Displaying publications 61 - 80 of 132 in total

Abstract:
Sort:
  1. Aslam Khan MU, Abd Razak SI, Al Arjan WS, Nazir S, Sahaya Anand TJ, Mehboob H, et al.
    Molecules, 2021 Jan 25;26(3).
    PMID: 33504080 DOI: 10.3390/molecules26030619
    The polymeric composite material with desirable features can be gained by selecting suitable biopolymers with selected additives to get polymer-filler interaction. Several parameters can be modified according to the design requirements, such as chemical structure, degradation kinetics, and biopolymer composites' mechanical properties. The interfacial interactions between the biopolymer and the nanofiller have substantial control over biopolymer composites' mechanical characteristics. This review focuses on different applications of biopolymeric composites in controlled drug release, tissue engineering, and wound healing with considerable properties. The biopolymeric composite materials are required with advanced and multifunctional properties in the biomedical field and regenerative medicines with a complete analysis of routine biomaterials with enhanced biomedical engineering characteristics. Several studies in the literature on tissue engineering, drug delivery, and wound dressing have been mentioned. These results need to be reviewed for possible development and analysis, which makes an essential study.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  2. Baradaran S, Moghaddam E, Nasiri-Tabrizi B, Basirun WJ, Mehrali M, Sookhakian M, et al.
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:656-668.
    PMID: 25686995 DOI: 10.1016/j.msec.2015.01.050
    The effect of the addition of an ionic dopant to calcium phosphates for biomedical applications requires specific research due to the essential roles played in such processes. In the present study, the mechanical and biological properties of Ni-doped hydroxyapatite (HA) and Ni-doped HA mixed with graphene nanoplatelets (GNPs) were evaluated. Ni (3wt.% and 6wt.%)-doped HA was synthesized using a continuous precipitation method and calcined at 900°C for 1h. The GNP (0.5-2wt.%)-reinforced 6% Ni-doped HA (Ni6) composite was prepared using rotary ball milling for 15h. The sintering process was performed using hot isostatic pressing at processing conditions of 1150°C and 160MPa with a 1-h holding time. The results indicated that the phase compositions and structural features of the products were noticeably affected by the Ni and GNPs. The mechanical properties of Ni6 and 1.5Ni6 were increased by 55% and 75% in hardness, 59% and 163% in fracture toughness and 120% and 85% in elastic modulus compared with monolithic HA, respectively. The in-vitro biological behavior was investigated using h-FOB osteoblast cells in 1, 3 and 5days of culture. Based on the osteoblast results, the cytotoxicity of the products was indeed affected by the Ni doping. In addition, the effect of GNPs on the growth and proliferation of osteoblast cells was investigated in Ni6 composites containing different ratios of GNPs, where 1.5wt.% was the optimum value.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  3. Zulkifli FH, Jahir Hussain FS, Abdull Rasad MS, Mohd Yusoff M
    J Biomater Appl, 2015 Feb;29(7):1014-27.
    PMID: 25186524 DOI: 10.1177/0885328214549818
    The aim of this research is to develop biocompatible nanofibrous mats using hydroxyethyl cellulose with improved cellular adhesion profiles and stability and use these fibrous mats as potential scaffold for skin tissue engineering. Glutaraldehyde was used to treat the scaffolds water insoluble as well as improve their biostability for possible use in biomedical applications. Electrospinning of hydroxyethyl cellulose (5 wt%) with poly(vinyl alcohol) (15 wt%) incorporated with and without collagen was blended at (1:1:1) and (1:1) ratios, respectively, and was evaluated for optimal criteria as tissue engineering scaffolds. The nanofibrous mats were crosslinked and characterized by scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Scanning electron microscope images showed that the mean diameters of blend nanofibers were gradually increased after chemically crosslinking with glutaraldehyde. Fourier transform infrared spectroscopy was carried out to understand chemical interactions in the presence of aldehyde groups. Thermal characterization results showed that the stability of hydroxyethyl cellulose/poly(vinyl alcohol) and hydroxyethyl cellulose/poly(vinyl alcohol)/collagen nanofibers was increased with glutaraldehyde treatment. Studies on cell-scaffolds interaction were carried out by culturing human fibroblast (hFOB) cells on the nanofibers by assessing the growth, proliferation, and morphologies of cells. The scanning electron microscope results show that better cell proliferation and attachment appeared on hydroxyethyl cellulose/poly(vinyl alcohol)/collagen substrates after 7 days of culturing, thus, promoting the potential of electrospun scaffolds as a promising candidate for tissue engineering applications.
