Displaying publications 61 - 80 of 106 in total

Abstract:
Sort:
  1. Murtihapsari M, Salam S, Kurnia D, Darwati D, Kadarusman K, Abdullah FF, et al.
    Nat Prod Res, 2021 Mar;35(6):937-944.
    PMID: 31210054 DOI: 10.1080/14786419.2019.1611815
    A new antimalarial sterol, kaimanol (1), along with a known sterol, saringosterol (2) was isolated from the Indonesian Marine sponge, Xestospongia sp. The chemical structure of the new compound was determined on the basis of spectroscopic evidences and by comparison to those related compounds previously reported. Isolated compounds, 1 and 2 were evaluated for their antiplasmodial effect against Plasmodium falciparum 3D7 strains. Compounds 1 and 2 exhibited antiplasmodial activity with IC50 values of 359 and 0.250 nM, respectively.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  2. Luthfi AAI, Tan JP, Isa NFAM, Bukhari NA, Shah SSM, Mahmod SS, et al.
    Bioprocess Biosyst Eng, 2020 Jul;43(7):1153-1169.
    PMID: 32095989 DOI: 10.1007/s00449-020-02311-x
    This study aimed to enhance the crystallizability of bio-based succinic acid for its efficient recovery while maintaining the end product at the highest purity. Immobilization of Actinobacillus succinogenes was initially evaluated based on three different carriers: volcanic glass, clay pebbles, and silica particles. The adsorption capacity of metabolites with a low concentration (10 g/L) and a high concentration (40 g/L) was investigated. It was demonstrated that clay pebbles adsorbed the least succinic acid (
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  3. Shreaz S, Shiekh RA, Raja V, Wani WA, Behbehani JM
    Chem Biol Interact, 2016 Mar 05;247:64-74.
    PMID: 26806515 DOI: 10.1016/j.cbi.2016.01.015
    In this study, we have used aldehyde function of cinnamaldehyde to synthesize N, N'-Bis (cinnamaldehyde) ethylenediimine [C20H20N2] and Co(II) complex of the type [Co(C40H40N4)Cl2]. The structures of the synthesized compounds were determined on the basis of physiochemical analysis and spectroscopic data ((1)H NMR, FTIR, UV-visible and mass spectra) along with molar conductivity measurements. Anticandidal activity of cinnamaldehyde its ligand [L] and Co(II) complex was investigated by determining MIC80, time-kill kinetics, disc diffusion assay and ergosterol extraction and estimation assay. Ligand [L] and Co(II) complex are found to be 4.55 and 21.0 folds more efficient than cinnamaldehyde in a liquid medium. MIC80 of Co(II) complex correlated well with ergosterol inhibition suggesting ergosterol biosynthesis to be the primary site of action. In comparison to fluconazole, the test compounds showed limited toxicity against H9c2 rat cardiac myoblasts. In confocal microscopy propidium iodide (PI) penetrates the yeast cells when treated with MIC of metal complex, indicating a disruption of cell membrane that results in imbibition of dye. TEM analysis of metal complex treated cells exhibited notable alterations or damage to the cell membrane and the cell wall. The structural disorganization within the cell cytoplasm was noted. It was concluded that fungicidal activity of Co(II) complex originated from loss of membrane integrity and a decrease in ergosterol content is only one consequence of this.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  4. Nor Aziyah Bakhari, Siti Nur Amirah Diana Fadzillah, Norain Isa
    MyJurnal
    Tinospora crispa Miers (Menispermaceae) is a climbing vine with stems rich in warts. The plant is called Akar Seruntum or Patawali in Malaysia and is widely used for treating skin complaints, malaria, bacterial abscess, high blood pressure and diabetes. In the present study, the stems of T. crispa were collected from the locality and succesively extracted with petroleum ether, followed by chloroform and ethanol. The insecticidal active extract (ethanol extract) was subjected to column chromatography of silica gel eluted with a gradient mobile phase containing hexane, chloroform and ethanol. Among the chemical constituents isolated are n-tetracosyl trans-ferulate and n-octacosyl alcohol, along with three known aporphine alkaloids; N-formylnornuciferine, N-acetylnornuciferine and lysicamine. All compounds were identified by comparing their spectroscopic data (UV, IR, 1H NMR, MS) with data from corresponding values in the literature. Isolation of n-tetracosyl trans-ferulate and noctacosyl alcohol is reported the first time for T. crispa.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  5. Maulidiani M, Mediani A, Abas F, Park YS, Park YK, Kim YM, et al.
