Displaying publications 61 - 80 of 171 in total

Abstract:
Sort:
  1. Zailani NNB, Ho PC
    Eur J Drug Metab Pharmacokinet, 2023 Sep;48(5):467-494.
    PMID: 37495930 DOI: 10.1007/s13318-023-00846-4
    This review provides an overview on the current applications of dried blood spots (DBS) as matrices for therapeutic drug (TDM) and drug or disease response monitoring (DRM). Compared with conventional methods using plasma/serum, DBS offers several advantages, including minimally invasiveness, a small blood volume requirement, reduced biohazardous risk, and improved sample stability. Numerous assays utilising DBS for TDM have been reported in the literature over the past decade, covering a wide range of therapeutic drugs. Several factors can affect the accuracy and reliability of the DBS sampling method, including haematocrit (HCT), blood volume, sampling paper and chromatographic effects. It is crucial to evaluate the correlation between DBS concentrations and conventional plasma/serum concentrations, as the latter has traditionally been used for clinical decision. The feasibility of using DBS sampling method as an option for home-based TDM is also discussed. Furthermore, DBS has also been used as a matrix for monitoring the drug or disease responses (DRM) through various approaches such as genotyping, viral load measurement, assessment of inflammatory factors, and more recently, metabolic profiling. Although this research is still in the development stage, advancements in technology are expected to lead to the identification of surrogate biomarkers for drug treatment in DBS and a better understanding of the correlation between DBS drug levels and drug responses. This will make DBS a valuable matrix for TDM and DRM, facilitating the achievement of pharmacokinetic and pharmacodynamic correlations and enabling personalised therapy.
    Matched MeSH terms: Metabolomics
  2. Bawadikji AA, Teh CH, Sheikh Abdul Kader MAB, Abdul Wahab MJB, Syed Sulaiman SA, Ibrahim B
    Am J Cardiovasc Drugs, 2020 Apr;20(2):169-177.
    PMID: 31435902 DOI: 10.1007/s40256-019-00364-2
    BACKGROUND: Warfarin is prescribed as an oral anticoagulant to treat/prevent thromboembolism in conditions such as atrial fibrillation. As there is a narrow therapeutic window, treatment with warfarin is challenging. Pharmacometabonomics using nuclear magnetic resonance (NMR) spectroscopy may provide novel techniques for the identification of novel biomarkers of warfarin.

    PURPOSE: The aim was to determine the metabolic fingerprint that predicts warfarin response based on the international normalized ratio (INR) in patients who are already receiving warfarin (phase I: identification) and to ascertain the metabolic fingerprint that discriminates stable from unstable INR in patients starting treatment with warfarin (phase II: validation).

    EXPERIMENTAL APPROACH: A total of 94 blood samples were collected for phase I: 44 patients with stable INR and 50 with unstable INR. Meanwhile, 23 samples were collected for phase II: nine patients with stable INR and 14 with unstable INR. Data analysis was performed using multivariate analysis including principal component analysis and partial least square-discriminate analysis (PLS-DA), followed by univariate and multivariate logistic regression (MVLR) to develop a model to identify unstable INR biomarkers.

    KEY RESULTS: For phase I, the PLS-DA model showed the following results: sensitivity 93.18%, specificity 91.49% and accuracy 92.31%. In the MVLR analysis of phase I, ten regions were associated with unstable INR. For phase II, the PLS-DA model showed the following results: sensitivity 66.67%, specificity 61.54% and accuracy 63.64%.

    CONCLUSIONS AND IMPLICATIONS: We have shown that the pharmacometabonomics technique was able to differentiate between unstable and stable INR with good accuracy. NMR-based pharmacometabonomics has the potential to identify novel biomarkers in plasma, which can be useful in individualizing treatment and controlling warfarin side effects, thus, minimizing undesirable effects in the future.

    Matched MeSH terms: Metabolomics/methods
  3. Mostafa H, Amin AM, Teh CH, Murugaiyah VA, Arif NH, Ibrahim B
    J Subst Abuse Treat, 2017 06;77:1-5.
    PMID: 28476260 DOI: 10.1016/j.jsat.2017.02.015
    BACKGROUND: Alcohol use disorders (AUD) is a phase of alcohol misuse in which the drinker consumes excessive amount of alcohol and have a continuous urge to consume alcohol which may lead to various health complications. The current methods of alcohol use disorders diagnosis such as questionnaires and some biomarkers lack specificity and sensitivity. Metabolomics is a novel scientific field which may provide a novel method for the diagnosis of AUD by using a sensitive and specific technique such as nuclear magnetic resonance (NMR).