    Matched MeSH terms: Biocompatible Materials/chemistry
  4. Kamalian N, Mirhosseini H, Mustafa S, Manap MY
    Carbohydr Polym, 2014 Oct 13;111:700-6.
    PMID: 25037405 DOI: 10.1016/j.carbpol.2014.05.014
    The main aim of this study was to investigate the effect of different coating materials (i.e. Na-alginate and chitosan) on the viability and release behavior of Bifidobacterium pseudocatenulatum G4 in the simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). This study reports the viability of encapsulated B. pseudocatenulatum G4 coated using different alginate (2-4 g/100mL) and chitosan (0.2-0.8 g/100mL) concentrations. The results indicated that the highest concentration of alginate (4.4142 g/100mL) along with 0.5578 g/100mL chitosan resulted in the highest viability of B. pseudocatenulatum G4. The release behavior of the encapsulated probiotics in SGF (pH 1.5) in 2h followed by 4h in SIF (pH 7.4) was also assessed. The resistance rate of alginate-chitosan capsule in SGF was higher than SIF. The alginate-chitosan encapsulated cells had also more resistance than alginate capsules. The current study revealed that alginate encapsulated B. Pseudocatenulatum G4 exhibited longer survival than its free cells (control).
    Matched MeSH terms: Biocompatible Materials/chemistry*
  5. Mehrali M, Moghaddam E, Shirazi SF, Baradaran S, Mehrali M, Latibari ST, et al.
    ACS Appl Mater Interfaces, 2014 Mar 26;6(6):3947-62.
    PMID: 24588873 DOI: 10.1021/am500845x
    Calcium silicate (CaSiO3, CS) ceramics are promising bioactive materials for bone tissue engineering, particularly for bone repair. However, the low toughness of CS limits its application in load-bearing conditions. Recent findings indicating the promising biocompatibility of graphene imply that graphene can be used as an additive to improve the mechanical properties of composites. Here, we report a simple method for the synthesis of calcium silicate/reduced graphene oxide (CS/rGO) composites using a hydrothermal approach followed by hot isostatic pressing (HIP). Adding rGO to pure CS increased the hardness of the material by ∼40%, the elastic modulus by ∼52%, and the fracture toughness by ∼123%. Different toughening mechanisms were observed including crack bridging, crack branching, crack deflection, and rGO pull-out, thus increasing the resistance to crack propagation and leading to a considerable improvement in the fracture toughness of the composites. The formation of bone-like apatite on a range of CS/rGO composites with rGO weight percentages ranging from 0 to 1.5 has been investigated in simulated body fluid (SBF). The presence of a bone-like apatite layer on the composite surface after soaking in SBF was demonstrated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The biocompatibility of the CS/rGO composites was characterized using methyl thiazole tetrazolium (MTT) assays in vitro. The cell adhesion results showed that human osteoblast cells (hFOB) can adhere to and develop on the CS/rGO composites. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of cells on the CS/rGO composites were improved compared with the pure CS ceramics. These results suggest that calcium silicate/reduced graphene oxide composites are promising materials for biomedical applications.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  6. Saidin S, Chevallier P, Abdul Kadir MR, Hermawan H, Mantovani D
    Mater Sci Eng C Mater Biol Appl, 2013 Dec 1;33(8):4715-24.
    PMID: 24094179 DOI: 10.1016/j.msec.2013.07.026
    Hydroxyapatite (HA) coated implant is more susceptible to bacterial infection as the micro-structure surface which is beneficial for osseointegration, could also become a reservoir for bacterial colonisation. The aim of this study was to introduce the antibacterial effect of silver (Ag) to the biomineralised HA by utilising a polydopamine film as an intermediate layer for Ag and HA immobilisation. Sufficient catechol groups in polydopamine were required to bind chemically stainless steel 316 L, Ag and HA elements. Different amounts of Ag nanoparticles were metallised on the polydopamine grafted stainless steel by varying the immersion time in silver nitrate solution from 12 to 24 h. Another polydopamine layer was then formed on the metallised film, followed by surface biomineralisation in 1.5 Simulated Body Fluid (SBF) solution for 3 days. Several characterisation techniques including X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy and Contact Angle showed that Ag nanoparticles and HA agglomerations were successfully immobilised on the polydopamine film through an element reduction process. The Ag metallisation at 24 h has killed the viable bacteria with 97.88% of bactericidal ratio. The Ag was ionised up to 7 days which is crucial to prevent bacterial infection during the first stage of implant restoration. The aged functionalised films were considered stable due to less alteration of its chemical composition, surface roughness and wettability properties. The ability of the functionalised film to coat complex and micro scale metal make it suitable for dental and orthopaedic implants application.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  7. Askari E, Mehrali M, Metselaar IH, Kadri NA, Rahman MM
    J Mech Behav Biomed Mater, 2012 Aug;12:144-50.