    Talanta, 2018 Jul 01;184:277-286.
    PMID: 29674043 DOI: 10.1016/j.talanta.2018.02.084
    Persimmon (Diospyros kaki L.) is one of the most important fruits that has been consumed for its medicinal properties due to the presence of some active metabolites, particularly polyphenols and carotenoids. Previously described methods, including HPLC, were limited in the determination of metabolites in different persimmon varieties. The present study shows the evaluation and the differences among persimmon polar and non-polar extracts by 1H NMR-based metabolomics approach. The hierarchical clustering analysis (HCA) based on score values of principal component analysis (PCA) model was used to analyze the important compounds in investigated fruits. The 1H NMR spectrum of persimmon chloroform (CDCl3) extracts showed different types of compounds as compared to polar methanol-water (CD3OD-D2O) ones. Persimmons growing in Israel were clustered different from those growing in Korea with the abundance of phenolic compounds (gallic, caffeic and protocathecuic acids), carotenoids (β-cryptoxanthin, lutein, and zeaxanthin), amino acids (alanine), maltose, uridine, and fatty acids (myristic and palmitoleic acids). Glucose, choline and formic acid were more prominent in persimmon growing in Korea. In CD3OD-D2O and CDCl3 persimmon extracts, 43 metabolites were identified. The metabolic differences were shown as well on the results of bioactivities and antioxidant capacities determined by ABTS, FRAP, CUPRAC and DPPH assays. The presented methods can be widely used for quantitation of multiple compounds in many plant and biological samples especially in vegetables and fruits.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  6. Nazir S, Sulistyo J, Hashmi MI, Ho AL, Khan MS
    J Food Sci Technol, 2018 Aug;55(8):3026-3034.
    PMID: 30065412 DOI: 10.1007/s13197-018-3223-x
    Present study was conducted to evaluate the ability of Trichoderma viride as a source of cyclodextrin glucanotransferase that has shown transglycosylation activity in the presence of polyphenolic constituents extracted from Moringa oleifera leaves as its acceptor and wheat flour as its substrate to catalyze synthesis of polyphenolic glycosides as transglycosylation (transfer) reaction products. The enzymatic synthesized polyphenolic glycosides were then purified using octa-dodecyl-functionalized silica gel column chromatography prior to analysis using thin layer chromatography and high performance liquid chromatography and identified using nuclear magnetic resonance (NMR) spectroscopy. The high performance liquid chromatogram performed that the isolated transglycosylation products had retention times and concentration at 1.446 min (0.0017 mg/ml), 1.431 min (0.14 mg/ml), and 1.474 min (0.012 mg/ml), respectively, compared to the retention time of arbutin (1.474 min) that was applied as authentic standard for polyphenol glycoside. Moreover, observation using 1H NMR as well as 13C NMR showed that structures of the transglycosylation products were identified as gallic acid-4-O-β-glucopyranoside, ellagicacid-4-O-β-glucopyranoside, and catechin-4'-O-glucopyranoside, respectively.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  7. Zolkeflee NKZ, Wong PL, Maulidiani M, Ramli NS, Azlan A, Abas F
    Planta Med, 2023 Aug;89(9):916-934.
