Displaying publications 81 - 100 of 103 in total

Abstract:
Sort:
  1. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys. Rev. Lett., 2019 Jan 18;122(2):021801.
    PMID: 30720313 DOI: 10.1103/PhysRevLett.122.021801
    A search for the Higgs boson decaying to two oppositely charged muons is presented using data recorded by the CMS experiment at the CERN LHC in 2016 at a center-of-mass energy sqrt[s]=13  TeV, corresponding to an integrated luminosity of 35.9  fb^{-1}. Data are found to be compatible with the predicted background. For a Higgs boson with a mass of 125.09 GeV, the 95% confidence level observed (background-only expected) upper limit on the production cross section times the branching fraction to a pair of muons is found to be 3.0 (2.5) times the standard model expectation. In combination with data recorded at center-of-mass energies sqrt[s]=7 and 8 TeV, the background-only expected upper limit improves to 2.2 times the standard model value with a standard model expected significance of 1.0 standard deviation. The corresponding observed upper limit is 2.9 with an observed significance of 0.9 standard deviation. This corresponds to an observed upper limit on the standard model Higgs boson branching fraction to muons of 6.4×10^{-4} and to an observed signal strength of 1.0±1.0(stat)±0.1(syst).
  2. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(9):789.
    PMID: 30956565 DOI: 10.1140/epjc/s10052-018-6242-x
    A search is presented for physics beyond the standard model, based on measurements of dijet angular distributions in proton-proton collisions at


    s

    =
    13
    TeV

    . The data collected with the CMS detector at the LHC correspond to an integrated luminosity of 35.9



    fb

    -
    1



    . The observed distributions, corrected to particle level, are found to be in agreement with predictions from perturbative quantum chromodynamics that include electroweak corrections. Constraints are placed on models containing quark contact interactions, extra spatial dimensions, quantum black holes, or dark matter, using the detector-level distributions. In a benchmark model where only left-handed quarks participate, contact interactions are excluded at the 95% confidence level up to a scale of 12.8 or 17.5TeV, for destructive or constructive interference, respectively. The most stringent lower limits to date are set on the ultraviolet cutoff in the Arkani-Hamed-Dimopoulos-Dvali model of extra dimensions. In the Giudice-Rattazzi-Wells convention, the cutoff scale is excluded up to 10.1TeV. The production of quantum black holes is excluded for masses below 5.9 and 8.2TeV, depending on the model. For the first time, lower limits between 2.0 and 4.6TeVare set on the mass of a dark matter mediator for (axial-)vector mediators, for the universal quark coupling


    g
    q

    =
    1.0

    .
  3. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys. Rev. Lett., 2019 Mar 01;122(8):081804.
    PMID: 30932612 DOI: 10.1103/PhysRevLett.122.081804
    A search for heavy, narrow resonances decaying to a Higgs boson and a photon (Hγ) has been performed in proton-proton collision data at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9  fb^{-1} collected with the CMS detector at the LHC in 2016. Events containing a photon and a Lorentz-boosted hadronically decaying Higgs boson reconstructed as a single, large-radius jet are considered, and the γ+jet invariant mass spectrum is analyzed for the presence of narrow resonances. To increase the sensitivity of the search, events are categorized depending on whether or not the large-radius jet can be identified as a result of the merging of two jets originating from b quarks. Results in both categories are found to agree with the predictions of the standard model. Upper limits on the production rate of Hγ resonances are set as a function of their mass in the range of 720-3250 GeV, representing the most stringent constraints to date.
  4. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(3):269.
    PMID: 30971865 DOI: 10.1140/epjc/s10052-019-6752-1
    Measurements are presented of associated production of a
    W
    boson and a charm quark (

    W
    +
    c

    ) in proton-proton collisions at a center-of-mass energy of 13



    Te



    . The data correspond to an integrated luminosity of 35.7



    fb

    -
    1



    collected by the CMS experiment at the CERN LHC. The
    W
    bosons are identified by their decay into a muon and a neutrino. The charm quarks are tagged via the full reconstruction of



    D








    (
    2010
    )

    ±


    mesons that decay via




    D








    (
    2010
    )

    ±





    D

    0

    +

    π
    ±




    K



    +

    π
    ±

    +

    π
    ±


    . A cross section is measured in the fiducial region defined by the muon transverse momentum


    p

    T

    μ

    >
    26


    Ge



    , muon pseudorapidity


    |


    η
    μ


    |
    <
    2.4


    , and charm quark transverse momentum


    p

    T

    c

    >
    5


    Ge



    . The inclusive cross section for this kinematic range is

    σ

    (
    W
    +
    c
    )

    =
    1026
    ±
    31

    (stat)





