Displaying publications 61 - 80 of 10124 in total

Abstract:
Sort:
  1. Palanisamy UD, Sivanathan M, Radhakrishnan AK, Haleagrahara N, Subramaniam T, Chiew GS
    Molecules, 2011 Jul 05;16(7):5709-19.
    PMID: 21730920 DOI: 10.3390/molecules16075709
    Ostrich oil has been used extensively in the cosmetic and pharmaceutical industries. However, rancidity causes undesirable chemical changes in flavour, colour, odour and nutritional value. Bleaching is an important process in refining ostrich oil. Bleaching refers to the removal of certain minor constituents (colour pigments, free fatty acid, peroxides, odour and non-fatty materials) from crude fats and oils to yield purified glycerides. There is a need to optimize the bleaching process of crude ostrich oil prior to its use for therapeutic purposes. The objective of our study was to establish an effective method to bleach ostrich oil using peroxide value as an indicator of refinement. In our study, we showed that natural earth clay was better than bentonite and acid-activated clay to bleach ostrich oil. It was also found that 1 hour incubation at a 150 °C was suitable to lower peroxide value by 90%. In addition, the nitrogen trap technique in the bleaching process was as effective as the continuous nitrogen flow technique and as such would be the recommended technique due to its cost effectiveness.
    Matched MeSH terms: Bentonite/chemistry; Lipids/chemistry*; Peroxides/chemistry
  2. Harun MY, Dayang Radiah AB, Zainal Abidin Z, Yunus R
    Bioresour Technol, 2011 Apr;102(8):5193-9.
    PMID: 21333529 DOI: 10.1016/j.biortech.2011.02.001
    Effects of different physical pretreatments on water hyacinth for dilute acid hydrolysis process (121 ± 3 °C, 5% H(2)SO(4), 60 min) were comparatively investigated. Untreated sample had produced 24.69 mg sugar/g dry matter. Steaming (121 ± 3 °C) and boiling (100 ± 3 °C) for 30 min had provided 35.9% and 52.4% higher sugar yield than untreated sample, respectively. The highest sugar yield (132.96 mg sugar/g dry matter) in ultrasonication was obtained at 20 min irradiation using 100% power. The highest sugar production (155.13 mg sugar/g dry matter) was obtained from pulverized samples. Hydrolysis time was reduced when using samples pretreated by drying, mechanical comminution and ultrasonication. In most methods, prolonging the pretreatment period was ineffective and led to sugar degradations. Morphology inspection and thermal analysis had provided evidences of structure disruption that led to higher sugar recovery in hydrolysis process.
    Matched MeSH terms: Acids/chemistry*; Water/chemistry*; Eichhornia/chemistry*
  3. Zamiri R, Zakaria A, Ahangar HA, Sadrolhosseini AR, Mahdi MA
    Int J Mol Sci, 2010;11(11):4764-70.
    PMID: 21151470 DOI: 10.3390/ijms11114764
    In this study we used a laser ablation technique for preparation of silver nanoparticles. The fabrication process was carried out by ablation of a silver plate immersed in palm oil. A pulsed Nd:YAG laser at a wavelength of 1064 nm was used for ablation of the plate at different times. The palm coconut oil allowed formation of nanoparticles with very small and uniform particle size, which are dispersed very homogeneously within the solution. The obtained particle sizes for 15 and 30 minute ablation times were 2.5 and 2 nm, respectively. Stability study shows that all of the samples remained stable for a reasonable period of time.
    Matched MeSH terms: Plant Oils/chemistry; Silver/chemistry*; Metal Nanoparticles/chemistry*
  4. Sabandar CW, Ahmat N, Jaafar FM, Sahidin I
    Phytochemistry, 2013 Jan;85:7-29.
