Displaying publications 61 - 80 of 185 in total

Abstract:
Sort:
  1. Muhamat Omar, Zalina Laili, Abd Khalik Wood, Julia Abdul Karim, Zarina Masood, Mohd Fazli Zakaria, et al.
    MyJurnal
    A systematic study to assess the concentration of radionuclides in primary coolant and associated water samples from the operation of a TRIGA Mark II reactor has been carried out. The samples were transferred into appropriate counting container and were counted by efficiency-calibrated gamma spectrometer systems for several hours to obtain statistically adequate data for qualitative and quantitative evaluation of the radioactive materials presence. The primary coolant was found to contain various gamma emitting radionuclides including 24Na, 41Ar, 42K, 51Cr, , 54Mn, 56Mn, 60Co, 99mTc, 122Sb, 124Sb and 187W. Most of the detected radionuclides were inferred to be originated from activation products of (n,) nuclear reactions of elements of reactor components such as stainless steel and aluminium alloy used in the reactor system. The study confirms the integrity of the reactor system with no apparent release of any fission products radionuclide into the coolant water system.
    Matched MeSH terms: Stainless Steel
  2. Hariyanti, Purwadaria, S., Zainal Arifin Ahmad
    MyJurnal
    Electrodeposition of white copper-tin alloys (including white miralloys) has been done onto planar mild steel substrates from alkaline cyanide solutions at 65 0 C. The chemical composition of the coating is influenced by plating bath composition and current density. White miralloy can be produced from the test solution containing 10 g/l CuCN2 - , 45 g/l Na2SnO3, 25 g/l NaCN, and 12 g/l NaOH at current density about 5 mA/cm 2 . The local compositions of the coating cross section were analyzed using EDX installed in a FESEM operated at an accelerating voltage of 20 kV. The phases formed during co-deposition process were identified using XRD at 25 mA current and 35 kV voltage.
    Matched MeSH terms: Steel
  3. Rohana, H.
    ASM Science Journal, 2011;5(1):1-10.
    MyJurnal
    Current National Design Specification (NDS 2005) provides the guideline to design timber joints strengthened with steel fasteners. This study investigates the possibility of using NDS 2005 to estimate the load-carrying capacity of timber joints fastened with Glass Fibre Reinforced Polymer (GFRP) dowel. Double shear timber joint fastened with steel dowels were tested to validate the joints fastened with GFRP using 1.27 cm diameter dowels. Tests were also conducted to determine the dowel bearing strength of wood and dowel bending strength of GFRP and steel. The failure modes of all tests were observed and recorded. Results showed that NDS (2005) successfully estimated the failure mode and was capable of predicting the joint load-carrying capacity when fastened with a GFRP dowel and this was well validated by the load carrying capacity of a steel dowel.
    Matched MeSH terms: Steel
  4. Ghiasi, Vahed, Husaini Omar
    MyJurnal
    Shotcrete is a process where concrete is projected or “shot” under pressure, using a feeder or a
    “gun” onto a surface to form structural shapes including walls, floors, and roofs. The surface can
    be wood, steel, polystyrene, or any other surfaces that concrete can be projected onto. The surface
    can be trowel led smooth while the concrete is still wet. Shotcrete has high strength, durability, low
    permeability, excellent bond, and limitless shape possibilities. These properties allow shotcrete
    to be used as a structural material in most cases. Although the hardened properties of shotcrete
    are similar to conventional cast-in-place concrete, the nature of the placement process provides
    additional benefits, such as excellent bond with most substrates and instant or rapid capabilities,
    particularly on complex forms or shapes. In addition to building homes, shotcrete can also be used
    to build pools. The practice of underground tunneling shows that the degree of stability of tunnels
    is dependent on the state of the soil, rock mass, and shotcrete around the tunnel contour. The
    development in the urban or suburban areas leads to the construction of tunnels in all kinds of soil
    and rock. Meanwhile, the construction of tunnels in shallow depth or soft soils causes the ground
    to displace. The determination of soil and rock mechanical properties to assess the stability of New
    Austrian Tunnelling Method (NATM) tunnels and design the support system is one of the most
    important steps in tunnelling. This paper provides information pertaining to the safety and increase
    the stability of NATM tunnel before, during and after the operation of the tunnel. Therefore, the
    shotcrete process is a recognized method for cemented sandy silt stabilization, with the aid of high
    pressure shot concrete to increase the stability of tunnels.
