Displaying publications 61 - 80 of 286 in total

Abstract:
Sort:
  1. Chuah JS, Wong WL, Bakin S, Lim RZM, Lee EP, Tan JH
    Ann Med Surg (Lond), 2021 May;65:102294.
    PMID: 33948169 DOI: 10.1016/j.amsu.2021.102294
    Introduction and importance: A totally implantable venous access device (TIVAD), also referred to as 'chemoport', is frequently used for oncology patients. Chemoport insertion via the subclavian vein access may compress the catheter between the first rib and the clavicle, resulting in pinch-off syndrome (POS). The sequela includes catheter transection and subsequent embolization. It is a rare complication with incidence reported to be 1.1-5.0% and can lead to a devastating outcomes.

    Case presentation: 50-year-old male had his chemoport inserted for adjuvant chemotherapy 3 years ago. During the removal, remaining half of the distal catheter was not found. There was no difficulties during the removal. Chest xray revealed that the fractured catheter had embolized to the right ventricle. Further history taking, he did experienced occasional palpitation and chest discomfort for the past six months. Electrocardiogram and cardiac enzymes were normal. Urgent removal of the fractured catheter via the percutaneous endovascular approach, under fluoroscopic guidance by an experience interventional radiologist was done. The procedure was successful without any complication. Patient made an uneventful recovery. He was discharged the following day, and was well during his 3rd month follow up.

    Conclusion: Early detection and preventive measures can be done to prevent pinch-off syndrome. Unrecognized POS can result in fatal complications such as cardiac arrhythmia and septic embolization. Retrieval via the percutaneous endovascular approach provide excellent outcome in the case of embolized fractured catheter.

    Matched MeSH terms: X-Rays
  2. Damulira E, Yusoff MNS, Omar AF, Mohd Taib NH, Ahmed NM
    Appl Radiat Isot, 2021 Apr;170:109622.
    PMID: 33592486 DOI: 10.1016/j.apradiso.2021.109622
    This study compares the real-time dosimetric performance of a bpw34 photodiode (PD) and cold white light-emitting diodes (LEDs) based on diagnostic X-ray-induced signals. Signals were extracted when both the transducers were under identical exposure settings, including source-to-detector distance (SDD), tube voltage (kVp), and current-time product (mAs). The transducers were in a photovoltaic configuration, and black vinyl tape was applied on transducer active areas as a form of optical shielding. X-ray beam spectra and energies were simulated using Matlab-based Spektr functions. Transducer performance analysis was based on signal linearity to mAs and air kerma, and sensitivity dependence on absorbed dose, energy, and dose rate. Bpw34 PD and cold white LED output signals were 84.8% and 85.5% precise, respectively. PD signals were 94.7% linear to mAs, whereas LED signals were 91.9%. PD and LED signal linearity to dose coefficients were 0.9397 and 0.9128, respectively. Both transducers exhibited similar dose and energy dependence. However, cold white LEDs were 0.73% less dose rate dependent than the bpw34 PD. Cold white LEDs demonstrated potential in detecting diagnostic X-rays because their performance was similar to that of the bpw34 PD. Moreover, the cold white LED array's dosimetric response was independent of the heel effect. Although cold white LED signals were lower than bpw34 PD signals, they were quantifiable and electronically amplifiable.
    Matched MeSH terms: X-Rays
  3. Danaraj TJ
    Med J Malaya, 1947;4:278-288.
    Eight caaes of this condition are described, the patients being four Ceylonese, three Indians, and one Chinese, all males except one. Symptoms consisted of breathlessness and cough, sputum being sometimes purulent and occasionally blood-stained. Six of the patients complained of loss of weight, and in one, a Ceylonese schoolboy, this was the only presenting symptom. The authors found the most troublesome complaint to be a paroxysmal cough which was always worst at night. On clinical examination rhonchi were heard scattered throughout both lung fields in five cases, the lungs being clear in the other three. X-ray examination showed characteristic mottling of both lungs in four cases and of one lung in one case; another showed increased vascular markings, while in two the lungs were clear. Sputum was examined for tubercle bacilli and mites but none were found. The technique used for searching for mites is not described. A marked eosinophilia was found in all cases, the highest count recorded being 33, 264 eosinophils per cmm.Treatment consisted of arsenic, given in the form of neoarsphenamine, six injections of 0.3 gm. in six cases, and stovarsol 4 grains t.d.s. for seven and ten days respectively in the other two. Four of the patients were cured, three were improved, while one was showing a favourable response although treatment had not been completed.The author emphasizes the importance of performing repeated blood counts in order to avoid missing this condition. Out of the eight cases which he describes, one had been wrongly diagnosed as pulmonary tuberculosis and three as bronchial asthma. One of the latter had an initial eosinophil count of 4, 092 which rose to 17, 700 three weeks later. H. T. H. Wilson
    Matched MeSH terms: X-Rays
  4. Das BK, Biswal BM, Bhavaraju M
    Malays J Med Sci, 2006 Jan;13(1):52-7.