    PMID: 23153517 DOI: 10.1016/j.phytochem.2012.10.009
    The genus Jatropha (Euphorbiaceae) comprises of about 170 species of woody trees, shrubs, subshrubs or herbs in the seasonally dry tropics of the Old and the New World. They are used in medicinal folklore to cure various diseases of 80% of the human population in Africa, Asia and Latin America. Species from this genus have been popular to cure stomachache, toothache, swelling, inflammation, leprosy, dysentery, dyscrasia, vertigo, anemia, diabetis, as well as to treat HIV and tumor, opthalmia, ringworm, ulcers, malaria, skin diseases, bronchitis, asthma and as an aphrodisiac. They are also employed as ornamental plants and energy crops. Cyclic peptides alkaloids, diterpenes and miscellaneous compounds have been reported from this genus. Extracts and pure compounds of plants from this genus are reported for cytotoxicity, tumor-promoting, antimicrobial, antiprotozoal, anticoagulant, immunomodulating, anti-inflammatory, antioxidant, protoscolicidal, insecticidal, molluscicidal, inhibition AChE and toxicity activities.
    Matched MeSH terms: Plant Extracts/chemistry*; Plants, Medicinal/chemistry*; Jatropha/chemistry*
  5. Ahmad MB, Fatehi A, Zakaria A, Mahmud S, Mohammadi SA
    Int J Mol Sci, 2012;13(12):15640-52.
    PMID: 23443085 DOI: 10.3390/ijms131215640
    This study focuses on the fabrication and electrical characterization of a polymer composite based on nano-sized varistor powder. The polymer composite was fabricated by the melt-blending method. The developed nano-composite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FeSEM), and energy-dispersive X-ray spectroscopy (EDAX). The XRD pattern revealed the crystallinity of the composite. The XRD study also showed the presence of secondary phases due to the substitution of zinc by other cations, such as bismuth and manganese. The TEM picture of the sample revealed the distribution of the spherical, nano-sized, filler particles throughout the matrix, which were in the 10-50 nm range with an average of approximately 11 nm. The presence of a bismuth-rich phase and a ZnO matrix phase in the ZnO-based varistor powder was confirmed by FeSEM images and EDX spectra. From the current-voltage curves, the non-linear coefficient of the varistor polymer composite with 70 wt% of nano filler was 3.57, and its electrical resistivity after the onset point was 861 KΩ. The non-linear coefficient was 1.11 in the sample with 100 wt% polymer content. Thus, it was concluded that the composites established a better electrical non-linearity at higher filler amounts due to the nano-metric structure and closer particle linkages.
    Matched MeSH terms: Metals/chemistry*; Zinc Oxide/chemistry*; Nanocomposites/chemistry*
  6. Khairi MHA, Fatah AYA, Mazlan SA, Ubaidillah U, Nordin NA, Ismail NIN, et al.
    Int J Mol Sci, 2019 Aug 21;20(17).
    PMID: 31438576 DOI: 10.3390/ijms20174085
    The existing mold concept of fabricating magnetorheological elastomer (MRE) tends to encounter several flux issues due to magnetic flux losses inside the chamber. Therefore, this paper presents a new approach for enhancing particle alignment through MRE fabrication as a means to provide better rheological properties. A closed-loop mold, which is essentially a fully guided magnetic field inside the chamber, was designed in order to strengthen the magnetic flux during the curing process with the help of silicone oil (SO) plasticizers. The oil serves the purpose of softening the matrix. Scanning electron microscopy (SEM) was used to observe the surface morphology of the fabricated MRE samples. The field-dependent dynamic properties of the MREs were measured several ways using a rheometer, namely, strain sweep, frequency sweep, and magnetic field sweep. The analysis implied that the effectiveness of the MRE was associated with the use of the SO, and the closed-loop mold helped enhance the absolute modulus up to 0.8 MPa. The relative magnetorheological (MR) effects exhibited high values up to 646%. The high modulus properties offered by the MRE with SO are believed to be potentially useful in industry applications, particularly as vibration absorbers, which require a high range of stiffness.
    Matched MeSH terms: Plasticizers/chemistry*; Silicone Oils/chemistry*; Elastomers/chemistry*
  7. Tariq U, Hussain R, Tufail K, Haider Z, Tariq R, Ali J
    Mater Sci Eng C Mater Biol Appl, 2019 Oct;103:109863.
