The elliptic azimuthal anisotropy coefficient (v_{2}) is measured for charm (D^{0}) and strange (K_{S}^{0}, Λ, Ξ^{-}, and Ω^{-}) hadrons, using a data sample of p+Pb collisions collected by the CMS experiment, at a nucleon-nucleon center-of-mass energy of sqrt[s_{NN}]=8.16 TeV. A significant positive v_{2} signal from long-range azimuthal correlations is observed for all particle species in high-multiplicity p+Pb collisions. The measurement represents the first observation of possible long-range collectivity for open heavy flavor hadrons in small systems. The results suggest that charm quarks have a smaller v_{2} than the lighter quarks, probably reflecting a weaker collective behavior. This effect is not seen in the larger PbPb collision system at sqrt[s_{NN}]=5.02 TeV, also presented.
The pseudorapidity distributions of dijets as functions of their average transverse momentum (p_{T}^{ave}) are measured in proton-lead (pPb) and proton-proton (pp) collisions. The data samples were collected by the CMS experiment at the CERN LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. A significant modification of the pPb spectra with respect to the pp spectra is observed in all p_{T}^{ave} intervals investigated. The ratios of the pPb and pp distributions are compared to next-to-leading order perturbative quantum chromodynamics calculations with unbound nucleon and nuclear parton distribution functions (PDFs). These results give the first evidence that the gluon PDF at large Bjorken x in lead ions is strongly suppressed with respect to the PDF in unbound nucleons.
The χ_{b1}(3P) and χ_{b2}(3P) states are observed through their ϒ(3S)γ decays, using an event sample of proton-proton collisions collected by the CMS experiment at the CERN LHC. The data were collected at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 80.0 fb^{-1}. The ϒ(3S) mesons are identified through their dimuon decay channel, while the low-energy photons are detected after converting to e^{+}e^{-} pairs in the silicon tracker, leading to a χ_{b}(3P) mass resolution of 2.2 MeV. This is the first time that the J=1 and 2 states are well resolved and their masses individually measured: 10513.42±0.41(stat)±0.18(syst) MeV and 10524.02±0.57(stat)±0.18(syst) MeV; they are determined with respect to the world-average value of the ϒ(3S) mass, which has an uncertainty of 0.5 MeV. The mass splitting is measured to be 10.60±0.64(stat)±0.17(syst) MeV.
The observation of the standard model (SM) Higgs boson decay to a pair of bottom quarks is presented. The main contribution to this result is from processes in which Higgs bosons are produced in association with a W or Z boson (VH), and are searched for in final states including 0, 1, or 2 charged leptons and two identified bottom quark jets. The results from the measurement of these processes in a data sample recorded by the CMS experiment in 2017, comprising 41.3 fb^{-1} of proton-proton collisions at sqrt[s]=13 TeV, are described. When combined with previous VH measurements using data collected at sqrt[s]=7, 8, and 13 TeV, an excess of events is observed at m_{H}=125 GeV with a significance of 4.8 standard deviations, where the expectation for the SM Higgs boson is 4.9. The corresponding measured signal strength is 1.01±0.22. The combination of this result with searches by the CMS experiment for H→bb[over ¯] in other production processes yields an observed (expected) significance of 5.6 (5.5) standard deviations and a signal strength of 1.04±0.20.
This Letter presents the observation of the rare Z boson decay Z→ψℓ^{+}ℓ^{-}. Here, ψ represents contributions from direct J/ψ and ψ(2S)→J/ψX, ℓ^{+}ℓ^{-} is a pair of electrons or muons, and the J/ψ meson is detected via its decay to μ^{+}μ^{-}. The sample of proton-proton collision data, collected by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV, corresponds to an integrated luminosity of 35.9 fb^{-1}. The signal is observed with a significance in excess of 5 standard deviations. After subtraction of the ψ(2S)→J/ψX contribution, the ratio of the branching fraction of the exclusive decay Z→J/ψℓ^{+}ℓ^{-} to the decay Z→μ^{+}μ^{-}μ^{+}μ^{-} within a fiducial phase space is measured to be B(Z→J/ψℓ^{+}ℓ^{-})/B(Z→μ^{+}μ^{-}μ^{+}μ^{-})=0.67±0.18(stat)±0.05(syst).