    PMID: 22732480 DOI: 10.1016/j.jmbbm.2012.02.029
    This study describes the synthesis of Al(2)O(3)/SiC/ZrO(2) functionally graded material (FGM) in bio-implants (artificial joints) by electrophoretic deposition (EPD). A suitable suspension that was based on 2-butanone was applied for the EPD of Al(2)O(3)/SiC/ZrO(2), and a pressureless sintering process was applied as a presintering. Hot isostatic pressing (HIP) was used to densify the deposit, with beneficial mechanical properties after 2 h at 1800 °C in Ar atmosphere. The maximum hardness in the outer layer (90 vol.% Al(2)O(3)+10 vol.% SiC) and maximum fracture toughness in the core layer (75 vol.% Al(2)O(3)+10 vol.% SiC + 15 vol.% ZrO(2)) composite were 20.8±0.3 GPa and 8±0.1 MPa m(1/2), respectively. The results, when compared with results from Al(2)O(3)/ZrO(2) FGM, showed that SiC increased the compressive stresses in the outer layers, while the inner layers were under a residual tensile stress.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  8. Toibah AR, Sopyan I, Mel M
    Med J Malaysia, 2008 Jul;63 Suppl A:83-4.
    PMID: 19024995
    The incorporation of magnesium ions into the calcium phosphate structure is of great interest for the development of artificial bone implants. This paper investigates the preparation of magnesium-doped biphasic calcium phosphate (Mg-BCP) via sol gel method at various concentrations of added Mg. The effect of calcinations temperature (ranging from 500 degrees C to 900 degrees C) and concentrations of Mg incorporated into BCP has been studied by the aid of XRD, TGA and infrared spectroscopy (IR) in transmittance mode analysis. The study indicated that the powder was pure BCP and Mg-BCP with 100% purity and high crystallinity. The results also indicated that beta-tricalcium phosphate (beta-TCP) phase can be observed when the powder was calcined at 800 degrees C and above.
    Matched MeSH terms: Biocompatible Materials/chemistry
  9. Siew EL, Rajab NF, Osman AB, Sudesh K, Inayat-Hussain SH
    J Biomed Mater Res A, 2009 Dec;91(3):786-94.
    PMID: 19051306 DOI: 10.1002/jbm.a.32290
    Polyhydroxyalkanoates (PHA) are naturally occurring biopolyesters that have great potential in the medical field. However, the leachables resulting from sterilization process of the biomaterials may exert toxic effect including genetic damage. Here, we demonstrate that although gamma-irradiation of poly(3-hydroxybutyrate-co-50 mol % 4-hydroxybutyrate) [P(3HB-co-4HB)] did not cause any change in the morphology by scanning electron microscopy, there was a significant degradation of this copolymer where the molecular weight was reduced by 37% after sterilization indicating the generation of leachables. Therefore, further investigation on the ability of the extract of this poststerilized copolymer to induce mutagenic effect was performed using Ames test (S. typhimurium strains TA1535 and TA1537) and umu test (S. typhimurium strain TA1535/pSK1002). Additionally, the capability of the extract to induce clastogenic effect was determined using Chinese hamster lung V79 fibroblast cells. Our results showed that with and without the presence of S9 metabolic activation, no mutagenic effects were observed in both Ames and umu tests when treated with P(3HB-co-4HB) extract. Similarly, treatment of P(3HB-co-4HB) extract in V79 fibroblast cells showed no significant production of micronuclei when compared with the positive control (Mitomycin C). Together, these results indicate that leachables of poststerilized P(3HB-co-4HB) cause no mutagenic and clastogenic effects.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  10. Vigneswari S, Murugaiyah V, Kaur G, Abdul Khalil HPS, Amirul AA
    Mater Sci Eng C Mater Biol Appl, 2016 Sep 01;66:147-155.