    PMID: 36914160 DOI: 10.1055/a-2053-0950
    Diabetes mellitus (DM) is a metabolic endocrine disorder caused by decreased insulin concentration or poor insulin response. Muntingia calabura (MC) has been used traditionally to reduce blood glucose levels. This study aims to support the traditional claim of MC as a functional food and blood-glucose-lowering regimen. The antidiabetic potential of MC is tested on a streptozotocin-nicotinamide (STZ-NA)-induced diabetic rat model by using the 1H-NMR-based metabolomic approach. Serum biochemical analyses reveal that treatment with 250 mg/kg body weight (bw) standardized freeze-dried (FD) 50% ethanolic MC extract (MCE 250) shows favorable serum creatinine (37.77 ± 3.53 µM), urea (5.98 ± 0.84 mM) and glucose (7.36 ± 0.57 mM) lowering capacity, which was comparable to the standard drug, metformin. The clear separation between diabetic control (DC) and normal group in principal component analysis indicates the successful induction of diabetes in the STZ-NA-induced type 2 diabetic rat model. A total of nine biomarkers, including allantoin, glucose, methylnicotinamide, lactate, hippurate, creatine, dimethylamine, citrate and pyruvate are identified in rats' urinary profile, discriminating DC and normal groups through orthogonal partial least squares-discriminant analysis. Induction of diabetes by STZ-NA is due to alteration in the tricarboxylic acid (TCA) cycle, gluconeogenesis pathway, pyruvate metabolism and nicotinate and nicotinamide metabolism. Oral treatment with MCE 250 in STZ-NA-induced diabetic rats shows improvement in the altered carbohydrate metabolism, cofactor and vitamin metabolic pathway, as well as purine and homocysteine metabolism.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  8. Abbasi MA, Ramzan MS, Ur-Rehman A, Siddiqui SZ, Hassan M, Ali Shah SA, et al.
    Iran J Pharm Res, 2020;19(1):487-506.
    PMID: 32922502 DOI: 10.22037/ijpr.2019.13084.11362
    The synthesis of a novel series of bi-heterocyclic propanamides, 7a-l, was accomplished by S-substitution of 5-[(2-amino-1,3-thiazol-4-yl)methyl]-1,3,4-oxadiazol-2-thiol (3). The synthesis was initiated from ethyl 2-(2-amino-1,3-thiazol-4-yl)acetate (1) which was converted to corresponding hydrazide, 2, by hydrazine hydrate in methanol. The refluxing of hydrazide, 2, with carbon disulfide in basic medium, resulted in 5-[(2-amino-1,3-thiazol-4-yl)methyl]-1,3,4-oxadiazol-2-thiol (3). A series of electrophiles, 6a-l, was synthesized by stirring un/substituted anilines (4a-l) with 3-bromopropanoyl chloride (5) in a basic aqueous medium. Finally, the targeted compounds, 7a-l, were acquired by stirring 3 with newly synthesized electrophiles, 6a-l, in DMF using LiH as a base and an activator. The structures of these bi-heterocyclic propanamides were confirmed through spectroscopic techniques, such as IR, 1H-NMR, 13C-NMR, and EI-MS. These molecules were tested for their urease inhibitory potential, whereby, the whole series exhibited very promising activity against this enzyme. Their cytotoxic behavior was ascertained through hemolysis and it was observed that all these were less cytotoxic agents. The in-silico molecular docking analysis of these molecules was also in full agreement with their in-vitro enzyme inhibition data.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  9. Dahiya R, Rampersad S, Ramnanansingh TG, Kaur K, Kaur R, Mourya R, et al.
    Iran J Pharm Res, 2020;19(3):156-170.