    PMID: 31349467 DOI: 10.1016/j.msec.2019.109863
    Quick setting and poor injectability due to liquid-solid phase separation have limited the clinical use of brushite and monetite cements. The presence of certain ions in the cement during the setting reaction moderate the setting time and properties of the cement. This study reports the preparation of injectable bone cement by using biphasic calcium phosphate (BCP) extracted from femur lamb bone by calcination at 1450 °C. EDX analysis infers the presence of Mg and Na ions as trace elements in BCP. X-ray diffraction patterns of the prepared cement confirmed the formation of brushite (DCPD) along with monetite (DCPA) as a minor phase. DCPA phase diminished gradually with a decrease in powder to liquid ratio (PLR). Initial and final setting time of 5.3 ± 0.5 and 14.67 ± 0.5 min respectively are obtained and within the acceptable recommended range for orthopedic applications. Exceptional injectability of ≈90% is achieved for all prepared bone cement samples. A decrease in compressive strength was observed with increase in the liquid phase of the cement, which is attributed to the higher degree of porosity in the set cement. Immersion of bone cement in simulated body fluid (SBF) for up to 7 days resulted in the formation of apatite layer on the surface of cement with Ca/P ratio 1.71, which enhanced the compressive strength from 2.88 to 9.15 MPa. The results demonstrate that bone cement produced from BCP extracted from femur lamb bone can be considered as potential bone substitute for regeneration and repair of bone defects.
    Matched MeSH terms: Calcium Phosphates/chemistry*; Femur/chemistry*; Hydroxyapatites/chemistry*
  8. Ngo TA, Dinh H, Nguyen TM, Liew FF, Nakata E, Morii T
    Chem Commun (Camb), 2019 Oct 15;55(83):12428-12446.
    PMID: 31576822 DOI: 10.1039/c9cc04661e
    DNA is an attractive molecular building block to construct nanoscale structures for a variety of applications. In addition to their structure and function, modification the DNA nanostructures by other molecules opens almost unlimited possibilities for producing functional DNA-based architectures. Among the molecules to functionalize DNA nanostructures, proteins are one of the most attractive candidates due to their vast functional variations. DNA nanostructures loaded with various types of proteins hold promise for applications in the life and material sciences. When loading proteins of interest on DNA nanostructures, the nanostructures by themselves act as scaffolds to specifically control the location and number of protein molecules. The methods to arrange proteins of interest on DNA scaffolds at high yields while retaining their activity are still the most demanding task in constructing usable protein-modified DNA nanostructures. Here, we provide an overview of the existing methods applied for assembling proteins of interest on DNA scaffolds. The assembling methods were categorized into two main classes, noncovalent and covalent conjugation, with both showing pros and cons. The recent advance of DNA-binding adaptor mediated assembly of proteins on the DNA scaffolds is highlighted and discussed in connection with the future perspectives of protein assembled DNA nanoarchitectures.
    Matched MeSH terms: DNA/chemistry; Proteins/chemistry; Nanostructures/chemistry
  9. Schönrath I, Tsvetkov VB, Zatsepin TS, Aralov AV, Müller J
    J Biol Inorg Chem, 2019 08;24(5):693-702.
    PMID: 31263954 DOI: 10.1007/s00775-019-01682-1
    1,3-Diaza-2-oxophenoxazine (X) has been introduced as a ligand in silver(I)-mediated base pairing in a parallel DNA duplex. This fluorescent cytosine analog is capable of forming stabilizing X-Ag(I)-X and X-Ag(I)-C base pairs in DNA duplexes, as confirmed by temperature-dependent UV spectroscopy and luminescence spectroscopy. DFT calculations of the silver(I)-mediated base pairs suggest the presence of a synergistic hydrogen bond. Molecular dynamics (MD) simulations of entire DNA duplexes nicely underline the geometrical flexibility of these base pairs, with the synergistic hydrogen bond facing either the major or the minor groove. Upon silver(I) binding to the X:X or X:C base pairs, the luminescence emission maximum experiences a red shift from 448 to 460 nm upon excitation at 370 nm. Importantly, the luminescence of the 1,3-diaza-2-oxophenoxazine ligand is not quenched significantly upon binding a silver(I) ion. In fact, the luminescence intensity even increases upon formation of a X-Ag(I)-C base pair, which is expected to be beneficial for the development of biosensors. As a consequence, the silver(I)-mediated phenoxazinone base pairs represent the first strongly fluorescent metal-mediated base pairs.