    PMID: 27207048 DOI: 10.1016/j.msec.2016.03.102
    The main focus of this study is the incorporation of collagen peptides to fabricate P(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] nano-fiber construct to further enhance surface wettability and support cell growth while harbouring desired properties for biodegradable wound dressing. Simultaneous electrospinning of nanofiber P(3HB-co-4HB)/collagen peptides construct was carried out using dual syringe system. The wettability of the constructs increased with the increase in 4HB molar fraction from 20mol% 4HB [53.2°], P(3HB-co-35mol%4HB)[48.9°], P(3HB-co-50mol%4HB)[44.5°] and P(3HB-co-82mol%4HB) [37.7°]. In vitro study carried out using mouse fibroblast cells (L929) grown on nanofiber P(3HB-co-4HB)/collagen peptides construct showed an increase in cell proliferation. In vivo study using animal model (Sprague Dawley rats) showed that nanofibrous P(3HB-co-4HB)/collagen peptides construct had a significant effect on wound contractions with the highest percentage of wound closure of 79%. Hence, P(3HB-co-4HB)/collagen peptides construct suitable for wound dressing have been developed using nano-fabrication technique.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  11. Chang HC, Sun T, Sultana N, Lim MM, Khan TH, Ismail AF
    Mater Sci Eng C Mater Biol Appl, 2016 Apr 1;61:396-410.
    PMID: 26838866 DOI: 10.1016/j.msec.2015.12.074
    In the current study, electrospinning technique was used to fabricate composite membranes by blending of a synthetic polymer, polylactic acid (PLA) and a natural polymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV. Conductive membranes were prepared by dipping PLA/PHBV electrospun membranes into poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (
    Matched MeSH terms: Biocompatible Materials/chemistry
  12. Krishnamurithy G, Murali MR, Hamdi M, Abbas AA, Raghavendran HB, Kamarul T
    Regen Med, 2015;10(5):579-90.
    PMID: 26237702 DOI: 10.2217/rme.15.27
    To compare the effect of bovine bone derived porous hydroxyapatite (BDHA) scaffold on proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hMSCs) compared with commercial hydroxyapatite (CHA) scaffold.
    Matched MeSH terms: Biocompatible Materials/chemistry
  13. Ling BC
    PMID: 11709981
    Standard prosthodontic procedures require five visits to construct a set of complete maxillary and mandibular dentures. Various attempts have been made to reduce these procedures to four or three appointments. However, most of these techniques require the use of visible light polymerized resin as the final denture base materials. Visible light-cured resin materials have inferior physical properties and biocompatibility problems as compared with heat cured polymethylmethacrylate. This paper describes a system of complete denture construction which requires three clinical appointments instead of the usual five visits. This system is made possible by using the VLC base/tray material as the preliminary impression material as well as the application of a new biometric wax occlusion rim. It retains the use of polymethylmethacrylate as the denture base material. This system also utilizes all the procedures used in the conventional five appointment system of complete denture construction.
    Matched MeSH terms: Biocompatible Materials/chemistry
  14. Karan S, Choudhury H, Chakra BK, Chatterjee TK
    Asian Pac J Cancer Prev, 2019 07 01;20(7):2181-2194.
    PMID: 31350983 DOI: 10.31557/APJCP.2019.20.7.2181
    Controlled release delivery system of chemotherapeutic agents at the site of colon endorses modern drug-entrapped
    delivery tools, which release the entrappedagents at a controlled rate for anextended period providing patient compliance
    and additional protection from the degradinggastric environment. Thus, the present study was aimed to develop
    and optimize a novel polymeric microsphere of 5-fluorouracil (5-FU) using natural gum katira to obtain an optimal
    therapeutic response at the colon. Due course of experimentation, in-vivo safety profile of the gum katira in an animal
    model was established. Modified solvent extraction/evaporation technique wasemployed to encapsulate 5-FU in the
    natural polymeric microsphere and was characterized using in-vitro studies to investigate particle size, morphology,
    encapsulation efficiency and release of the drug from developed formulation. Formulated and optimized polymeric
    microsphere of 5-FU using gum katira polymer own optimal physicochemical characteristics with a fine spherical particle
    with size ranged from 210.37±7.50 to 314.45±7.80 μm.Targeted microsphere exhibited good cytotoxicity and also has
    high drug entrapment efficiency, and satisfactory release pattern of the drug within a time frame of 12 h. Finally, we
    foresee that the optimized polymeric gum katiramicrosphere of 5-FU could be a promising micro-carrier for efficient
    colon drug targeting delivery tool with improved chemotherapeutic efficacy against colon cancer.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  15. Ibrahim MIJ, Sapuan SM, Zainudin ES, Zuhri MYM
    Int J Biol Macromol, 2019 Oct 15;139:596-604.