    PMID: 33680019 DOI: 10.22037/ijpr.2020.15405.13075
    Synthesis of a natural proline-rich cyclopolypeptide - rolloamide A was carried out by coupling of tri- and tetrapeptide units Boc-Phe-Pro-Val-OMe and Boc-Pro-Leu-Pro-Ile-OMe after proper deprotection at carboxyl and amino terminals using carbodiimide chemistry in alkaline environment followed by cyclization of linear heptapeptide segment in the presence of base. The structure of synthesized peptide was confirmed by spectral techniques including FTIR, 1H NMR, 13C NMR, MS analyses. Newly synthesized peptide was subjected to biological screening against pathogenic microbes and earthworms. Cyclopeptide 8 possessed promising activity against pathogenic fungi Candida albicans (ZOI: 24 mm, MIC: 6 μg/mL) and Gram-negative bacteria Pseudomonas aeruginosa (ZOI: 27 mm, MIC: 6 μg/mL) and Klebsiella pneumoniae (ZOI: 23 mm, MIC: 12.5 μg/mL), in comparison to reference drugs - griseofulvin (ZOI: 20 mm, MIC: 6 μg/mL) and ciprofloxacin (ZOI: 25 mm, MIC: 6 μg/mL/ZOI: 20 mm, MIC: 12.5 μg/mL). Also, newly synthesized heptacyclopeptide exhibited potent anthelmintic activity against earthworms Megascoplex konkanensis,Pontoscotex corethruses, and Eudrilus species (MPT/MDT ratio - 8.22-16.02/10.06-17.59 min), in comparison to standard drugs - mebendazole (MPT/MDT ratio - 10.52-18.02/12.57-19.49 min) and piperazine citrate (MPT/MDT ratio - 12.38-19.17/13.44-22.17 min).
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  10. Liew JWY, Loh KS, Ahmad A, Lim KL, Wan Daud WR
    PLoS One, 2017;12(9):e0185313.
    PMID: 28957374 DOI: 10.1371/journal.pone.0185313
    Polymer electrolyte membranes based on the natural polymer κ-carrageenan were modified and characterized for application in electrochemical devices. In general, pure κ-carrageenan membranes show a low ionic conductivity. New membranes were developed by chemically modifying κ-carrageenan via phosphorylation to produce O-methylene phosphonic κ-carrageenan (OMPC), which showed enhanced membrane conductivity. The membranes were prepared by a solution casting method. The chemical structure of OMPC samples were characterized using Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR) spectroscopy and 31P nuclear magnetic resonance (31P NMR) spectroscopy. The conductivity properties of the membranes were investigated by electrochemical impedance spectroscopy (EIS). The characterization demonstrated that the membranes had been successfully produced. The ionic conductivity of κ-carrageenan and OMPC were 2.79 × 10-6 S cm-1 and 1.54 × 10-5 S cm-1, respectively. The hydrated membranes showed a two orders of magnitude higher ionic conductivity than the dried membranes.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  11. Benchoula K, Serpell CJ, Mediani A, Albogami A, Misnan NM, Ismail NH, et al.
    Sci Rep, 2024 Feb 15;14(1):3823.
    PMID: 38360784 DOI: 10.1038/s41598-023-45608-z
    Zebrafish have been utilized for many years as a model animal for pharmacological studies on diabetes and obesity. High-fat diet (HFD), streptozotocin and alloxan injection, and glucose immersion have all been used to induce diabetes and obesity in zebrafish. Currently, studies commonly used both male and female zebrafish, which may influence the outcomes since male and female zebrafish are biologically different. This study was designed to investigate the difference between the metabolites of male and female diabetic zebrafish, using limonene - a natural product which has shown several promising results in vitro and in vivo in treating diabetes and obesity-and provide new insights into how endogenous metabolites change following limonene treatment. Using HFD-fed male and female zebrafish, we were able to develop an animal model of T2D and identify several endogenous metabolites that might be used as diagnostic biomarkers for diabetes. The endogenous metabolites in males and females were different, even though both genders had high blood glucose levels and a high BMI. Treatment with limonene prevented high blood glucose levels and improved in diabesity zebrafish by limonene, through reversal of the metabolic changes caused by HFD in both genders. In addition, limonene was able to reverse the elevated expression of AKT during HFD.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  12. Che Soh N', Rapi HS, Mohd Azam NS, Santhanam RK, Assaw S, Haron MN, et al.