    Matched MeSH terms: DNA/chemistry*; Oxazines/chemistry*; Silver/chemistry*
  10. Siva R, Valarmathi TN, Palanikumar K, Samrot AV
    Carbohydr Polym, 2020 Sep 15;244:116494.
    PMID: 32536404 DOI: 10.1016/j.carbpol.2020.116494
    In recent days, there is an increasing use of green composites in composite manufacturing, where cellulosic natural fibers have been started using for this purpose. In line with this, a novel cellulose fiber was extracted from the Kigelia africana fruit and its physical, chemical and thermal properties, crystallography and surface morphology analysis were studied and reported in this investigative research paper. The physical analysis revealed the mean tensile strength as 50.31 ± 24.71 to 73.12 ± 32.48 MPa, diameter as 0.507 ± 0.162 to 0.629 ± 0.182 mm and density as 1.316 g/cm³ for the Kigelia africana fiber. The proximate chemical analysis estimated the cellulose percentage to be 61.5 % and the existence of different basic components like cellulose, hemicellulose and lignin are confirmed by Fourier transform infrared spectroscopy analysis. Thermogravimetric analysis establishes the thermal stability of the fiber as 212 ⁰C. The crystallinity index, 57.38 % of the fiber was determined by X-ray diffraction. Surface morphology by field emission scanning electron microscopy reveals the presence of protrusions in fiber which aid in the better adhesion with the matrix in composite manufacturing.
    Matched MeSH terms: Cellulose/chemistry*; Fruit/chemistry*; Angiosperms/chemistry*
  11. Khavarian M, Chai SP, Mohamed AR
    J Nanosci Nanotechnol, 2013 Jul;13(7):4825-37.
    PMID: 23901504
    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.
    Matched MeSH terms: Carbon/chemistry*; Carbon Dioxide/chemistry*; Metal Nanoparticles/chemistry*
  12. Sherlala AIA, Raman AAA, Bello MM, Asghar A
    Chemosphere, 2018 Feb;193:1004-1017.
    PMID: 29874727 DOI: 10.1016/j.chemosphere.2017.11.093
    Graphene-based adsorbents have attracted wide interests as effective adsorbents for heavy metals removal from the environment. Due to their excellent electrical, mechanical, optical and transport properties, graphene and its derivatives such as graphene oxide (GO) have found various applications. However, in many applications, surface modification is necessary as pristine graphene/GO may be ineffective in some specific applications such as adsorption of heavy metal ions. Consequently, the modification of graphene/GO using various metals and non-metals is an ongoing research effort in the carbon-material realm. The use of organic materials represents an economical and environmentally friendly approach in modifying GO for environmental applications such as heavy metal adsorption. This review discusses the applications of organo-functionalized GO composites for the adsorption of heavy metals. The aspects reviewed include the commonly used organic materials for modifying GO, the performance of the modified composites in heavy metals adsorption, effects of operational parameters, adsorption mechanisms and kinetic, as well as the stability of the adsorbents. Despite the significant research efforts on GO modification, many aspects such as the interaction between the functional groups and the heavy metal ions, and the quantitative effect of the functional groups are yet to be fully understood. The review, therefore, offers some perspectives on the future research needs.