The first evidence of events consistent with the production of a single top quark in association with a photon is reported. The analysis is based on proton-proton collisions at sqrt[s]=13 TeV and recorded by the CMS experiment in 2016, corresponding to an integrated luminosity of 35.9 fb^{-1}. Events are selected by requiring the presence of a muon (μ), a photon (γ), an imbalance in transverse momentum from an undetected neutrino (ν), and at least two jets (j) of which exactly one is identified as associated with the hadronization of a b quark. A multivariate discriminant based on topological and kinematic event properties is employed to separate signal from background processes. An excess above the background-only hypothesis is observed, with a significance of 4.4 standard deviations. A fiducial cross section is measured for isolated photons with transverse momentum greater than 25 GeV in the central region of the detector. The measured product of the cross section and branching fraction is σ(pp→tγj)B(t→μνb)=115±17(stat)±30(syst) fb, which is consistent with the standard model prediction.
This Letter presents the results of a search for pair-produced particles of masses above 100 GeV that each decay into at least four quarks. Using data collected by the CMS experiment at the LHC in 2015-2016, corresponding to an integrated luminosity of 38.2 fb^{-1}, reconstructed particles are clustered into two large jets of similar mass, each consistent with four-parton substructure. No statistically significant excess of data over the background prediction is observed in the distribution of average jet mass. Pair-produced squarks with dominant hadronic R-parity-violating decays into four quarks and with masses between 0.10 and 0.72 TeV are excluded at 95% confidence level. Similarly, pair-produced gluinos that decay into five quarks are also excluded with masses between 0.10 and 1.41 TeV at 95% confidence level. These are the first constraints that have been placed on pair-produced particles with masses below 400 GeV that decay into four or five quarks, bridging a significant gap in the coverage of R-parity-violating supersymmetry parameter space.
Three of the most significant measured deviations from standard model predictions, the enhanced decay rate for B→D^{(*)}τν, hints of lepton universality violation in B→K^{(*)}ℓℓ decays, and the anomalous magnetic moment of the muon, can be explained by the existence of leptoquarks (LQs) with large couplings to third-generation quarks and masses at the TeV scale. The existence of these states can be probed at the LHC in high energy proton-proton collisions. A novel search is presented for pair production of LQs coupled to a top quark and a muon using data at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb^{-1}, recorded by the CMS experiment. No deviation from the standard model prediction has been observed and scalar LQs decaying exclusively into tμ are excluded up to masses of 1420 GeV. The results of this search are combined with those from previous searches for LQ decays into tτ and bν, which excluded scalar LQs below masses of 900 and 1080 GeV. Vector LQs are excluded up to masses of 1190 GeV for all possible combinations of branching fractions to tμ, tτ and bν. With this analysis, all relevant couplings of LQs with an electric charge of -1/3 to third-generation quarks are probed for the first time.
Measurements of fragmentation functions for jets associated with an isolated photon are presented for the first time in pp and Pb-Pb collisions. The analysis uses data collected with the CMS detector at the CERN LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Fragmentation functions are obtained for jets with p_{T}^{jet}>30 GeV/c in events containing an isolated photon with p_{T}^{γ}>60 GeV/c, using charged tracks with transverse momentum p_{T}^{trk}>1 GeV/c in a cone around the jet axis. The association with an isolated photon constrains the initial p_{T} and azimuthal angle of the parton whose shower produced the jet. For central Pb-Pb collisions, modifications of the jet fragmentation functions are observed when compared to those measured in pp collisions, while no significant differences are found in the 50% most peripheral collisions. Jets in central Pb-Pb events show an excess (depletion) of low (high) p_{T} particles, with a transition around 3 GeV/c. This measurement shows for the first time the in-medium shower modifications of partons (quark dominated) with well-defined initial kinematics. It constitutes a new well-controlled reference for testing theoretical models of the parton passage through the quark-gluon plasma.