    PMID: 33488747 DOI: 10.1155/2020/6688084
    Diopatra claparedii which is colloquially known as Ruat Sarung can be found along the west coast of Peninsular Malaysia. The species has a unique ability to regenerate anterior and posterior segments upon self-amputation or injury, thus having potential as a wound healing promoter. In this study, the wound healing potential of D. claparedii aqueous extract on acute wound model in rats was revealed for the first time. Various concentrations (0.1%, 0.5%, and 1.0% w/w) of D. claparedii ointment were formulated and tested on Sprague Dawley rats through topical application on full-thickness skin wounds for 14 days. The wound healing effects were investigated via behaviour observation, wound contraction, and histopathological analysis. Quality assessment was performed via skin irritation test, microbial contamination test (MCT), and heavy metal detection. The study also included test for antibacterial activities and detection of bioactive compounds in D. claparedii. One percent of D. claparedii ointment showed rapid wound healing potential with good soothing effects and more collagen deposition in comparison to the commercial wound healing ointments such as acriflavine (0.1% w/v) and traditional ointment gamat (sea cucumber extract) (15.0% w/v). No local skin irritation, microbial contamination, and insignificant concentration of heavy metals were observed, which indicate its safe application. Moreover, the aqueous extract of D. claparedii exhibited antibacterial activities against Escherichia coli and Pseudomonas aeruginosa with minimum inhibitory concentration (MIC) value at 0.4 g/ml. 1H NMR analysis of the aqueous extract of D. claparedii revealed some metabolites that might be responsible for its wound healing properties such as amino acids, halogenated aromatics, organic acids, vitamins, and others. Altogether, these results suggested that the aqueous extract of D. claparedii could be utilised as an alternative natural wound healing promoter.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  13. Zolkeflee NKZ, Wong PL, Maulidiani M, Ramli NS, Azlan A, Mediani A, et al.
    Biochem Biophys Res Commun, 2024 May 14;708:149778.
    PMID: 38507867 DOI: 10.1016/j.bbrc.2024.149778
    The increasing prevalence of lean diabetes has prompted the generation of animal models that mimic metabolic disease in humans. This study aimed to determine the optimum streptozotocin-nicotinamide (STZ-NA) dosage ratio to elicit lean diabetic features in a rat model. It also used a proton nuclear magnetic resonance (1H NMR) urinary metabolomics approach to identify the metabolic effect of metformin treatment on this novel rat model. Three different STZ-NA dosage regimens (by body weight: Group A: 110 mg/kg NA and 45 mg/kg STZ; Group B: 180 mg/kg NA and 65 mg/kg STZ and Group C: 120 mg/kg NA and 60 mg/kg STZ) were administered to Sprague-Dawley rats along with oral metformin. Group A diabetic rats (A-DC) showed favorable serum biochemical analyses and a more positive response toward oral metformin administration relative to the other STZ-NA dosage ratio groups. Orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed that glucose, citrate, pyruvate, hippurate, and methylnicotinamide differentiating the OPLS-DA of A-MTF rats (Group A diabetic rats treated with metformin) and A-DC model rats. Subsequent metabolic pathway analyses revealed that metformin treatment was associated with improvement in dysfunctions caused by STZ-NA induction, including carbohydrate metabolism, cofactor metabolism, and vitamin and amino acid metabolism. In conclusion, our results identify the best STZ-NA dosage ratio for a rat model to exhibit lean type 2 diabetic features with optimum sensitivity to metformin treatment. The data presented here could be informative to improve our understanding of non-obese diabetes in humans through the identification of possible activated metabolic pathways in the STZ-NA-induced diabetic rats model.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  14. Gooda Sahib Jambocus N, Saari N, Ismail A, Khatib A, Mahomoodally MF, Abdul Hamid A
    J Diabetes Res, 2016;2016:2391592.