    Matched MeSH terms: Steel
  5. Syed Baharom Syed Osman, Mohammad Nabil Fikri, Fahad Irfan Siddique
    MyJurnal
    The long term objective of this research is to look into the possibility of replacing soil strength parameters such as cohesion and angle of friction with electrical resistivity value for the purpose of computing among others, factor of safety in slopes or bearing capacity of soil. This paper however is limited to the investigation of correlation between electrical resistivity with some selected soil parameters. Electrical resistivity tests, using a basic multi meter, steel moulds and other related equipment, were conducted in the laboratory on soil samples with variations in soil type, compaction energy and moisture content. The samples consisted of predominantly clay, silt and sandy size particles and were compacted in a 100 x 100 mm square mould, while the corresponding electrical resistivity tests were carried out using the disc electrode method in accordance to BS 1377. The values of the electrical parameters such as voltage, current and resistance, with the corresponding value of soil parameters such as cohesion, angle of friction and moisture content, were measured and recorded. The results of the tests produced some initial crude relationships between electrical resistivity and the selected soil parameters. The strongest correlation between electrical resistivity and angle of internal friction, φ, was obtained from the clay size samples with R2 of 0.824, while the maximum correlation between electrical resistivity and moisture content again was obtained through the clay samples with R2 of 0.818. From the other results and graphs analyzed, some consistencies and specific trends of behaviour observed gave some early indications that a more detail and precise correlation between electrical resistivity and soil strength parameters could be very well possible in future.
    Matched MeSH terms: Steel
  6. Aliyin Abdul Ghani, Hadariah Bahron, Mohamad Kamal Harun, Karimah Kassim, El Hassane Anouar
    MyJurnal
    Two imines of different molecular sizes namely 3-(phenylimino) indolin-2-one (PII) and 3,3- (1,4-phenylenebis (azan-1-yl-1-ylidene) diindolin-2-one (PDI) were investigated for their corrosion inhibition on mild steel in 1 M HCl solution using electrochemical impedance spectroscopy (EIS). The bigger molecule PDI containing double the amount of isatin moiety exhibited higher inhibition efficiency of 87.3% while PII that contained monoisatin moiety showed a lower inhibition efficiency of 74.8%. Both compounds had an increase in inhibition efficiencies percentage as concentrations increased. Density functional theory (DFT) was used to determine the correlation between the corrosion inhibition efficiency and electronic parameters. The DFT calculations indicated that the corrosion inhibition efficiency was mainly dependant on the frontier orbital energy gap and the chemical softness/hardness of the imines.
    Matched MeSH terms: Steel
  7. Mohd Noor Halmy, Siti Khadijah Alias, Radzi Abdul Rasih, Mohd Ghazali Mohd Hamami, Norhisyam Jenal, Siti Aishah Taib
    MyJurnal
    This study focuses on the effect of boronizing medium on the boride layer thickness of pack boronized 304 stainless steel after surface modification. Pack boronizing treatment was conducted in temperature of 900oC for a duration of eight hours. The treatment was performed using two different boronizing mediums which are powder and paste inside a tight box in an induction furnace. The characteristics of the samples were then observed using optical microscopy and XRD analyser. The thickness of boride layer was then measured using MPS digital image analysis software. The results showed that boronizing medium significantly affected the thickness of boride layer as paste boronized samples exhibited thicker boride layer thickness. The enhancement was mainly due to the size of boron particle in the paste medium which was smaller than powder medium that enabled better diffusion. It is expected that the enhancement of the boride layer thickness would result in further improvement of the mechanical and wear properties of this material.
    Matched MeSH terms: Stainless Steel
  8. Mohammad Hafizudden Mohd Zaki, Yusairie Mohd, Nik Norziehana Che Isa
    Science Letters, 2016;11(2):20-29.