    METHODS: A cross sectional study was conducted on three groups: individuals with alcohol use disorders (n=30), social drinkers (n=54) and alcohol-naive controls (n=60). 1H NMR-based metabolomics was used to obtain the metabolic profiles of plasma samples. Data were processed by multivariate principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) followed by univariate and multivariate logistic regressions to produce the best fit-model for discrimination between groups.

    RESULTS: The OPLS-DA model was able to distinguish between the AUD group and the other groups with high sensitivity, specificity and accuracy of 64.29%, 98.17% and 91.24% respectively. The logistic regression model identified two biomarkers in plasma (propionic acid and acetic acid) as being significantly associated with alcohol use disorders. The reproducibility of all biomarkers was excellent (0.81-1.0).

    CONCLUSIONS: The applied plasma metabolomics technique was able to differentiate the metabolites between AUD and the other groups. These metabolites are potential novel biomarkers for diagnosis of alcohol use disorders.

    Matched MeSH terms: Metabolomics/methods*
  4. Mostafa H, Amin AM, Teh CH, Murugaiyah V, Arif NH, Ibrahim B
    Drug Alcohol Depend, 2016 12 01;169:80-84.
    PMID: 27788404 DOI: 10.1016/j.drugalcdep.2016.10.016
    BACKGROUND: Alcohol-dependence (AD) is a ravaging public health and social problem. AD diagnosis depends on questionnaires and some biomarkers, which lack specificity and sensitivity, however, often leading to less precise diagnosis, as well as delaying treatment. This represents a great burden, not only on AD individuals but also on their families. Metabolomics using nuclear magnetic resonance spectroscopy (NMR) can provide novel techniques for the identification of novel biomarkers of AD. These putative biomarkers can facilitate early diagnosis of AD.

    OBJECTIVES: To identify novel biomarkers able to discriminate between alcohol-dependent, non-AD alcohol drinkers and controls using metabolomics.

    METHOD: Urine samples were collected from 30 alcohol-dependent persons who did not yet start AD treatment, 54 social drinkers and 60 controls, who were then analysed using NMR. Data analysis was done using multivariate analysis including principal component analysis (PCA) and orthogonal partial least square-discriminate analysis (OPLS-DA), followed by univariate and multivariate logistic regression to develop the discriminatory model. The reproducibility was done using intraclass correlation coefficient (ICC).

    RESULTS: The OPLS-DA revealed significant discrimination between AD and other groups with sensitivity 86.21%, specificity 97.25% and accuracy 94.93%. Six biomarkers were significantly associated with AD in the multivariate logistic regression model. These biomarkers were cis-aconitic acid, citric acid, alanine, lactic acid, 1,2-propanediol and 2-hydroxyisovaleric acid. The reproducibility of all biomarkers was excellent (0.81-1.0).

    CONCLUSION: This study revealed that metabolomics analysis of urine using NMR identified AD novel biomarkers which can discriminate AD from social drinkers and controls with high accuracy.

    Matched MeSH terms: Metabolomics/methods*
  5. Bawadikji AA, Teh CH, Kader MABSA, Sulaiman SAS, Ibrahim B
    Curr Pharm Biotechnol, 2017;18(9):740-747.
    PMID: 29110602 DOI: 10.2174/1389201018666171103141828
    BACKGROUND: Warfarin, an anticoagulant medication, is prescribed regularly despite of its bleeding tendency for the prevention and/or treatment of various thromboembolic conditions, such as deep vein thrombosis, and complications associated with atrial fibrillation, and myocardial infarction, but because of its narrow therapeutic window, it has a lot of interactions with drugs and diet.

    METHODS: Warfarin relies on regular monitoring of International Normalized Ratio which is a standardized test to measure prothrombin time and appropriate dose adjustment. Pharmacometabonomics is a novel scientific field which deals with identification and quantification of the metabolites present in the metabolome using spectroscopic techniques such as Nuclear Magnetic Resonance (NMR). Pharmacometabonomics helps to indicate perturbation in the levels of metabolites in the cells and tissues due to drug or ingestion of any substance. NMR is one of the most widely-used spectroscopic techniques in metabolomics because of its reproducibility and speed.