    PMID: 26798649 DOI: 10.1155/2016/2391592
    The prevalence of obesity is increasing worldwide, with high fat diet (HFD) as one of the main contributing factors. Obesity increases the predisposition to other diseases such as diabetes through various metabolic pathways. Limited availability of antiobesity drugs and the popularity of complementary medicine have encouraged research in finding phytochemical strategies to this multifaceted disease. HFD induced obese Sprague-Dawley rats were treated with an extract of Morinda citrifolia L. leaves (MLE 60). After 9 weeks of treatment, positive effects were observed on adiposity, fecal fat content, plasma lipids, and insulin and leptin levels. The inducement of obesity and treatment with MLE 60 on metabolic alterations were then further elucidated using a (1)H NMR based metabolomics approach. Discriminating metabolites involved were products of various metabolic pathways, including glucose metabolism and TCA cycle (lactate, 2-oxoglutarate, citrate, succinate, pyruvate, and acetate), amino acid metabolism (alanine, 2-hydroxybutyrate), choline metabolism (betaine), creatinine metabolism (creatinine), and gut microbiome metabolism (hippurate, phenylacetylglycine, dimethylamine, and trigonelline). Treatment with MLE 60 resulted in significant improvement in the metabolic perturbations caused obesity as demonstrated by the proximity of the treated group to the normal group in the OPLS-DA score plot and the change in trajectory movement of the diseased group towards the healthy group upon treatment.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy*
  15. Khoo LW, Kow ASF, Maulidiani M, Ang MY, Chew WY, Lee MT, et al.
    Phytochem Anal, 2019 Jan;30(1):46-61.
    PMID: 30183131 DOI: 10.1002/pca.2789
    INTRODUCTION: Clinacanthus nutans, a small shrub that is native to Southeast Asia, is commonly used in traditional herbal medicine and as a food source. Its anti-inflammation properties is influenced by the metabolites composition, which can be determined by different binary extraction solvent ratio and extraction methods used during plant post-harvesting stage.

    OBJECTIVE: Evaluate the relationship between the chemical composition of C. nutans and its anti-inflammatory properties using nuclear magnetic resonance (NMR) metabolomics approach.

    METHODOLOGY: The anti-inflammatory effect of C. nutans air-dried leaves extracted using five different binary extraction solvent ratio and two extraction methods was determined based on their nitric oxide (NO) inhibition effect in lipopolysaccharide-interferon-gamma (LPS-IFN-γ) activated RAW 264.7 macrophages. The relationship between extract bioactivity and metabolite profiles and quantifications were established using 1 H-NMR metabolomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The possible metabolite biosynthesis pathway was constructed to further strengthen the findings.

    RESULTS: Water and sonication prepared air-dried leaves possessed the highest NO inhibition activity (IC50  = 190.43 ± 12.26 μg/mL, P 

    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy/methods*
  16. Amin AM, Sheau Chin L, Teh CH, Mostafa H, Mohamed Noor DA, Abdul Kader MASK, et al.
    Eur J Pharm Sci, 2018 May 30;117:351-361.