    Matched MeSH terms: Graphite/chemistry*; Metals, Heavy/chemistry*; Nanocomposites/chemistry*
  13. Moniruzzaman M, Goto M
    PMID: 29744542 DOI: 10.1007/10_2018_64
    Ionic liquids (ILs), a potentially attractive "green," recyclable alternative to environmentally harmful volatile organic compounds, have been increasingly exploited as solvents and/or cosolvents and/or reagents in a wide range of applications, including pretreatment of lignocellulosic biomass for further processing. The enzymatic delignification of biomass to degrade lignin, a complex aromatic polymer, has received much attention as an environmentally friendly process for clean separation of biopolymers including cellulose and lignin. For this purpose, enzymes are generally isolated from naturally occurring fungi or genetically engineered fungi and used in an aqueous medium. However, enzymatic delignification has been found to be very slow in these conditions, sometimes taking several months for completion. In this chapter, we highlight an environmentally friendly and efficient approach for enzymatic delignification of lignocellulosic biomass using room temperature ionic liquids (ILs) as (co)solvents or/and pretreatment agents. The method comprises pretreatment of lignocellulosic biomass in IL-aqueous systems before enzymatic delignification, with the aim of overcoming the low delignification efficiency associated with low enzyme accessibility to the solid substrate and low substrate and product solubilities in aqueous systems. We believe the processes described here can play an important role in the conversion of lignocellulosic biomass-the most abundant renewable biomaterial in the world-to biomaterials, biopolymers, biofuels, bioplastics, and hydrocarbons. Graphical Abstract.
    Matched MeSH terms: Chemistry Techniques, Analytical/methods*; Solvents/chemistry
  14. Gew LT, Misran M
    J Biol Phys, 2017 Sep;43(3):397-414.
    PMID: 28752254 DOI: 10.1007/s10867-017-9459-2
    In this study, we address the effect of the cis-double bond in 1,2-dioleoyl-sn-glycero-3-phosphoethanolamide-N-[methoxy(polyethylene glycol)-2000, DOPE PEG2000 (DP), on the Langmuir monolayer of C18 fatty acids-namely, stearic acid (SA), oleic acid (L1), linoleic acid (L2), and linolenic acid (L3)-with the same head group but different degrees of saturation on their hydrocarbon chains. Negative values of Gibbs free energy of mixing (ΔG mix) were obtained throughout the investigated ranges of the unsaturated C18 fatty-acid (L1, L2 and L3) mixed systems, indicating that very strong attractions occurred between molecules in the monolayers. The bend and kink effects from the cis-double bond(s) in the hydrocarbon chain affected the membrane fluidity and molecular packing in the monolayers, which resulted in a greater interaction between unsaturated C18 fatty acids and DP. The most thermodynamically stable mole composition of unsaturated C18 fatty acids to DP was observed at 50:1; this ratio is suggested to be the best mole ratio and will be subsequently used to prepare DP-C18 fatty-acid nanoliposomes. The presence of cis-double bonds in both hydrocarbon chains of DOPE in DP also created an imperfection in the membrane structure of lipid-drug delivery systems, which is expected to enhance lipid-based systems for antibody conjugation and drug encapsulation.
    Matched MeSH terms: Fatty Acids/chemistry*; Phosphatidylethanolamines/chemistry*; Polyethylene Glycols/chemistry*
  15. Jamila N, Khan N, Hwang IM, Saba M, Khan F, Amin F, et al.
    Int J Biol Macromol, 2020 Mar 15;147:853-866.
    PMID: 31739066 DOI: 10.1016/j.ijbiomac.2019.09.245
    Gums; composed of polysaccharides, carbohydrates, proteins, and minerals, are high molecular weight hydrophilic compounds with several biological applications. This study describes the nutritional and toxic elements content, chemical composition, synthesis of silver nanoparticles (G-AgNPs), and pharmacological and catalytic properties of Prunus armeniaca (apricot), Prunus domestica (plums), Prunus persica (peaches), Acacia modesta (phulai), Acacia arabica (kikar), and Salmalia malabarica (silk cotton tree) gums. The elemental contents were analyzed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and ICP-mass spectrometry (ICP-MS). NMR spectroscopy was used for the identification of class of compounds in the mixture, their functional groups were determined through FTIR techniques, and plasmon resonance and size of G-AgNPs through UV-Vis spectroscopic technique and transmission electron microscopy (TEM). From the results, nutritional elements were present at appreciable concentrations, whereas toxic elements showed content below the maximum permissible ranges. Using the elemental data, linear discriminant and principal component analyses classified the gums to 99.9% variability index. Furthermore, G-AgNPs exhibited significant antioxidant, antibacterial, and redox catalytic potential. Hence, the subject G-AgNPs could have promising nutritional, therapeutic and environmental remediation applications.