    RESULTS: There are many factors that influence the metabolism of warfarin, making changes in drug dosage common, and clinical factors like drug-drug interactions, dietary interactions and age explain for the most part the variability in warfarin dosing. Some studies have showed that pharmacogenetic testing for warfarin dosing does not improve health outcomes, and around 26% of the variation in warfarin dose requirements remains unexplained yet.

    CONCLUSION: Many recent pharmacometabonomics studies have been conducted to identify novel biomarkers of drug therapies such as paracetamol, aspirin and simvastatin. Thus, a technique such as NMR based pharmacometabonomics to find novel biomarkers in plasma and urine might be useful to predict warfarin outcome.

    Matched MeSH terms: Metabolomics/methods*
  6. Amin AM, Sheau Chin L, Teh CH, Mostafa H, Mohamed Noor DA, Abdul Kader MASK, et al.
    Eur J Pharm Sci, 2018 May 30;117:351-361.
    PMID: 29526765 DOI: 10.1016/j.ejps.2018.03.011
    Dual antiplatelet therapy (DAPT) of clopidogrel and aspirin is crucial for coronary artery disease (CAD) patients undergoing percutaneous coronary intervention (PCI). However, some patients may endure clopidogrel high on treatment platelets reactivity (HTPR) which may cause thromboembolic events. Clopidogrel HTPR is multifactorial with some genetic and non-genetic factors contributing to it. We aimed to use nuclear magnetic resonance (1H NMR) pharmacometabolomics analysis of plasma to investigate this multifactorial and identify metabolic phenotypes and pathways associated with clopidogrel HTPR. Blood samples were collected from 71 CAD patients planned for interventional angiographic procedure (IAP) before the administration of clopidogrel 600 mg loading dose (LD) and 6 h after the LD. Platelets function testing was done 6 h post-LD using VerifyNow® P2Y12 assay. Pre-dose and post-dose plasma samples were analysed using 1H NMR. Multivariate statistical analysis was used to indicate the discriminating metabolites. Two metabotypes, each with 34 metabolites (pre-dose and post-dose) were associated with clopidogrel HTPR. Pathway analysis of these metabotypes revealed that aminoacyl-tRNA biosynthesis, nitrogen metabolism and glycine-serine-threonine metabolism are the most perturbed metabolic pathways associated with clopidogrel HTPR. Furthermore, the identified biomarkers indicated that clopidogrel HTPR is multifactorial where the metabolic phenotypes of insulin resistance, type two diabetes mellitus, obesity, gut-microbiota and heart failure are associated with it. Pharmacometabolomics analysis of plasma revealed new insights on the implicated metabolic pathways and the predisposing factors of clopidogrel HTPR.
    Matched MeSH terms: Metabolomics/methods*
  7. Kadir NAAA, Azlan A, Abas F, Ismail IS
    Nutrients, 2020 Nov 14;12(11).
    PMID: 33202660 DOI: 10.3390/nu12113511
    A source of functional food can be utilized from a source that might otherwise be considered waste. This study investigates the hypocholesterolemic effect of defatted dabai pulp (DDP) from supercritical carbon dioxide extraction and the metabolic alterations associated with the therapeutic effects of DDP using 1H NMR urinary metabolomic analysis. Male-specific pathogen-free Sprague-Dawley rats were fed with a high cholesterol diet for 30 days to induce hypercholesterolemia. Later, the rats were administered with a 2% DDP treatment diet for another 30 days. Supplementation with the 2% DDP treatment diet significantly reduced the level of total cholesterol (TC), triglyceride, low-density lipoprotein (LDL), and inflammatory markers (C-reactive protein (CRP), interleukin 6 (IL6) and tumour necrosis factor-α (α-TNF)) and significantly increased the level of antioxidant profile (total antioxidant status (TAS), superoxide dismutase (SOD), glutathione peroxide (GPX), and catalase (CAT)) compared with the positive control group (PG) group (p < 0.05). The presence of high dietary fibre (28.73 ± 1.82 g/100 g) and phenolic compounds (syringic acid, 4-hydroxybenzoic acid and gallic acid) are potential factors contributing to the beneficial effect. Assessment of 1H NMR urinary metabolomics revealed that supplementation of 2% of DDP can partially recover the dysfunction in the metabolism induced by hypercholesterolemia via choline metabolism. 1H-NMR-based metabolomic analysis of urine from hypercholesterolemic rats in this study uncovered the therapeutic effect of DDP to combat hypercholesterolemia.
    Matched MeSH terms: Metabolomics
  8. Bustamam MSA, Pantami HA, Azizan A, Shaari K, Min CC, Abas F, et al.
    Mar Drugs, 2021 Mar 02;19(3).
    PMID: 33801258 DOI: 10.3390/md19030139