    PMID: 29526765 DOI: 10.1016/j.ejps.2018.03.011
    Dual antiplatelet therapy (DAPT) of clopidogrel and aspirin is crucial for coronary artery disease (CAD) patients undergoing percutaneous coronary intervention (PCI). However, some patients may endure clopidogrel high on treatment platelets reactivity (HTPR) which may cause thromboembolic events. Clopidogrel HTPR is multifactorial with some genetic and non-genetic factors contributing to it. We aimed to use nuclear magnetic resonance (1H NMR) pharmacometabolomics analysis of plasma to investigate this multifactorial and identify metabolic phenotypes and pathways associated with clopidogrel HTPR. Blood samples were collected from 71 CAD patients planned for interventional angiographic procedure (IAP) before the administration of clopidogrel 600 mg loading dose (LD) and 6 h after the LD. Platelets function testing was done 6 h post-LD using VerifyNow® P2Y12 assay. Pre-dose and post-dose plasma samples were analysed using 1H NMR. Multivariate statistical analysis was used to indicate the discriminating metabolites. Two metabotypes, each with 34 metabolites (pre-dose and post-dose) were associated with clopidogrel HTPR. Pathway analysis of these metabotypes revealed that aminoacyl-tRNA biosynthesis, nitrogen metabolism and glycine-serine-threonine metabolism are the most perturbed metabolic pathways associated with clopidogrel HTPR. Furthermore, the identified biomarkers indicated that clopidogrel HTPR is multifactorial where the metabolic phenotypes of insulin resistance, type two diabetes mellitus, obesity, gut-microbiota and heart failure are associated with it. Pharmacometabolomics analysis of plasma revealed new insights on the implicated metabolic pathways and the predisposing factors of clopidogrel HTPR.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy*
  17. Abosadiya HM, Anouar el H, Hasbullah SA, Yamin BM
    PMID: 25748989 DOI: 10.1016/j.saa.2015.01.092
    A new isomers of thiourea derivatives, namely N-(4-chlorobutanoyl)-N'-(2-methylphenyl)-thiourea (1a), N-(4-chlorobutanoyl)-N'-(3-methylphenyl)thiourea (1b) and N-(4-chlorobutanoyl)-N'-(4-methylphenyl)thiourea (1c) have been synthesized by refluxing mixture of equimolar amounts of 4-chlorobutanoylisothiocyanate with 2, 3 or 4-toluidine, respectively. The three isomers were characterized by spectroscopic (UV/vis, FT-IR and NMR) and X-ray crystallography techniques. To investigate the isomerization effect on spectroscopic data, DFT and TD-DFT calculations have been carried out using five hybrid functionals (B3LYP, B3P86, CAM-B3LYP, M06-2X and PBE0) to predict UV/vis absorption bands (n→π∗ and π→π∗), (1)H and (13)C NMR chemical shifts, FT-IR vibration modes and X-ray parameters (bonds, bond angles and torsion angles) for 1a, 1b and 1c isomers. The results showed that the isomerization effect is significant on λ(MAX) absorption bands, while for IR and NMR the effect is negligible. In accordance with previous studies, B3LYP, B3P86 and PBE0 gave the most reliable to predict the excitation energies of thiourea derivatives.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  18. Mohamad S, Surikumaran H, Raoov M, Marimuthu T, Chandrasekaram K, Subramaniam P
    Int J Mol Sci, 2011;12(9):6329-45.
    PMID: 22016662 DOI: 10.3390/ijms12096329
    This study focuses on the synthesis and characterization of the inclusion complex of β-Cyclodextrin (β-CD) with dicationic ionic liquid, 3,3'-(1,4-Phenylenebis [methylene]) bis(1-methyl-1H-imidazol-3-ium) di(bromide) (PhenmimBr). The inclusion complex was prepared at room temperature utilizing conventional kneading technique. Proton ((1)H) NMR and 2D ((1)H-(1)H) COSY NMR were the primary characterization tools employed to verify the formation of the inclusion complex. COSY spectra showed strong correlations between protons of imidazolium and protons of β-CD which indicates that the imidazolium ring of PhenmimBr has entered the cavity of β-CD. UV absorption indicated that β-CD reacts with PhenmimBr to form a 2:1 β-CD-PhenmimBr complex with an apparent formation constant of 2.61 × 10(5) mol&(-2) L(2). Other characterization studies such as UV, FT-IR, XRD, TGA, DSC and SEM studies were also used to further support the formation of the β-CD-PhenmimBr inclusion complex.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  19. Leong SW, Abas F, Lam KW, Shaari K, Lajis NH
    Bioorg Med Chem, 2016 08 15;24(16):3742-51.