    MyJurnal
    Mild steel is the most common metal used in industry. However, mild steel easily corrodes when exposed to environment. One way to protect mild steel from corrodes is by coating it with more noble metal like copper and its alloys. In this study, copper and Cu-Ni alloys were successfully coated on the mild steel substrate by electrodeposition technique using alkaline citrate solutions containing Cu and Ni ions precursors. The reaction and mechanisms of the electrodeposition of copper and Cu-Ni alloys on the mild steel substrate were investigated by cyclic voltammetry and chronoamperometry methods. Surface morphology of the coatings was examined by FESEM. The elemental compositions of the coatings were confirmed by EDAX analysis. The molar ratios of Cu-Ni solutions have affected the formation of the coatings. Corrosion study shows that copper coated mild steel can improve the corrosion resistance of the mild steel in 0.5 M NaCl. Cu-Ni coating prepared from Cu60-Ni40 showed the highest corrosion resistance. The order of the corrosion resistance of the samples in 0.5 M NaCl at 25 oC is Cu60-Ni40> Cu75- Ni25> Cu90-Ni10> Cu100> mild steel.
    Matched MeSH terms: Steel
  9. Rifai D, Abdalla AN, Razali R, Ali K, Faraj MA
    Sensors (Basel), 2017 Mar 13;17(3).
    PMID: 28335399 DOI: 10.3390/s17030579
    The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.
    Matched MeSH terms: Steel
  10. Abdul Razak Daud, Azleen Mohd. Zain, Azali Muhamad
    A single wall single image x-ray radiographic technique was adopted to investigate thickness variation of steel specimens caused by uniform corrosion. The ability of the 100 kV-160 kV x-rays to produce a meaningful film density for steel was also investigated. The thickness contour maps of corroded steel plates were found matching with the x-ray film density contour maps of the plates. The results confirm that x-ray radiography can be used to detect the thickness reduction of steel caused by uniform corrosion.
    Bagi mengesan perubahan ketebalan keluli akibat kakisan seragam maka radiografi sinar-x teknik imej tunggal dinding tunggal telah digunakan. Kemampuan sinar-x 100 kV-160 kV menghasilkan ketumpatan filem yang sesuai untuk keluli telah juga dikaji. Peta kontur ketebalan bagi spesimen kepingan keluli yang telah mengalami kakisan seragam didapati sepadan dengan peta kontur ketumpatan filem radiografi sinar-x bagi spesimen tersebut. Kajian ini menunjukkan radiografi sinar-x boleh digunakan bagi mengesan penipisan keluli akibat kakisan seragam.
    Matched MeSH terms: Steel
  11. Mohd. Yusof Hj. Othman, Faridah Hussain, Kamaruzzman Sopian, Baharuddin Yatim, Hafidz Ruslan
    Sains Malaysiana, 2013;42:1319-1325.
    Three different designs of heat exchanger, V-groove, honeycomb and stainless steel wool had been tested to study their effectiveness in improving the overall performance of a photovoltaic/thermal (PV/T) air base solar collector. Heat exchangers were installed horizontally into the channel located at the back side of the PV module. The system was tested at irradiance of 828 W/m2 with mass flow rate spanning from 0.02 kg/s to 0.13 kg/s. It was observed that at mass flow rate of 0.11 kg/s, the maximum thermal efficiency of the system with V-groove is 71%, stainless steel wool is 86% and honeycomb is 87%. The electrical efficiency of the systems is 7.04%, 6.88% and 7.13%, respectively. The experimental results showed that honeycomb design is the most efficient design as heat exchanger. The design which is simple and compact is suitable for building integration.
    Matched MeSH terms: Stainless Steel
  12. Noor Ashikin Mohd Rashid, Wan Nor Liza Wan Mahadi
    Sains Malaysiana, 2014;43:909-914.
    Evaluation of magnetic properties of electrical steel is vital in improving the quality of electrical machinery since it is used as magnetic cores for transformers, motors and generators. A double yoke single sheet tester (ssT) was modeled using two identical C-cores wound with copper wires at limb side in horizontal arrangement. The magnetic properties for electrical steels, grade M4 and M19 were tested under a frequency of 50 Hz with the current ranging from 02 to 2.4A. The effects of the sample dimension and anisotropy on magnetic measurements were investigated. Evaluation on specimen dimensions indicate that the non-uniformity of sample magnetization in overhang sample can attribute to the flux leakage between the yoke legs. The stray flux is also increased with the overhang sample. However, the so-called fit-in sample which is fitted nicely between the yoke end poles can minimize the effect of stray flux. One way ANOVA and T-test were used as statistical methods and executed at the 5% significance level. It is statistically proven that the magnetic properties of both magnetic materials are influenced by their anisotropy.