    This study was designed to profile the metabolites of Isochrysis galbana, an indigenous and less explored microalgae species. 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Liquid Chromatography-Mass Spectrometry (LCMS) were used to establish the metabolite profiles of five different extracts of this microalga, which are hexane (Hex), ethyl acetate (EtOAc), absolute ethanol (EtOH), EtOH:water 1:1 (AqE), and 100% water (Aq). Partial least square discriminant analysis (PLS-DA) of the generated profiles revealed that EtOAc and Aq extracts contain a diverse range of metabolites as compared to the other extracts with a total of twenty-one metabolites, comprising carotenoids, polyunsaturated fatty acids, and amino acids, that were putatively identified from the NMR spectra. Meanwhile, thirty-two metabolites were successfully annotated from the LCMS/MS data, ten of which (palmitic acid, oleic acid, α-linolenic acid, arachidic acid, cholesterol, DHA, DPA, fucoxanthin, astaxanthin, and pheophytin) were similar to those present in the NMR profile. Another eleven glycerophospholipids were discovered using MS/MS-based molecular network (MN) platform. The results of this study, besides providing a better understanding of I.galbana's chemical make-up, will be of importance in exploring this species potential as a feed ingredient in the aquaculture industry.
    Matched MeSH terms: Metabolomics*
  9. Ahamad Bustamam MS, Pantami HA, Shaari K, Min CC, Mediani A, Ismail IS
    Fish Shellfish Immunol, 2023 Jan;132:108455.
    PMID: 36464078 DOI: 10.1016/j.fsi.2022.108455
    Tilapia is one of the most common fish species that is intensively produced all over the world. However, significant measures at improving aquaculture health must be taken since disease outbreaks are often encountered in the rapidly developing aquaculture industry. Therefore, the objective of the study was designed to evaluate the metabolite changes in tilapia' sera through 1H NMR metabolomics in identifying the potential biomarkers responsible for immunomodulatory effect by the indigenous species of Malaysian microalgae Isochrysis galbana (IG). The results showed that IG-incorporated diet mainly at 5.0% has improved the immune response of innate immunity as observed in serum bactericidal activity (SBA) and serum lysozyme activity (SLA). The orthogonal partial least squares (OPLS) analysis indicated 5 important metabolites significantly upregulated namely as ethanol, lipoprotein, lipid, α-glucose and unsaturated fatty acid (UFA) in the 5.0% IG-incorporated diet compared to control. In conclusion, this study had successfully determined IG in improving aquaculture health through its potential use as an immune modulator. This work also demonstrated the effective use of metabolomics approach in the development of alternative nutritious diet from microalgae species to boost fish health in fulfilling the aquaculture's long-term goals.
    Matched MeSH terms: Metabolomics/methods
  10. Saleh MSM, Siddiqui MJ, Mediani A, Ahmed QU, Mat So'ad SZ, Saidi-Besbes S, et al.
    Food Res Int, 2020 11;137:109547.
    PMID: 33233172 DOI: 10.1016/j.foodres.2020.109547
    Fruit of salak (Salacca zalacca) is traditionally used and commercialized as an antidiabetic agent. However, the scientific evidence to prove this traditional use is lacking. This research was aimed to evaluate the metabolic changes of obese-diabetic (OBDC) rats treated with S. zalacca fruit extract using proton-nuclear magnetic resonance (1H NMR)-based metabolomics approach. This research presents the first report on the in vitro antidiabetic effect of S. zalacca fruits extract using this approach. The obtained results indicated that the administration of 400 mg/kg bw of 60% ethanolic S. zalacca extract for 6 weeks significantly decreased the blood glucose level and normalized the blood lipid profile of the OBDC rats. The potential biomarkers in urine were 2-oxoglutarate, alanine, leucine, succinate 3-hydroxybutyrate, taurine, betaine, allantoin, acetate, dimethylamine, creatine, creatinine, glucose, phenyl-acetylglycine, and hippurate. Based on the data obtained, the 60% ethanolic extract could not fully improved the metabolic complications of diabetic rats. The extract of S. zalacca fruit was able to decrease the ketones bodies as 3-hydroxybutyrate and acetoacetate. It also improved energy metabolism, involving glucose, acetate, lactate, 2-hydroxybutyrate, 2-oxoglutarate, citrate, and succinate. Moreover, it decreased metabolites from gut microflora, including choline. This extract had significant effect on amino acid metabolism, metabolites from gut microflora, bile acid metabolism and creatine. The result can further support the traditional claims of S. zalacca fruits in management of diabetes. This finding might be valuable in understanding the molecular mechanism and pharmacological properties of this medicinal plant for managing diabetes mellitus.
    Matched MeSH terms: Metabolomics*
  11. Kasim N, Afzan A, Mediani A, Low KH, Ali AM, Mat N, et al.
    Phytochem Anal, 2022 Dec;33(8):1235-1245.
    PMID: 36192845 DOI: 10.1002/pca.3175
    INTRODUCTION: Ficus deltoidea Jack (Moraceae) is a plant used in Malaysia to treat various ailments, including diabetes. The presence of several varieties raises essential questions regarding which is the potential bioactive variety and what are the bioactive metabolites.