    PMID: 22589591 MyJurnal
    X-ray mammography has been the backbone of early detection of breast cancer. Several large scale systematic studies have shown that judicious use of X-ray mammography can indeed save life. However, though reasonably sensitive, X-ray mammography lacks in specificity leading to many unnecessary biopsies. Scintimammography is a relatively new imaging method to demonstrate cancer tissue in the breast. A radiopharmaceutical agent (Tc-99m Sestamibi) is administered intravenously and images of the breast are taken under a Gamma Camera. There is no need for any manipulation like compression of the breast as required to be done during mammography. The radiopharmaceutical accumulates in the breast in the presence of cancer tissue which can easily be seen in the images. The affinity of the cancer tissue to this radiopharmaceutical is up to 9 times in comparison to normal breast tissue. Several multi centric studies with blinded image interpretation have established the sensitivity and specificity of scintimammography to be above 85 and 90 % respectively as compared to 89 and 14 % respectively for X-ray mammography. The positive and negative predictive values of scintimamography are 70 and 83 % as against 49 and 57 % respectively for X-ray mammography. With the increasing availability of Nuclear Medicine facilities it is expected that more and more patients will benefi with the use of this new imaging modality .
    Matched MeSH terms: X-Rays
  5. Dheyab MA, Aziz AA, Rahman AA, Ashour NI, Musa AS, Braim FS, et al.
    Biochim Biophys Acta Gen Subj, 2023 Apr;1867(4):130318.
    PMID: 36740000 DOI: 10.1016/j.bbagen.2023.130318
    BACKGROUND: Gold nanoparticles (Au NPs) are regarded as potential agents that enhance the radiosensitivity of tumor cells for theranostic applications. To elucidate the biological mechanisms of radiation dose enhancement effects of Au NPs as well as DNA damage attributable to the inclusion of Au NPs, Monte Carlo (MC) simulations have been deployed in a number of studies.

    SCOPE OF REVIEW: This review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations.

    MAJOR CONCLUSIONS: In this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation.

    GENERAL SIGNIFICANCE: Using advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs.

    Matched MeSH terms: X-Rays
  6. Dolah MT, Samat SB, Kadni T
    Malays J Med Sci, 2000 Jan;7(1):47-53.
    PMID: 22844215
    Absorbed dose to water was measured with ionisation chambers NE 2561 (#267), NE 2581 (#334), NE 2571 (#1028), using the IAEA standard water phantom. The ionisation chamber was inserted in the water phantom at a reference depth dependent on the type of the radiation quality used. Three radiation qualities were used namely 1.25 MeV gamma ray, 6 MV x-rays and 10 MV x-rays. The values of the absorbed dose to water were determined by the N(K)- and N(X)- based methods, i.e with the use of IAEA, HPA, NACP, AAPM, NCRP and ICRU protocols. The aim of this study was to make an intercomparison of the results, by taking the IAEA protocol as a standard. The largest deviation contributed by any of these protocols was recorded for each quality. It was found that AAPM, NCRP and ICRU protocols contributed 0.94% for 1.25 MeV gamma ray, NACP contributed 2.12% for the 6 MV x-rays, and NACP contributed 2.35% for 10 MV x-rays. Since the acceptable limit of deviation set by the IAEA for this absorbed dose work is ± 3%, it is clear that the overall deviations obtained were all satisfactory.
    Matched MeSH terms: X-Rays
  7. Dorairaj D, Ismail MR
    Front Physiol, 2017;8:491.