For the first time, a search for the rare decay of the W boson to three charged pions has been performed. Proton-proton collision data recorded by the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 77.3 fb^{-1}, have been analyzed. No significant excess is observed above the background expectation. An upper limit of 1.01×10^{-6} is set at 95% confidence level on the branching fraction of the W boson to three charged pions. This provides a strong motivation for theoretical calculations of this branching fraction.
The modification of jet shapes in Pb-Pb collisions, relative to those in pp collisions, is studied for jets associated with an isolated photon. The data were collected with the CMS detector at the LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Jet shapes are constructed from charged particles with track transverse momenta (p_{T}) above 1 GeV/c in annuli around the axes of jets with p_{T}^{jet}>30 GeV/c associated with an isolated photon with p_{T}^{γ}>60 GeV/c. The jet shape distributions are consistent between peripheral Pb-Pb and pp collisions, but are modified for more central Pb-Pb collisions. In these central Pb-Pb events, a larger fraction of the jet momentum is observed at larger distances from the jet axis compared to pp, reflecting the interaction between the partonic medium created in heavy ion collisions and the traversing partons.
A search for standard model production of four top quarks (
t
t ¯
t
t ¯
) is reported using events containing at least three leptons (
e , μ
) or a same-sign lepton pair. The events are produced in proton-proton collisions at a center-of-mass energy of 13
TeV
at the LHC, and the data sample, recorded in 2016, corresponds to an integrated luminosity of 35.9
fb
- 1
. Jet multiplicity and flavor are used to enhance signal sensitivity, and dedicated control regions are used to constrain the dominant backgrounds. The observed and expected signal significances are, respectively, 1.6 and 1.0 standard deviations, and the
t
t ¯
t
t ¯
cross section is measured to be
16 .
9
- 11.4
+ 13.8
fb
, in agreement with next-to-leading-order standard model predictions. These results are also used to constrain the Yukawa coupling between the top quark and the Higgs boson to be less than 2.1 times its expected standard model value at 95% confidence level.
A search for supersymmetry is presented based on events with at least one photon, jets, and large missing transverse momentum produced in proton-proton collisions at a center-of-mass energy of 13
Te
. The data correspond to an integrated luminosity of 35.9
fb
- 1
and were recorded at the LHC with the CMS detector in 2016. The analysis characterizes signal-like events by categorizing the data into various signal regions based on the number of jets, the number of b -tagged jets, and the missing transverse momentum. No significant excess of events is observed with respect to the expectations from standard model processes. Limits are placed on the gluino and top squark pair production cross sections using several simplified models of supersymmetric particle production with gauge-mediated supersymmetry breaking. Depending on the model and the mass of the next-to-lightest supersymmetric particle, the production of gluinos with masses as large as 2120
Ge
and the production of top squarks with masses as large as 1230
Events with no charged particles produced between the two leading jets are studied in proton-proton collisions at
s
= 7
TeV
. The jets were required to have transverse momentum
p
T
jet
> 40
GeV
and pseudorapidity
1.5 < |
η jet
| < 4.7
, and to have values of
η jet
with opposite signs. The data used for this study were collected with the CMS detector during low-luminosity running at the LHC, and correspond to an integrated luminosity of 8
pb
- 1
. Events with no charged particles with
p T
> 0.2
GeV
in the interval
- 1 < η < 1
between the jets are observed in excess of calculations that assume no color-singlet exchange. The fraction of events with such a rapidity gap, amounting to 0.5-1% of the selected dijet sample, is measured as a function of the
p T
of the second-leading jet and of the rapidity separation between the jets. The data are compared to previous measurements at the Tevatron, and to perturbative quantum chromodynamics calculations based on the Balitsky-Fadin-Kuraev-Lipatov evolution equations, including different models of the non-perturbative gap survival probability.
