507-x
    The utilization of natural zeolite (NZ) as an adsorbent for NH4+ removal was investigated. Three types of NZ (i.e., NZ01, NZ02, and NZ03) were characterized, and their NH4+ adsorption process in aqueous solution was evaluated. The effect of pH towards NH4+ adsorption showed that the NZ01 has the highest NH4+ adsorption capacity compared with other natural zeolites used. The application of NZ01 for a simultaneous removal of NH4+ and turbidity in synthetic NH4+-kaolin suspension by adsorptive coagulation process for treating drinking water was studied. The addition of NZ01 into the system increased the NH4+ removal efficiency (ηNH4+) from 11.64% without NZ01 to 41.86% with the addition of 0.2 g L-1 of NZ01. The turbidity removal (ηT), however, was insignificantly affected since the ηT was already higher than 98.0% over all studied parameter's ranges. The thermodynamic and kinetic data analyses suggested that the removal of NH4+ obeyed the Temkin isotherm model and pseudo-second-order kinetic model, respectively. Generally, the turbidity removal was due to the flocculation of destabilized solid particles by alum in the suspension system. The ηNH4+ in surface water was 29.31%, which is lower compared with the removal in the synthetic NH4+-kaolin suspension, but a high ηT (98.65%) was observed. It was found that the addition of the NZ01 could enhance the removal of NH4+ as well as other pollutants in the surface water.
    Matched MeSH terms: Water Purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links