    Matched MeSH terms: Steel
  13. Solhan Yahya, Norinsan Kamil Othman, Abd Razak Daud, Azman Jalar
    Sains Malaysiana, 2014;43:1083-1087.
    The effect of scan rate on the accuracy of corrosion parameter in evaluating the efficiency of rice straw extract as corrosion inhibitor has been studied via potentiodynamic polarization measurement. Scan rate in the range of low (0.1- 0.25 mV s-1), medium (0.5-1.0 mV s-1) and high (1.5-2.0 mV s-1) scan were carried out on the carbon steel in 1 M HCl. The corrosion parameters such as corrosion rate, polarization resistance and corrosion current density have been analyzed through Tafel polarization curve. High scan rate gave poor accuracy of corrosion parameter compared to medium and low scan. Medium scan at 1.0 mV s-1 has been chosen as the optimum scan rate due to the approached steady-state and small disturbance of charged current. As a result, the addition of rice straw extract in 1 M HCl has reduced the values of corrosion current density in both cathodic and anodic reactions signified the corrosion has been inhibited. The efficiency of rice straw extracts as a corrosion inhibitor offer good result as much as 86%.
    Matched MeSH terms: Steel
  14. Lee CK, Darah I, Ibrahim C
    Sains Malaysiana, 2017;46:1249-1257.
    FERMSOSTAT is a developed laboratory scale solid state fermenter. It is a horizontal stirrer drum bioreactor with about 70 L capacities. The fermenter is made of stainless steel which is anti-corrosive and non-toxic to the process organism. The fermenter is equipped with sets of control systems for temperature, agitation, aeration and also outlets for substrate sampling as well as inlets for inoculation and substrate additions. The uniqueness of this FERMSOSTAT system is its ability to carry out in situ substrate sterilization and extraction of enzymes at the end of SSF process. Moreover, the mixing system provided by FERMSOSTAT can be performed either full or half mixing as well as forward or reverse mixing. Furthermore, the mixing can be programmed to run at certain agitation rate and time interval during the fermentation process to prevent or reduce damage to the fungus mycelia. FERMSOSTAT is a developed SSF bioreactor and not an improvement of any existing one. The performances of FERMSOSTAT have been evaluated. Under optimum solid state fermentation conditions, about 63.4, 397 and 3.21 U/g of CMCase, xylanase and FPase activities were detected, which were higher compared to the tray system.
    Matched MeSH terms: Stainless Steel
  15. M.O.H. Amuda, T.A. Olaniyan, L.O. Osoba, E.T. Akinlabi
    Sains Malaysiana, 2017;46:743-753.
    The mechanical properties of Dual Phase Steel (DPS)-duplex structure-produced by quenching in pre-heated bitumen have been investigated. Medium carbon steels intercritically heated at different temperatures and holding times were quenched in hot bitumen. Optical and scanning electron microscopy characterisation of the duplex structure showed extensive network of fibrous martensite in a ferritic matrix with occasional presence of polygonal martensite. The duplex phase structure exhibited continuous yielding dynamics, improving the tensile and hardness values by about 42 and 35%, respectively, relative to the normalised structure. But, the elongation and impact values decreased by about 42 and 50%, respectively, when compared to the normalised structure. These values are similar to those obtained in duplex structure produced using conventional oil quenching. The tensile fractured surface showed transition between a predominantly cleavage mode in the lower annealing temperature to a mixed mode in the upper bound of the annealing temperature. These findings suggest that pre-heated bitumen can be exploited for the production of DPSs.
    Matched MeSH terms: Steel
  16. Azeez AB, Mohammed KS, Abdullah MMAB, Hussin K, Sandu AV, Razak RA
    Materials (Basel), 2013 Oct 23;6(10):4836-4846.
    PMID: 28788363 DOI: 10.3390/ma6104836
    Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised (137)Cs and ⁶⁰Co radioactive elements with photon energies of 0.662 MeV for (137)Cs and two energy levels of 1.17 and 1.33 MeV for the ⁶⁰Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10(-3) for (137)Cs and 0.92 ± 1.57 × 10(-3) for ⁶⁰Co. Substantial improvement in attenuation performance by 20%-25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%-30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities.