    PMID: 28747889 DOI: 10.3389/fphys.2017.00491
    Lodging is a phenomenon that affects most of the cereal crops including rice, Oryza sativa. This is due to the fragile nature of herbaceous plants whose stems are non-woody, thus affecting its ability to grow upright. Silicon (Si), a beneficial nutrient is often used to toughen and protect plants from biotic and abiotic stresses. Deposition of Si in plant tissues enhances the rigidity and stiffness of the plant as a whole. Silicified cells provide the much needed strength to the culm to resist breaking. Lignin plays important roles in cell wall structural integrity, stem strength, transport, mechanical support, and plant pathogen defense. The aim of this study is to resolve effects of Si on formation of microstructure and regulation of cinnamyl alcohol dehydrogenase (CAD), a key gene responsible for lignin biosynthesis. Besides evaluating silicon, paclobutrazol (PBZ) a plant growth retartdant that reduces internode elongation is also incorporated in this study. Hardness, brittleness and stiffness were improved in presence of silicon thus reducing lodging. Scanning electron micrographs with the aid of energy dispersive x-ray (EDX) was used to map silicon distribution. Presence of trichomes, silica cells, and silica bodies were detected in silicon treated plants. Transcripts of CAD gene was also upregulated in these plants. Besides, phloroglucinol staining showed presence of lignified vascular bundles and sclerenchyma band. In conclusion, silicon treated rice plants showed an increase in lignin content, silicon content, and formation of silicified microstructures.
    Matched MeSH terms: X-Rays
  8. Doris M, Aziz F, Alhummiany H, Bawazeer T, Alsenany N, Mahmoud A, et al.
    Nanoscale Res Lett, 2017 Dec;12(1):67.
    PMID: 28116608 DOI: 10.1186/s11671-017-1851-0
    In this study, low-bandgap polymer poly{[4,4-bis(2-ethylhexyl)-cyclopenta-(2,1-b;3,4-b')dithiophen]-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl} (PCPDTBT) nanostructures have been synthesized via a hard nanoporous alumina template of centrifugal process. Centrifuge has been used to infiltrate the PCPDTBT solution into the nanoporous alumina by varying the rotational speeds. The rotational speed of centrifuge is directly proportional to the infiltration force that penetrates into the nanochannels of the template. By varying the rotational speed of centrifuge, different types of PCPDTBT nanostructures are procured. Infiltration force created during the centrifugal process has been found a dominant factor in tuning the morphological, optical, and structural properties of PCPDTBT nanostructures. The field emission scanning electron microscopy (FESEM) images proved the formation of nanotubes and nanowires. The energy-dispersive X-ray spectroscope (EDX) analysis showed that the nanostructures were composed of PCPDTBT with complete dissolution of the template.
    Matched MeSH terms: X-Rays
  9. El-Faham A, Soliman SM, Osman SM, Ghabbour HA, Siddiqui MR, Fun HK, et al.
    PMID: 26845586 DOI: 10.1016/j.saa.2016.01.051
    Novel series of 2-(4,6-dimethoxy,1,3,5-triazin-2-yl) amino acid ester derivatives were synthesized using simple one pot method in methanol. The products were obtained in high yields and purities as observed from their spectral data, elemental analyses, GC-MS and X-ray crystallographic analysis. The B3LYP/6-311G(d,p) calculated molecular structures are well correlated with the geometrical parameters obtained from the X-ray analyses. The spectroscopic properties such as IR vibrational modes, NMR chemical shifts and UV-Vis electronic transitions were discussed both experimentally and theoretically. The IR vibrational frequencies showed good correlations with the experimental data (R(2)=0.9961-0.9995). The electronic spectra were assigned based on the TD-DFT results. Intense electronic transition band is calculated at 198.1nm (f=0.1389), 204.2nm (f=0.2053), 205.0 (f=0.1704) and 205.7 (0.2971) for compounds 6a-i, respectively. The molecular orbital energy levels contributed in the longest wavelength transition band were explained. For all compounds, the experimental wavelengths showed red shifts compared to the calculations due to the solvent effect. The NMR chemical shifts were calculated using GIAO method. The NBO analyses were performed to predict the stabilization energies due to the electron delocalization processes occur in the studied systems.
    Matched MeSH terms: X-Rays
  10. Emtage AL, Mistry SN, Fischer PM, Kellam B, Laughton CA
    J Biomol Struct Dyn, 2016 Aug 17.