    Matched MeSH terms: Silver/chemistry*; Plant Gums/chemistry*; Metal Nanoparticles/chemistry*
  16. Kee PE, Lan JC, Yim HS, Tan JS, Chow YH, Ng HS
    Appl Biochem Biotechnol, 2020 May;191(1):376-386.
    PMID: 31907777 DOI: 10.1007/s12010-019-03202-y
    Cytochrome c is a small water-soluble protein that is abundantly found in the mitochondrial intermembrane space of microorganism, plants and mammalians. Ionic liquids (ILs)-based aqueous two-phase electrophoresis system (ATPES) was introduced in this study to investigate the partition efficiency of cytochrome c to facilitate subsequent development of two-phase electrophoresis for the separation of cytochrome c from microbial fermentation. The 1-Hexyl-3-methylimidazolium bromide, (C6mim)Br and potassium citrate salt were selected as the phase-forming components. Effects of phase composition; position of electrodes; pH and addition of neutral salt on the partition efficiency of cytochrome c in the ATPES were evaluated. Highest partition coefficient (K = 179.12 ± 0.82) and yield of cytochrome c in top phase (YT = 99.63% ± 0.00) were recorded with IL/salt ATPES composed of 30% (w/w) (C6mim)Br and 20% (w/w) potassium citrate salt of pH 7 and 3.0% (w/w) NaCl addition with anode at the bottom phase and cathode at the top phase. The SDS-PAGE profile revealed that cytochrome c with a molecular weight of 12 kDa was preferably partitioned to the IL-rich top phase. Present findings suggested that the single-step ATPES is a potential separation approach for the recovery of cytochrome c from microbial fermentation. Graphical Abstract.
    Matched MeSH terms: Borates/chemistry*; Imidazoles/chemistry*; Ionic Liquids/chemistry*
  17. Teo SH, Chee CY, Fahmi MZ, Wibawa Sakti SC, Lee HV
    Molecules, 2022 Oct 23;27(21).
    PMID: 36363998 DOI: 10.3390/molecules27217170
    In the past few years, the research on particle-stabilized emulsion (Pickering emulsion) has mainly focused on the usage of inorganic particles with well-defined shapes, narrow size distributions, and chemical tunability of the surfaces such as silica, alumina, and clay. However, the presence of incompatibility of some inorganic particles that are non-safe to humans and the ecosystem and their poor sustainability has led to a shift towards the development of materials of biological origin. For this reason, nano-dimensional cellulose (nanocellulose) derived from natural plants is suitable for use as a Pickering material for liquid interface stabilization for various non-toxic product formulations (e.g., the food and beverage, cosmetic, personal care, hygiene, pharmaceutical, and biomedical fields). However, the current understanding of nanocellulose-stabilized Pickering emulsion still lacks consistency in terms of the structural, self-assembly, and physio-chemical properties of nanocellulose towards the stabilization between liquid and oil interfaces. Thus, this review aims to provide a comprehensive study of the behavior of nanocellulose-based particles and their ability as a Pickering functionality to stabilize emulsion droplets. Extensive discussion on the characteristics of nanocelluloses, morphology, and preparation methods that can potentially be applied as Pickering emulsifiers in a different range of emulsions is provided. Nanocellulose's surface modification for the purpose of altering its characteristics and provoking multifunctional roles for high-grade non-toxic applications is discussed. Subsequently, the water-oil stabilization mechanism and the criteria for effective emulsion stabilization are summarized in this review. Lastly, we discuss the toxicity profile and risk assessment guidelines for the whole life cycle of nanocellulose from the fresh feedstock to the end-life of the product.