The transverse momentum spectra of D^{0} mesons from b hadron decays are measured at midrapidity (|y|<1) in pp and Pb-Pb collisions at a nucleon-nucleon center of mass energy of 5.02 TeV with the CMS detector at the LHC. The D^{0} mesons from b hadron decays are distinguished from prompt D^{0} mesons by their decay topologies. In Pb-Pb collisions, the B→D^{0} yield is found to be suppressed in the measured p_{T} range from 2 to 100 GeV/c as compared to pp collisions. The suppression is weaker than that of prompt D^{0} mesons and charged hadrons for p_{T} around 10 GeV/c. While theoretical calculations incorporating partonic energy loss in the quark-gluon plasma can successfully describe the measured B→D^{0} suppression at higher p_{T}, the data show an indication of larger suppression than the model predictions in the range of 2c.
Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented. The analysis uses the LHC proton-proton collision data set recorded with the CMS detector in 2016 at
s
= 13
Te
, corresponding to an integrated luminosity of 35.9
fb
- 1
. The combination is based on analyses targeting the five main Higgs boson production mechanisms (gluon fusion, vector boson fusion, and associated production with a W or Z boson, or a top quark-antiquark pair) and the following decay modes:
H → γ γ
,
Z Z
,
W W
,
τ τ
,
b b
, and
μ μ
. Searches for invisible Higgs boson decays are also considered. The best-fit ratio of the signal yield to the standard model expectation is measured to be
μ = 1.17 ± 0.10
, assuming a Higgs boson mass of
125.09
Ge
. Additional results are given for various assumptions on the scaling behavior of the production and decay modes, including generic parametrizations based on ratios of cross sections and branching fractions or couplings. The results are compatible with the standard model predictions in all parametrizations considered. In addition, constraints are placed on various two Higgs doublet models.
A search for the pair production of heavy vector-like partners T and B of the top and bottom quarks has been performed by the CMS experiment at the CERN LHC using proton-proton collisions at
s
= 13
Te
. The data sample was collected in 2016 and corresponds to an integrated luminosity of 35.9
fb
- 1
. Final states studied for
T
T ¯
production include those where one of the T quarks decays via
T → t Z
and the other via
T → b W
,
t Z
, or
t H
, where H is a Higgs boson. For the
B
B ¯
case, final states include those where one of the B quarks decays via
B → b Z
and the other
B → t W
,
b Z
, or
b H
. Events with two oppositely charged electrons or muons, consistent with coming from the decay of a Z boson, and jets are investigated. The number of observed events is consistent with standard model background estimations. Lower limits at 95% confidence level are placed on the masses of the T and B quarks for a range of branching fractions. Assuming 100% branching fractions for
A measurement for inclusive 2- and 3-jet events of the azimuthal correlation between the two jets with the largest transverse momenta,
Δ
ϕ 12
, is presented. The measurement considers events where the two leading jets are nearly collinear ("back-to-back") in the transverse plane and is performed for several ranges of the leading jet transverse momentum. Proton-proton collision data collected with the CMS experiment at a center-of-mass energy of
13
Te
and corresponding to an integrated luminosity of
35.9
fb
- 1
are used. Predictions based on calculations using matrix elements at leading-order and next-to-leading-order accuracy in perturbative quantum chromodynamics supplemented with leading-log parton showers and hadronization are generally in agreement with the measurements. Discrepancies between the measurement and theoretical predictions are as large as 15%, mainly in the region
177 ∘
< Δ
ϕ 12
<
180 ∘
. The 2- and 3-jet measurements are not simultaneously described by any of models.
A search is presented for a heavy pseudoscalar boson A decaying to a Z boson and a Higgs boson with mass of 125
GeV
. In the final state considered, the Higgs boson decays to a bottom quark and antiquark, and the Z boson decays either into a pair of electrons, muons, or neutrinos. The analysis is performed using a data sample corresponding to an integrated luminosity of 35.9
fb
- 1
collected in 2016 by the CMS experiment at the LHC from proton-proton collisions at a center-of-mass energy of 13
Te
. The data are found to be consistent with the background expectations. Exclusion limits are set in the context of two-Higgs-doublet models in the A boson mass range between 225 and 1000