    PMID: 27532213
    G protein-coupled receptors (GPCRs) are proteins of pharmaceutical importance, with over 30% of all drugs in clinical use targeting them. Increasing numbers of X-ray crystal (XRC) structures of GPCRs offer a wealth of data relating to ligand binding. For the β-adrenoceptors (β-ARs), XRC structures are available for human β2- and turkey β1-subtypes, in complexes with a range of ligands. While these structures provide insight into the origins of ligand structure-activity relationships (SARs), questions remain. The ligands in all published complexed XRC structures lack extensive substitution, with no obvious way the ligand-binding site can accommodate β1-AR-selective antagonists with extended side-chains para- to the common aryloxypropanolamine pharmacophore. Using standard computational docking tools with such ligands generally returns poses that fail to explain known SARs. Application of our Active Site Pressurization (ASP) modelling method to β-AR XRC structures and homology models however, reveals a dynamic area in the ligand-binding pocket that, through minor changes in amino acid side chain orientations, opens a fissure between transmembrane (TM) helices H4 and H5, exposing intra-membrane space. This fissure, which we term the 'keyhole', is ideally located to accommodate extended moieties present in many high-affinity β1-AR-selective ligands; allowing the rest of the ligand structure to adopt a canonical pose in the orthosteric binding site. We propose the keyhole may be a feature of both β1- and β2-ARs, but that subtle structural differences exist between the two, contributing to subtype-selectivity. This has consequences for the rational design of future generations of subtype-selective ligands for these therapeutically important targets.
    Matched MeSH terms: X-Rays
  11. Faris MA, Abdullah MMAB, Muniandy R, Abu Hashim MF, Błoch K, Jeż B, et al.
    Materials (Basel), 2021 Mar 09;14(5).
    PMID: 33803313 DOI: 10.3390/ma14051310
    Geopolymer concrete has the potential to replace ordinary Portland cement which can reduce carbon dioxide emission to the environment. The addition of different amounts of steel fibers, as well as different types of end-shape fibers, could alter the performance of geopolymer concrete. The source of aluminosilicate (fly ash) used in the production of geopolymer concrete may lead to a different result. This study focuses on the comparison between Malaysian fly ash geopolymer concrete with the addition of hooked steel fibers and geopolymer concrete with the addition of straight-end steel fibers to the physical and mechanical properties. Malaysian fly ash was first characterized by X-ray fluorescence (XRF) to identify the chemical composition. The sample of steel fiber reinforced geopolymer concrete was produced by mixing fly ash, alkali activators, aggregates, and specific amounts of hook or straight steel fibers. The steel fibers addition for both types of fibers are 0%, 0.5%, 1.0%, 1.5%, and 2.0% by volume percentage. The samples were cured at room temperature. The physical properties (slump, density, and water absorption) of reinforced geopolymer concrete were studied. Meanwhile, a mechanical performance which is compressive, as well as the flexural strength was studied. The results show that the pattern in physical properties of geopolymer concrete for both types of fibers addition is almost similar where the slump is decreased with density and water absorption is increased with the increasing amount of fibers addition. However, the addition of hook steel fiber to the geopolymer concrete produced a lower slump than the addition of straight steel fibers. Meanwhile, the addition of hook steel fiber to the geopolymer concrete shows a higher density and water absorption compared to the sample with the addition of straight steel fibers. However, the difference is not significant. Besides, samples with the addition of hook steel fibers give better performance for compressive and flexural strength compared to the samples with the addition of straight steel fibers where the highest is at 1.0% of fibers addition.
    Matched MeSH terms: X-Rays
  12. Fathul Karim Sahrani, Zaharah Ibrahim, Madzlan Aziz, Adibah Yahya
    Corrosion caused by sulphate-reducing bacteria (SRB) isolated from seawater nearby to Pasir Gudang has been studied. The test coupon was a AISI 304 stainless steel. Potential and corrosion rate measurements were carried out in various types of culturing solutions, with SRB1, SRB2, combination of SRB1 & SRB2 and without SRBs inoculated (sterilized). From Tafel plots a higher corrosion rate has been found in medium inoculated with SRBs than that of the sterilized medium (control). When SRBs were present in the medium, the Tafel plot shifted towards more negative values (Ecorr was shifted to much less anodic values) and increase in current density compared to that of the sterilized medium (control). Localized corrosion was observed on the metal surface, and it was associated to the SRB activity. X-ray analysis (EDAX) showed that the corrosion product has higher content of sulphur for medium containing SRBs than that of the sterilized medium. X-Ray Diffraction analysis carried out on corrosion products which showed the presence of iron sulphide. This indicates the influence of the presence of SRB in corrosion process.