    OBJECTIVES: Here, we explored the phytochemical diversity of the seven varieties from Peninsular Malaysia using Nuclear Magnetic Resonance (NMR) and Liquid Chromatography-Mass Spectrometry (LC-MS) analyses and correlated it with the α-glucosidase inhibitory activity.

    METHODOLOGY: The Nuclear Overhauser Effect Spectroscopy (NOESY) One-Dimensional (1D)-NMR and LC-MS data were processed, annotated, and correlated with in vitro α-glucosidase inhibitory using multivariate data analysis.

    RESULTS: The α-glucosidase results demonstrated that different varieties have varying inhibitory effects, with the highest inhibition rate being F. deltoidea var. trengganuensis and var. kunstleri. Furthermore, diverse habitats and plant ages could also influence the inhibitory rate. The heat map from NMR and LC-MS profiles showed unique patterns according to varying levels of α-glucosidase inhibition rate. The Partial Least Squares (PLS) model constructed from both NMR and LC-MS further confirmed the correlation between the α-glucosidase inhibition rate of F. deltoidea varieties and its metabolite profiles. The Variable Influence on Projection (VIP) and correlation coefficient (p(corr)) values values were used to determine the highly relevant metabolites for explaining the anticipated inhibitory action.

    CONCLUSION: NMR and LC-MS annotations allow the identification of flavan-3-ols and proanthocyanidins as the key bioactive factors. Our current results demonstrated the value of multivariate data analysis to predict the quality of herbal materials from both biological and chemical aspects.

    Matched MeSH terms: Metabolomics
  12. Ibrahim MH, Jaafar HZ
    Molecules, 2012;17(5):5195-211.
    PMID: 22628041 DOI: 10.3390/molecules17055195
    A split plot 3 by 3 experiment was designed to investigate the relationships among production of primary metabolites (soluble sugar and starch), secondary metabolites (total flavonoids, TF; total phenolics, TP), phenylalanine lyase (PAL) activity (EC 4.3.1.5), protein and antioxidant activity (FRAP) of three progenies of oil palm seedlings, namely Deli AVROS, Deli Yangambi and Deli URT, under three levels of CO₂ enrichment (400, 800 and 1,200 μmol·mol⁻¹) for 15 weeks of exposure. During the study, the treatment effects were solely contributed by CO₂ enrichment levels; no progenies and interaction effects were observed. As CO₂ levels increased from 400 to 1,200 μmol·mol⁻¹, the production of carbohydrate increased steadily, especially for starch more than soluble sugar. The production of total flavonoids and phenolics contents, were the highest under 1,200 and lowest at 400 μmol·mol⁻¹. It was found that PAL activity was peaked under 1,200 μmol·mol⁻¹ followed by 800 μmol·mol⁻¹ and 400 μmol·mol⁻¹. However, soluble protein was highest under 400 μmol·mol⁻¹ and lowest under 1,200 μmol·mol⁻¹. The sucrose/starch ratio, i.e., the indication of sucrose phosphate synthase actvity (EC 2.4.1.14) was found to be lowest as CO₂ concentration increased from 400 > 800 > 1,200 μmol·mol⁻¹. The antioxidant activity, as determined by the ferric reducing/antioxidant potential (FRAP) activity, increased with increasing CO₂ levels, and was significantly lower than vitamin C and α-tocopherol but higher than butylated hydroxytoluene (BHT). Correlation analysis revealed that nitrogen has a significant negative correlation with carbohydrate, secondary metabolites and FRAP activity indicating up-regulation of production of carbohydrate, secondary metabolites and antioxidant activity of oil palm seedling under elevated CO₂ was due to reduction in nitrogen content in oil palm seedling expose to high CO₂ levels.
    Matched MeSH terms: Metabolomics
  13. Megat Mohd Azlan PI, Chin SF, Low TY, Neoh HM, Jamal R
    Proteomics, 2019 05;19(10):e1800176.
    PMID: 30557447 DOI: 10.1002/pmic.201800176
    Dysbiosis of gut microbiome can contribute to inflammation, and subsequently initiation and progression of colorectal cancer (CRC). Throughout these stages, various proteins and metabolites are secreted to the external environment by microorganisms or the hosts themselves. Studying these proteins may help enhance our understanding of the host-microorganism relationship or they may even serve as useful biomarkers for CRC. However, secretomic studies of gut microbiome of CRC patients, until now, are scarcely performed. In this review article, the focus is on the roles of gut microbiome in CRC, the current findings on CRC secretome are highlighted, and the emerging challenges and strategies to drive forward this area of research are addressed.
    Matched MeSH terms: Metabolomics
  14. Fages A, Duarte-Salles T, Stepien M, Ferrari P, Fedirko V, Pontoizeau C, et al.
    BMC Med, 2015 Sep 23;13:242.
    PMID: 26399231 DOI: 10.1186/s12916-015-0462-9
    BACKGROUND: Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is difficult to diagnose and has limited treatment options with a low survival rate. Aside from a few key risk factors, such as hepatitis, high alcohol consumption, smoking, obesity, and diabetes, there is incomplete etiologic understanding of the disease and little progress in identification of early risk biomarkers.