    PMID: 27328658 DOI: 10.1016/j.bmc.2016.06.016
    In the present study, a series of 2-benzoyl-6-benzylidenecyclohexanone analogs have been synthesized and evaluated for their anti-cholinesterase activity. Among the forty-one analogs, four compounds (38, 39, 40 and 41) have been identified as lead compounds due to their highest inhibition on both AChE and BChE activities. Compounds 39 and 40 in particular exhibited highest inhibition on both AChE and BChE with IC50 values of 1.6μM and 0.6μM, respectively. Further structure-activity relationship study suggested that presence of a long-chain heterocyclic in one of the rings played a critical role in the dual enzymes' inhibition. The Lineweaver-Burk plots and docking results suggest that both compounds could simultaneously bind to the PAS and CAS regions of the enzyme. ADMET analysis further confirmed the therapeutic potential of both compounds based upon their high BBB-penetrating. Thus, 2-benzoyl-6-benzylidenecyclohexanone containing long-chain heterocyclic amine analogs represent a new class of cholinesterase inhibitor, which deserve further investigation for their development into therapeutic agents for cognitive diseases such as Alzheimer.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
  20. Ahmad Azam A, Ismail IS, Kumari Y, Shaikh MF, Abas F, Shaari K
    PLoS One, 2020;15(9):e0238503.
    PMID: 32925968 DOI: 10.1371/journal.pone.0238503
    Clinacanthus nutans (CN) (Acanthaceae) is well-known for its anti-inflammatory properties among Asian communities; however, there are currently no data specifically focused on the anti-inflammatory effects of CN on the brain tissue. Neuroinflammation is a common consequence of toxin intrusion to any part of the central nervous system (CNS). As an innate immune response, the CNS may react through both protective and/or toxic actions due to the activation of neuron cells producing pro- and/or anti-inflammatory cytokines in the brain. The unresolved activation of the inflammatory cytokines' response is associated with the pathogenesis of neurological disorders. The present study aimed to decipher the metabolic mechanism on the effects of 14 days oral treatment with CN aqueous extract in induced-lipopolysaccharides (LPS) rats through 1H NMR spectroscopic biomarker profiling of the brain tissue and the related cytokines. Based on the principal component analysis (PCA) of the nuclear magnetic resonance (NMR) spectral data, twenty-one metabolites in the brain tissue were profiled as biomarkers for the LPS (10 μL)-induced neuroinflammation following intracerebroventricular injection. Among the twenty-one biomarkers in the neuroinflammed rats, CN treatment of 1000 and 500 mg/kg BW successfully altered lactate, pyruvate, phosphorylcholine, glutamine, and α-ketoglutarate when compared to the negative control. Likewise, statistical isolinear multiple component analysis (SIMCA) showed that treatments by CN and the positive control drug, dextromethorphan (DXM, 5 mg/kg BW), have anti-neuroinflammatory potential. A moderate correlation, in the orthogonal partial least squares (OPLS) regression model, was found between the spectral metabolite profile and the cytokine levels. The current study revealed the existence of high levels of pro-inflammatory cytokines, namely IL-1α, IL-1β, and TNF-α in LPS-induced rats. Both CN dose treatments lowered IL-1β significantly better than DXM Interestingly, DXM and CN treatments both exhibited the upregulation of the anti-inflammatory cytokines IL-2 and 4. However, DXM has an advantage over CN in that the former also increased the expression of IL-10 of anti-inflammatory cytokines. In this study, a metabolomics approach was successfully applied to discover the mechanistic role of CN in controlling the neuroinflammatory conditions through the modulation of complex metabolite interactions in the rat brain.
    Matched MeSH terms: Proton Magnetic Resonance Spectroscopy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links