    Matched MeSH terms: X-Rays
  13. Fathul Karim Sahrani, Zaharah Ibrahim, Adibah Yahya, Madzlan Aziz
    Sulphate-reducing bacteria (SRB), implicated in microbiologically influenced corrosion were isolated from the deep subsurface at the vicinity of Pasir Gudang, Johor, Malaysia. Electrochemical impedance spectroscopic (EIS) study was carried out to determine the polarization resistance in various types of culturing solutions, with SRB1, SRB2, combination of SRB1 and SRB2 and without SRBs inoculated (control). EIS results showed that in the presence of SRB1, SRB2 and mixed culture SRB1 and SRB2, polarisation resistance values were 7170, 6370 and 7190 ohms respectively compared to that of control, 92400 ohm. X-ray analysis (EDS) of the specimens indicated high sulphur content in the medium containing SRBs. Localized corrosion was observed on the metal surface which was associated with the SRB activity.
    Matched MeSH terms: X-Rays
  14. Fayyadh OA, Arifin INA, Khairudin A, Hassan J, Abubakar S, Talib ZA, et al.
    J Nanosci Nanotechnol, 2020 May 01;20(5):3157-3163.
    PMID: 31635660 DOI: 10.1166/jnn.2020.17386
    Indium antimonide nanowires were synthesized by electrochemical deposition using anodic aluminum oxide template in the presence of gold film as conductive layers. Field emission scanning electron microscopy and energy dispersive X-ray spectrometry measurements were carried out to investigate the effect of adhesive insulated tape covered below the conductive layer. Results showed that the anodic aluminum oxide template covered with insulating tapes had better morphology with less presence of overgrown rough film on the topside of the anodic aluminum oxide template and it exhibited a smoother nanowire sidewall as compared to the uncovered ones. Additionally, the unique properties of anodic aluminum oxide were controllable pore diameter with a narrow size distribution at some intervals. It was evident from the energy dispersive X-ray spectrum that the nanowires synthesized from the covered template condition exhibited better InSb composition and stoichiometric ratio compared to the uncovered template condition.
    Matched MeSH terms: X-Rays
  15. Fouad H, Kian LK, Jawaid M, Alotaibi MD, Alothman OY, Hashem M
    Polymers (Basel), 2020 Dec 07;12(12).
    PMID: 33297332 DOI: 10.3390/polym12122926
    Conocarpus fiber is an abundantly available and sustainable cellulosic biomass. With its richness in cellulose content, it is potentially used for manufacturing microcrystalline cellulose (MCC), a cellulose derivative product with versatile industrial applications. In this work, different samples of bleached fiber (CPBLH), alkali-treated fiber (CPAKL), and acid-treated fiber (CPMCC) were produced from Conocarpus through integrated chemical process of bleaching, alkaline cooking, and acid hydrolysis, respectively. Characterizations of samples were carried out with Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), Fourier Transform Infrared-Ray (FTIR), X-ray Diffraction (XRD), Thermogravimetric (TGA), and Differential Scanning Calorimetry (DSC). From morphology study, the bundle fiber feature of CPBLH disintegrated into micro-size fibrils of CPMCC, showing the amorphous compounds were substantially removed through chemical depolymerization. Meanwhile, the elemental analysis also proved that the traces of impurities such as cations and anions were successfully eliminated from CPMCC. The CPMCC also gave a considerably high yield of 27%, which endowed it with great sustainability in acting as alternative biomass for MCC production. Physicochemical analysis revealed the existence of crystalline cellulose domain in CPMCC had contributed it 75.7% crystallinity. In thermal analysis, CPMCC had stable decomposition behavior comparing to CPBLH and CPAKL fibers. Therefore, Conocarpus fiber could be a promising candidate for extracting MCC with excellent properties in the future.
    Matched MeSH terms: X-Rays
  16. Gao X, Guo L, Li J, Thu HE, Hussain Z
    J Control Release, 2018 12 28;292:29-57.
    PMID: 30359665 DOI: 10.1016/j.jconrel.2018.10.024
    Lung cancer (LC) is the second most prevalent type of cancer and primary cause of mortality among both men and women, worldwide. The most commonly employed diagnostic modalities for LC include chest X-ray (CXR), magnetic-resonance-imaging (MRI), computed tomography (CT-scan), and fused-positron-emitting-tomography-CT (PET-CT). Owing to several limitations associated with the use of conventional diagnostic tools such as radiation burden to the patient, misleading diagnosis ("missed lung cancer"), false staging and low sensitivity and resolution, contemporary diagnostic regimen needed to be employed for screening of LC. In recent decades, nanotechnology-guided interventions have been transpired as emerging nanoimaging probes for detection of LC at advanced stages, while producing signal amplification, better resolution for surface and deep tissue imaging, and enhanced translocation and biodistribution of imaging probes within the cancerous tissues. Besides enormous potential of nanoimaging probes, nanotechnology-based advancements have also been evidenced for superior efficacy for treatment of LC and abolishing pulmonary metastasis (PM). The success of nanotherapeutics is due to their ability to maximise translocation and biodistribution of anti-neoplastic agents into the tumor tissues, improve pharmacokinetic profiles of anti-metastatic agents, optimise target-specific drug delivery, and control release kinetics of encapsulated moieties in target tissues. This review aims to overview and critically discuss the superiority of nanoimaging probes and nanotherapeutics over conventional regimen for early detection of LC and abolishing PM. Current challenges to clinical transition of nanoimaging probes and therapeutic viability of nanotherapeutics for treatment for LC and PM have also been pondered.