    Matched MeSH terms: Cellulose/chemistry; Emulsions/chemistry; Water/chemistry
  18. Chen YW, Lee HV, Abd Hamid SB
    Carbohydr Polym, 2017 Dec 15;178:57-68.
    PMID: 29050615 DOI: 10.1016/j.carbpol.2017.09.029
    For the first time, a highly efficient Cr(NO3)3 catalysis system was proposed for optimization the yield and crystallinity of nanocellulose end product. A five-level three-factor central composite design coupled with response surface methodology was employed to elucidate parameters interactions between three design factors, namely reaction temperature (x1), reaction time (x2) and concentration of Cr(NO3)3 (x3) over a broad range of process conditions and determine the effect on crystallinity index and product yield. The developed models predicted the maximum nanocellulose yield of 87% at optimum process conditions of 70.6°C, 1.48h, and 0.48M Cr(NO3)3. At these conditions, the obtained nanocellulose presented high crystallinity index (75.3%), spider-web-like interconnected network morphology with the average width of 31.2±14.3nm. In addition, the yielded nanocellulose rendered a higher thermal stability than that of original cellulosic source and expected to be widely used as reinforcement agent in bio-nanocomposites materials.
    Matched MeSH terms: Cellulose/chemistry*; Chromium Compounds/chemistry*; Nanoparticles/chemistry*
  19. Ai H, Lee YY, Xie X, Tan CP, Ming Lai O, Li A, et al.
    Food Chem, 2023 Jun 30;412:135558.
    PMID: 36716631 DOI: 10.1016/j.foodchem.2023.135558
    Palm olein (POL) was modified by enzymatic interesterification with different degrees of acyl migration in a solvent-free packed bed reactor. The fatty acid and acylglycerol composition, isomer content, thermodynamic behavior, and relationship between crystal polymorphism, solid fat content (SFC), crystal microstructure, and texture before and after modification were studied. We found that the increase in sn-2 saturation interesterification was not only due to the generated tripalmitin (PPP) but also caused by acyl migration, and the SFC profiles were changed accordingly. The emergence of high melting point acylglycerols was an important factor accelerating the crystallization rate, further shortening the crystallization induction time, leading to the formation of large crystal spherulites, thereby reducing the hardness. The transformation from the β' to the β form occurred during post-hardening during storage. The isomer content also affected the physicochemical properties of the modified POL.
    Matched MeSH terms: Fatty Acids/chemistry; Glycerides/chemistry; Triglycerides/chemistry
  20. Wijekoon MMJO, Mahmood K, Ariffin F, Mohammadi Nafchi A, Zulkurnain M
    Int J Biol Macromol, 2023 Jun 30;241:124539.
    PMID: 37085081 DOI: 10.1016/j.ijbiomac.2023.124539
    Fat-soluble vitamins (FSVs) offer a range of beneficial properties as important nutrients in human nutrition. However, the high susceptibility to environmental conditions such as high temperature, light, and oxygen leads to the degradation of these compounds. This review highlights the different formulations underlying the encapsulation of FSVs in biopolymer (polysaccharide and protein) and lipid-based micro or nanocarriers for potential applications in food and pharmaceutical industries. In particular, the function of these carrier systems in terms of encapsulation efficiency, stability, bioavailability, and bio-accessibility is critically discussed. Recently, tremendous attention has been paid to encapsulating FSVs in commercial applications. According to the chemical nature of the active compound, the vigilant selection of delivery formulation, method of encapsulation, and final application (type of food) are the key important factors to be considered in the encapsulation of FSVs to ensure a high loading capacity, stability, bioavailability, and bio-accessibility. Future studies are recommended on the effect of different vitamin types and micro and nano encapsulate sizes on bioaccessibility and biocompatibility through in vitro/in vivo studies. Moreover, the toxicity and safety evaluation of encapsulated FSVs in human health should be evaluated before commercial application in food and pharmaceuticals.
    Matched MeSH terms: Lipids/chemistry; Polysaccharides/chemistry; Proteins/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links