    METHODS: To address these aspects, an untargeted nuclear magnetic resonance metabolomic approach was applied to pre-diagnostic serum samples obtained from first incident, primary HCC cases (n = 114) and matched controls (n = 222) identified from amongst the participants of a large European prospective cohort.

    RESULTS: A metabolic pattern associated with HCC risk comprised of perturbations in fatty acid oxidation and amino acid, lipid, and carbohydrate metabolism was observed. Sixteen metabolites of either endogenous or exogenous origin were found to be significantly associated with HCC risk. The influence of hepatitis infection and potential liver damage was assessed, and further analyses were made to distinguish patterns of early or later diagnosis.

    CONCLUSION: Our results show clear metabolic alterations from early stages of HCC development with application for better etiologic understanding, prevention, and early detection of this increasingly common cancer.

    Matched MeSH terms: Metabolomics/methods*
  15. Stepien M, Keski-Rahkonen P, Kiss A, Robinot N, Duarte-Salles T, Murphy N, et al.
    Int J Cancer, 2021 Feb 01;148(3):609-625.
    PMID: 32734650 DOI: 10.1002/ijc.33236
    Hepatocellular carcinoma (HCC) development entails changes in liver metabolism. Current knowledge on metabolic perturbations in HCC is derived mostly from case-control designs, with sparse information from prospective cohorts. Our objective was to apply comprehensive metabolite profiling to detect metabolites whose serum concentrations are associated with HCC development, using biological samples from within the prospective European Prospective Investigation into Cancer and Nutrition (EPIC) cohort (>520 000 participants), where we identified 129 HCC cases matched 1:1 to controls. We conducted high-resolution untargeted liquid chromatography-mass spectrometry-based metabolomics on serum samples collected at recruitment prior to cancer diagnosis. Multivariable conditional logistic regression was applied controlling for dietary habits, alcohol consumption, smoking, body size, hepatitis infection and liver dysfunction. Corrections for multiple comparisons were applied. Of 9206 molecular features detected, 220 discriminated HCC cases from controls. Detailed feature annotation revealed 92 metabolites associated with HCC risk, of which 14 were unambiguously identified using pure reference standards. Positive HCC-risk associations were observed for N1-acetylspermidine, isatin, p-hydroxyphenyllactic acid, tyrosine, sphingosine, l,l-cyclo(leucylprolyl), glycochenodeoxycholic acid, glycocholic acid and 7-methylguanine. Inverse risk associations were observed for retinol, dehydroepiandrosterone sulfate, glycerophosphocholine, γ-carboxyethyl hydroxychroman and creatine. Discernible differences for these metabolites were observed between cases and controls up to 10 years prior to diagnosis. Our observations highlight the diversity of metabolic perturbations involved in HCC development and replicate previous observations (metabolism of bile acids, amino acids and phospholipids) made in Asian and Scandinavian populations. These findings emphasize the role of metabolic pathways associated with steroid metabolism and immunity and specific dietary and environmental exposures in HCC development.
    Matched MeSH terms: Metabolomics/methods*
  16. Amin AM, Mostafa H, Arif NH, Abdul Kader MAS, Kah Hay Y
    Clin Chim Acta, 2019 Jun;493:112-122.
    PMID: 30826371 DOI: 10.1016/j.cca.2019.02.030
    BACKGROUND: Coronary artery disease (CAD) claims lives yearly. Nuclear magnetic resonance (1H NMR) metabolomics analysis is efficient in identifying metabolic biomarkers which lend credence to diagnosis. We aimed to identify CAD metabotypes and its implicated pathways using 1H NMR analysis.