    Matched MeSH terms: Steel
  17. Al-Amiery AA, Kadhum AAH, Alobaidy AHM, Mohamad AB, Hoon PS
    Materials (Basel), 2014 Jan 27;7(2):662-672.
    PMID: 28788482 DOI: 10.3390/ma7020662
    Corrosion inhibitory effects of new synthesized compound namely 5,5'- ((1Z,1'Z)-(1,4-phenylenebis(methanylylidene))bis(azanylylidene))bis(1,3,4-thiadiazole-2-thiol) (PBB) on mild steel in 1.0 M HCl was investigated at different temperatures using open circuit potential (OCP), potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). Results showed that PBB inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiencies increased with the concentration of inhibitor, but decreased proportionally with temperature. Changes in impedance parameters suggested the adsorption of PBB on the mild steel surface, leading to the formation of protective films.
    Matched MeSH terms: Steel
  18. Molahid VLM, Mohd Kusin F, Madzin Z
    Environ Technol, 2019 Apr;40(10):1323-1336.
    PMID: 29281556 DOI: 10.1080/09593330.2017.1422546
    The potential of selected materials in treating metal-rich acid mine drainage (AMD) has been investigated in a series of batch experiment. The efficiencies of both single and mixed substrates under two conditions i.e. low- and high-concentration solutions containing heavy metals were evaluated. Synthetic metal-containing AMD was used in the experiments treated using spent mushroom compost (SMC), ochre, steel slag (SS), and limestone. Different ratios of treatment materials were incorporated in the substrate mix and were tested in an anoxic condition. In the batch test, physicochemical parameters (pH, redox potential, total dissolved solids, conductivity, and Ca concentration) and heavy metals (Fe, Mn, Pb, Zn, and Al) were analysed. The mixed substrates have shown satisfactory performance in increasing pH with increasing Ca concentration and removing metals. It has been found that SS and ochre played an important role in the treatment of AMD. The results showed that the mixed substrates SM1 (i.e. 10% SMC mixed with 20% ochre, 30% steel slag, and 40% limestone) and SM2 (i.e. 20% SMC mixed with 30% ochre, 40% steel slag, and 10% limestone) were effective in increasing the pH from as low as 3.5-8.09, and removing heavy metals with more than 90% removal efficiencies.
    Matched MeSH terms: Steel
  19. Harith H, Schmutz B, Malekani J, Schuetz MA, Yarlagadda PK
    Med Eng Phys, 2016 Mar;38(3):280-5.
    PMID: 26739124 DOI: 10.1016/j.medengphy.2015.11.012
    Anatomically precontoured plates are commonly used to treat periarticular fractures. A well-fitting plate can be used as a tool for anatomical reduction of the fractured bone. Recent studies highlighted that some plates fit poorly for many patients due to considerable shape variations between bones of the same anatomical site. While it is impossible to design one shape that fits all, it is also burdensome for the manufacturers and hospitals to produce, store and manage multiple plate shapes without the certainty of utilization by a patient population. In this study, we investigated the number of shapes required for maximum fit within a given dataset, and if they could be obtained by manually deforming the original plate. A distal medial tibial plate was automatically positioned on 45 individual tibiae, and the optimal deformation was determined iteratively using finite element analysis simulation. Within the studied dataset, we found that: (i) 89% fit could be achieved with four shapes, (ii) 100% fit was impossible through mechanical deformation, and (iii) the deformations required to obtain the four plate shapes were safe for the stainless steel plate for further clinical use. The proposed framework is easily transferable to other orthopaedic plates.
    Matched MeSH terms: Stainless Steel
  20. Benjakul P, Cheunarrom C, Ongthiemsak C
    J Oral Sci, 2001 Mar;43(1):15-9.
    PMID: 11383631
    Stainless steel wrought wires used as clasp arms for removable partial dentures in Thailand were compared with those used in some other countries (in the as-received condition) in terms of flexibility, Vickers microhardness and composition. The results showed that there were significant differences (P< or =0.05) among the wires. A Japanese stainless steel wire (SK) was obviously different from the others. It had the lowest proportional limit and microhardness, but its flexibility was almost the same. The chemical composition of each wire was not greatly different. The wires were about 18-20 wt% chromium and 8-9 wt% nickel, except for the SK wire, which had about 12 wt% nickel.
    Matched MeSH terms: Stainless Steel/analysis; Stainless Steel/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links