    PMID: 31381916 DOI: 10.1016/j.ijbiomac.2019.08.015
    In this study, biodegradable composite films were prepared by using thermoplastic cornstarch matrix and corn husk fiber as a reinforcing filler. The composite films were manufactured via a casting technique using different concentrations of husk fiber (0-8%), and fructose as a plasticizer at a fixed amount of 25% for starch weight. The Physical, thermal, morphological, and tensile characteristics of composite films were investigated. The findings indicated that the incorporation of husk fiber, in general, enhanced the performance of the composite films. There was a noticeable reduction in the density and moisture content of the films, and soil burial assessment showed less resistance to biodegradation. The morphological images presented a consistent structure and excellent compatibility between matrix and reinforcement, which reflected on the improved tensile strength and young modulus as well as the crystallinity index. The thermal stability of composite films has also been enhanced, as evidenced by the increased onset decomposition temperature of the reinforced films compared to neat film. Fourier transform infrared analysis revealed increasing in intermolecular hydrogen bonding following fiber loading. The composite materials prepared using corn husk residues as reinforcement responded to community demand for agricultural and polymeric waste disposal and added more value to waste management.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  16. Shahar FS, Hameed Sultan MT, Lee SH, Jawaid M, Md Shah AU, Safri SNA, et al.
    J Mech Behav Biomed Mater, 2019 11;99:169-185.
    PMID: 31357064 DOI: 10.1016/j.jmbbm.2019.07.020
    Since ancient Egypt, orthosis was generally made from wood and then later replaced with metal and leather which are either heavy, bulky, or thick decreasing comfort among the wearers. After the age of revolution, the manufacturing of products using plastics and carbon composites started to spread due to its low cost and form-fitting feature whereas carbon composite were due to its high strength/stiffness to weight ratio. Both plastic and carbon composite has been widely applied into medical devices such as the orthosis and prosthesis. However, carbon composite is also quite expensive, making it the less likely material to be used as an Ankle-Foot Orthosis (AFO) material whereas plastics has low strength. Kenaf composite has a high potential in replacing all the current materials due to its flexibility in controlling the strength to weight ratio properties, cost-effectiveness, abundance of raw materials, and biocompatibility. The aim of this review paper is to discuss on the possibility of using kenaf composite as an alternative material to fabricate orthotics and prosthetics. The discussion will be on the development of orthosis since ancient Egypt until current era, the existing AFO materials, the problems caused by these materials, and the possibility of using a Kenaf fiber composite as a replacement of the current materials. The results show that Kenaf composite has the potential to be used for fabricating an AFO due to its tensile strength which is almost similar to polypropylene's (PP) tensile strength, and the cheap raw material compared to other type of materials.
    Matched MeSH terms: Biocompatible Materials/chemistry
  17. Wong SHM, Lim SS, Tiong TJ, Show PL, Zaid HFM, Loh HS
    Int J Mol Sci, 2020 Jul 22;21(15).
    PMID: 32708043 DOI: 10.3390/ijms21155202
    An ideal scaffold should be biocompatible, having appropriate microstructure, excellent mechanical strength yet degrades. Chitosan exhibits most of these exceptional properties, but it is always associated with sub-optimal cytocompatibility. This study aimed to incorporate graphene oxide at wt % of 0, 2, 4, and 6 into chitosan matrix via direct blending of chitosan solution and graphene oxide, freezing, and freeze drying. Cell fixation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, alkaline phosphatase colorimetric assays were conducted to assess cell adhesion, proliferation, and early differentiation of MG63 on chitosan-graphene oxide scaffolds respectively. The presence of alkaline phosphatase, an early osteoblast differentiation marker, was further detected in chitosan-graphene oxide scaffolds using western blot. These results strongly supported that chitosan scaffolds loaded with graphene oxide at 2 wt % mediated cell adhesion, proliferation, and early differentiation due to the presence of oxygen-containing functional groups of graphene oxide. Therefore, chitosan scaffolds loaded with graphene oxide at 2 wt % showed the potential to be developed into functional bone scaffolds.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  18. Arezoo E, Mohammadreza E, Maryam M, Abdorreza MN
    Int J Biol Macromol, 2020 Aug 15;157:743-751.