    METHODS: We analysed plasma and urine samples of 50 stable CAD patients and 50 healthy controls using 1H NMR. Orthogonal partial least square discriminant analysis (OPLS-DA) followed by multivariate logistic regression (MVLR) models were developed to indicate the discriminating metabotypes. Metabolic pathway analysis was performed to identify the implicated pathways.

    RESULTS: Both plasma and urine OPLS-DA models had specificity, sensitivity and accuracy of 100%, 96% and 98%, respectively. Plasma MVLR model had specificity, sensitivity, accuracy and AUROC of 92%, 86%, 89% and 0.96, respectively. The MVLR model of urine had specificity, sensitivity, accuracy and AUROC of 90%, 80%, 85% and 0.92, respectively. 35 and 12 metabolites were identified in plasma and urine metabotypes, respectively. Metabolic pathway analysis revealed that urea cycle, aminoacyl-tRNA biosynthesis and synthesis and degradation of ketone bodies pathways were significantly disturbed in plasma, while methylhistidine metabolism and galactose metabolism pathways were significantly disturbed in urine. The enrichment over representation analysis against SNPs-associated-metabolite sets library revealed that 85 SNPs were significantly enriched in plasma metabotype.

    CONCLUSIONS: Cardiometabolic diseases, dysbiotic gut-microbiota and genetic variabilities are largely implicated in the pathogenesis of CAD.