    Matched MeSH terms: X-Rays
  17. Gendeh HS, Hashim ND, Mohammad Yunus MR, Gendeh BS, Kosai NR
    ANZ J Surg, 2018 09;88(9):937-938.
    PMID: 27122196 DOI: 10.1111/ans.13624
    Matched MeSH terms: X-Rays
  18. George, J., Teo, S.C., Adan, M.
    Malays Orthop J, 2008;2(1):33-37.
    MyJurnal
    Aim: This study was designed to evaluate the use of ultrasound in diagnosis of infection and tumour of long bones. Methodology: Patients referred from the orthopaedic unit with doubt regarding long bone clinical and/or radiological signs which could be tumour or infection were enrolled in this study. Analysis of ultrasound characteristics included presence of pericortical fluid over normal cortex well away from the primary lesion, wavy contour sign (fluid tracking in and out muscle planes), subperiosteal fluid and soft tissue mass displacing adjacent muscle planes. Results: Fourteen out of 15 patients with confirmed osteomyelitis were diagnosed by ultrasound examination. Ultrasound as a diagnostic tool has a sensitivity of 93% and specificity of 100%. The most accurate indicator was pericortical fluid noted up to several centimetres from the long bone abnormality seen on plain x-rays. Conclusion: Ultrasound is a safe, fast, cost-effective imaging modality that can play an important role in diagnosis of osteomyelitis as it then serves as a tool for ultrasound guided aspiration.
    Matched MeSH terms: X-Rays
  19. Ghiyasiyan-Arani M, Masjedi-Arani M, Ghanbari D, Bagheri S, Salavati-Niasari M
    Sci Rep, 2016 05 04;6:25231.
    PMID: 27143312 DOI: 10.1038/srep25231
    In this work, copper pyrovanadate (Cu3V2O7(OH)2(H2O)2) nanoparticles have been synthesized by a simple and rapid chemical precipitation method. Different copper-organic complexes were used to control the size and morphology of products. The morphology and structure of the as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectrum, electron dispersive X-ray spectroscopy (EDX), thermal gravimetric analysis (TGA), differential thermal analysis (DTA) and photoluminescence (PL) spectroscopy. The influence of copper pyrovanadate nanostructures on the flame retardancy of the polystyrene, poly vinyl alcohol and cellulose acetate was studied. Dispersed nanoparticles play the role of a magnetic barrier layer, which slows down product volatilization and prevents the flame and oxygen from the sample during decomposition of the polymer. Cu3V2O7(OH)2(H2O)2 is converted to Cu3V2O8 with an endothermic reaction which simultaneously releases water and decrease the temperature of the flame region.
    Matched MeSH terms: X-Rays
  20. Goh, W.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A., Rajeev Bhat
    MyJurnal
    In this study, we evaluated and characterized microbial cellulose produced from Kombucha after eighth day of fermentation by employing SEM, FTIR, X-ray diffractometry, adsorption isotherm, and by measuring the swelling properties. Results on SEM revealed microbial cellulose layer to be composed of a compact cellulose ultrafine network like structure. FTIR spectra showed the presence of a characteristic region of anomeric carbons (960 – 730 cm-1), wherein a band at 891.59 cm-1 confirmed the presence of β, 1-4 linkages. Results of FTIR spectra also showed microbial cellulose to be free from contaminants such as lignin or hemicellulose, which are often present in plant cellulose. X-ray diffraction studies exhibited the overall degree of crystallinity index for MCC to be slightly lower than that of microbial cellulose. Results on swelling properties indicated microbial cellulose to possess higher fiber liquid retention values (10-160%) compared to commercial MCC (5-70%). The adsorption isotherm curves showed similarities between microbial cellulose with that of pure crystalline substance. Overall, results obtained in this study were comparable with the commercial microcrystalline cellulose, indicating that the process developed by us can be explored industrially on a pilot scale.
    Matched MeSH terms: X-Rays
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links