    PMID: 31805325 DOI: 10.1016/j.ijbiomac.2019.11.244
    This study describes a sago starch-based film by incorporation of cinnamon essential oil (CEO) and nano titanium dioxide (TiO2-N). Different concentrations (i.e., 0%, 1%, 3%, and 5%, w/w) of TiO2-N and CEO (i.e., 0%, 1%, 2%, and 3%, v/w) were incorporated into sago starch film, and the physicochemical, barrier, mechanical, and antimicrobial properties of the bionanocomposite films were estimated. Incorporation of CEO into the sago starch matrix increased oxygen and water vapor permeability of starch films while increasing TiO2-N concentration decreased barrier properties. Moisture content also decreased from 12.96% to 8.04%, solubility in water decreased from 25% to 13.7%, and the mechanical properties of sago starch films improved. Sago starch bionanocomposite films showed excellent antimicrobial activity against Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus. Results also showed that incorporation of TiO2-N and CEO had synergistic effects on functional properties of sago starch films. In summary, sago starch films incorporated with both TiO2-N and CEO shows potential application for active packaging in food industries such as fresh pistachio packaging.
    Matched MeSH terms: Biocompatible Materials/chemistry
  19. Samrot AV, Sean TC, Kudaiyappan T, Bisyarah U, Mirarmandi A, Faradjeva E, et al.
    Int J Biol Macromol, 2020 Dec 15;165(Pt B):3088-3105.
    PMID: 33098896 DOI: 10.1016/j.ijbiomac.2020.10.104
    Chitosan, collagen, gelatin, polylactic acid and polyhydroxyalkanoates are notable examples of biopolymers, which are essentially bio-derived polymers produced by living cells. With the right techniques, these biological macromolecules can be exploited for nanotechnological advents, including for the fabrication of nanocarriers. In the world of nanotechnology, it is highly essential (and optimal) for nanocarriers to be biocompatible, biodegradable and non-toxic for safe in vivo applications, including for drug delivery, cancer immunotherapy, tissue engineering, gene delivery, photodynamic therapy and many more. The recent advancements in understanding nanotechnology and the physicochemical properties of biopolymers allows us to modify biological macromolecules and use them in a multitude of fields, most notably for clinical and therapeutic applications. By utilizing chitosan, collagen, gelatin, polylactic acid, polyhydroxyalkanoates and various other biopolymers as synthesis ingredients, the 'optimal' properties of a nanocarrier can easily be attained. With emphasis on the aforementioned biological macromolecules, this review presents the various biopolymers utilized for nanocarrier synthesis along with their specific synthetization methods. We further discussed on the characterization techniques and related applications for the synthesized nanocarriers.
    Matched MeSH terms: Biocompatible Materials/chemistry
  20. Mohd Yusof H, Abdul Rahman N, Mohamad R, Zaidan UH, Samsudin AA
    Sci Rep, 2020 11 17;10(1):19996.
    PMID: 33204003 DOI: 10.1038/s41598-020-76402-w
    This study aims to utilize the cell-biomass (CB) and supernatant (CFS) of zinc-tolerant Lactobacillus plantarum TA4 as a prospective nanofactory to synthesize ZnO NPs. The surface plasmon resonance for the biosynthesized ZnO NPs-CFS and ZnO NPs-CB was 349 nm and 351 nm, respectively, thereby confirming the formation of ZnO NPs. The FTIR analysis revealed the presence of proteins, carboxyl, and hydroxyl groups on the surfaces of both the biosynthesized ZnO NPs that act as reducing and stabilizing agents. The DLS analysis revealed that the poly-dispersity indexes was less than 0.4 for both ZnO NPs. In addition, the HR-TEM micrographs of the biosynthesized ZnO NPs revealed a flower-like pattern for ZnO NPs-CFS and an irregular shape for ZnO NPs-CB with particles size of 291.1 and 191.8 nm, respectively. In this study, the biosynthesized ZnO NPs exhibited antibacterial activity against pathogenic bacteria in a concentration-dependent manner and showed biocompatibility with the Vero cell line at specific concentrations. Overall, CFS and CB of L. plantarum TA4 can potentially be used as a nanofactory for the biological synthesis of ZnO NPs.
    Matched MeSH terms: Biocompatible Materials/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links