    Matched MeSH terms: Metabolomics*
  17. Akhtar MT, Samar M, Shami AA, Mumtaz MW, Mukhtar H, Tahir A, et al.
    Molecules, 2021 Jul 30;26(15).
    PMID: 34361796 DOI: 10.3390/molecules26154643
    Meat is a rich source of energy that provides high-value animal protein, fats, vitamins, minerals and trace amounts of carbohydrates. Globally, different types of meats are consumed to fulfill nutritional requirements. However, the increasing burden on the livestock industry has triggered the mixing of high-price meat species with low-quality/-price meat. This work aimed to differentiate different meat samples on the basis of metabolites. The metabolic difference between various meat samples was investigated through Nuclear Magnetic Resonance spectroscopy coupled with multivariate data analysis approaches like principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). In total, 37 metabolites were identified in the gluteal muscle tissues of cow, goat, donkey and chicken using 1H-NMR spectroscopy. PCA was found unable to completely differentiate between meat types, whereas OPLS-DA showed an apparent separation and successfully differentiated samples from all four types of meat. Lactate, creatine, choline, acetate, leucine, isoleucine, valine, formate, carnitine, glutamate, 3-hydroxybutyrate and α-mannose were found as the major discriminating metabolites between white (chicken) and red meat (chevon, beef and donkey). However, inosine, lactate, uracil, carnosine, format, pyruvate, carnitine, creatine and acetate were found responsible for differentiating chevon, beef and donkey meat. The relative quantification of differentiating metabolites was performed using one-way ANOVA and Tukey test. Our results showed that NMR-based metabolomics is a powerful tool for the identification of novel signatures (potential biomarkers) to characterize meats from different sources and could potentially be used for quality control purposes in order to differentiate different meat types.
    Matched MeSH terms: Metabolomics/methods*
  18. Lim CK, Nurul Fadhilah Marzuki, Goh YK, You KG, Kah JG, Rafidah Ahmad, et al.
    Sains Malaysiana, 2018;47:3061-3068.
    Basal stem rot disease of oil palm caused by Ganoderma boninense is one of the most devastating diseases in oil palm
    plantation resulting in low yield, loss of palm stands and shorter replanting cycle. To-date, there is no effective treatment
    for Ganoderma infected palms. Control measures, either chemical or cultural approaches, show varying degrees of
    effectiveness. The application of biological control agents which is environmental-friendly could be an attractive solution
    to overcome the problem. Earlier, we had isolated a mycoparasite, Scytalidium parasiticum, from the basidiomata of
    Ganoderma boninense. In vitro assay and nursery experiment showed that this fungus could suppress Ganoderma infection
    and reduce disease severity. However, metabolites which might contribute to the antagonistic or mycoparasitic effect
    remain unknown. In the current study, optimization of fungal sample processing, extraction, and analytical procedures
    were conducted to obtain metabolites from the maize substrate colonized by mycoparasitic ascomycetous Scytalidium
    parasiticum. This technique capable of producing sexual spores in sac-like organs. Untargeted metabolomics profiling
    was carried out by using Liquid Chromatography Time of Flight Mass Spectrometry (LC-ToF-MS). We found that
    S. parasiticum in both liquid- and solid-state cultivation gave higher metabolite when extracted with 60% methanol with
    1% formic acid in combination with homogenisation methods such as ultrasonication and grinding. The findings from
    this study are useful for optimisation of metabolite extraction from other fungi-Ganoderma-plant interactions.
    Matched MeSH terms: Metabolomics
  19. Saleh MSM, Jalil J, Mustafa NH, Ramli FF, Asmadi AY, Kamisah Y
    Life (Basel), 2021 Jan 22;11(2).
    PMID: 33499128 DOI: 10.3390/life11020078
    Parkia speciosa is a food plant that grows indigenously in Southeast Asia. A great deal of interest has been paid to this plant due to its traditional uses in the treatment of several diseases. The pods contain many beneficial secondary metabolites with potential applications in medicine and cosmetics. However, studies on their phytochemical properties are still lacking. Therefore, the present study was undertaken to profile the bioactive compounds of P. speciosa pods collected from six different regions of Malaysia through ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) and α-glucosidase inhibitory potential. This study applied metabolomics to elucidate the differences between P. speciosa populations found naturally in the different locations and to characterize potential α-glucosidase inhibitors from P. speciosa pods. P. speciosa collected from different regions of Malaysia showed good α-glucosidase inhibitory activity, with a median inhibitory concentration (IC50) of 0.45-0.76 μg/mL. The samples from the northern and northeastern parts of Peninsular Malaysia showed the highest activity. Using UHPLC-QTOF-MS/MS analysis, 25 metabolites were identified in the pods of P. speciosa. The findings unveiled that the pods of P. speciosa collected from different locations exhibit different levels of α-glucosidase inhibitory activity. The pods are a natural source of potent antidiabetic bioactive compounds.
    Matched MeSH terms: Metabolomics
  20. Murugesu S, Ibrahim Z, Ahmed QU, Nik Yusoff NI, Uzir BF, Perumal V, et al.
    Molecules, 2018 Sep 19;23(9).
    PMID: 30235889 DOI: 10.3390/molecules23092402
    BACKGROUND: Clinacanthus nutans (C. nutans) is an Acanthaceae herbal shrub traditionally consumed to treat various diseases including diabetes in Malaysia. This study was designed to evaluate the α-glucosidase inhibitory activity of C. nutans leaves extracts, and to identify the metabolites responsible for the bioactivity.

    METHODS: Crude extract obtained from the dried leaves using 80% methanolic solution was further partitioned using different polarity solvents. The resultant extracts were investigated for their α-glucosidase inhibitory potential followed by metabolites profiling using the gas chromatography tandem with mass spectrometry (GC-MS).

    RESULTS: Multivariate data analysis was developed by correlating the bioactivity, and GC-MS data generated a suitable partial least square (PLS) model resulting in 11 bioactive compounds, namely, palmitic acid, phytol, hexadecanoic acid (methyl ester), 1-monopalmitin, stigmast-5-ene, pentadecanoic acid, heptadecanoic acid, 1-linolenoylglycerol, glycerol monostearate, alpha-tocospiro B, and stigmasterol. In-silico study via molecular docking was carried out using the crystal structure Saccharomyces cerevisiae isomaltase (PDB code: 3A4A). Interactions between the inhibitors and the protein were predicted involving residues, namely LYS156, THR310, PRO312, LEU313, GLU411, and ASN415 with hydrogen bond, while PHE314 and ARG315 with hydrophobic bonding.

    CONCLUSION: The study provides informative data on the potential α-glucosidase inhibitors identified in C. nutans leaves, indicating the plant's therapeutic effect to manage hyperglycemia.

    Matched MeSH terms: Metabolomics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links