    +
    76







    -
    72






    (syst) pb

    . The cross section is also measured differentially as a function of the pseudorapidity of the muon from the
    W
    boson decay. These measurements are compared with theoretical predictions and are used to probe the strange quark content of the proton.
  5. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys. Rev. Lett., 2019 Mar 29;122(12):121803.
    PMID: 30978057 DOI: 10.1103/PhysRevLett.122.121803
    This Letter describes a search for Higgs boson pair production using the combined results from four final states: bbγγ, bbττ, bbbb, and bbVV, where V represents a W or Z boson. The search is performed using data collected in 2016 by the CMS experiment from LHC proton-proton collisions at sqrt[s]=13  TeV, corresponding to an integrated luminosity of 35.9  fb^{-1}. Limits are set on the Higgs boson pair production cross section. A 95% confidence level observed (expected) upper limit on the nonresonant production cross section is set at 22.2 (12.8) times the standard model value. A search for narrow resonances decaying to Higgs boson pairs is also performed in the mass range 250-3000 GeV. No evidence for a signal is observed, and upper limits are set on the resonance production cross section.
  6. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(4):291.
    PMID: 31007582 DOI: 10.1140/epjc/s10052-018-5740-1
    A search for new physics in events with a Z boson produced in association with large missing transverse momentum at the LHC is presented. The search is based on the 2016 data sample of proton-proton collisions recorded with the CMS experiment at


    s

    =
    13

    TeV

    , corresponding to an integrated luminosity of 35.9



    fb

    -
    1



    . The results of this search are interpreted in terms of a simplified model of dark matter production via spin-0 or spin-1 mediators, a scenario with a standard-model-like Higgs boson produced in association with the Z boson and decaying invisibly, a model of unparticle production, and a model with large extra spatial dimensions. No significant deviations from the background expectations are found, and limits are set on relevant model parameters, significantly extending the results previously achieved in this channel.
  7. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(4):287.
    PMID: 31007580 DOI: 10.1140/epjc/s10052-018-5752-x
    A study of the associated production of a
    Z
    boson and a charm quark jet (

    Z
    +
    c

    ), and a comparison to production with a
    b
    quark jet (

    Z
    +
    b

    ), in

    p
    p

    collisions at a centre-of-mass energy of 8


    TeV

    are presented. The analysis uses a data sample corresponding to an integrated luminosity of 19.7



    fb

    -
    1



    , collected with the CMS detector at the CERN LHC. The
    Z
    boson candidates are identified through their decays into pairs of electrons or muons. Jets originating from heavy flavour quarks are identified using semileptonic decays of
    c
    or
    b
    flavoured hadrons and hadronic decays of charm hadrons. The measurements are performed in the kinematic region with two leptons with


    p

    T



    >
    20

    GeV

    ,



    |


    η



    |


    <
    2.1

    ,

    71
    <

    m





    <
    111

    GeV

    , and heavy flavour jets with


    p

    T

    jet

    >
    25

    GeV

    and



    |


    η
    jet


    |


    <
    2.5

    . The

    Z
    +
    c

    production cross section is measured to be

    σ

    (
    p
    p

    Z
    +
    c
    +
    X
    )

    B

    (
    Z



    +



    -

    )

    =
    8.8
    ±
    0.5

    (stat)
    ±
    0.6

    (syst)

    pb

    . The ratio of the

    Z
    +
    c

    and

    Z
    +
    b

    production cross sections is measured to be

    σ
    (
    p
    p

    Z
    +
    c
    +
    X
    )
    /
    σ
    (
    p
    p

    Z
    +
    b
    +
    X
    )
    =
    2.0
    ±
    0.2

    (stat)
    ±
    0.2

    (syst)

    . The

    Z
    +
    c

    production cross section and the cross section ratio are also measured as a function of the transverse momentum of the
    Z
    boson and of the heavy flavour jet. The measurements are compared with theoretical predictions.
  8. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(4):313.
    PMID: 31031568 DOI: 10.1140/epjc/s10052-019-6788-2
    A top quark mass measurement is performed using

    35.9



    fb

    -
    1




    of LHC proton-proton collision data collected with the CMS detector at


    s

    =
    13

    TeV

    . The measurement uses the

    t

    t
    ¯


    all-jets final state. A kinematic fit is performed to reconstruct the decay of the

    t

    t
    ¯


     system and suppress the multijet background. Using the ideogram method, the top quark mass (

    m
    t

    ) is determined, simultaneously constraining an additional jet energy scale factor (
    JSF
    ). The resulting value of


    m
    t

    =
    172.34
    ±
    0.20

    (stat+JSF)
    ±
    0.70

    (syst)

    GeV

    is in good agreement with previous measurements. In addition, a combined measurement that uses the

    t

    t
    ¯


    lepton+jets and all-jets final states is presented, using the same mass extraction method, and provides an

    m
    t

    measurement of

    172.26
    ±
    0.07

    (stat+JSF)
    ±
    0.61

    (syst)

    GeV

    . This is the first combined

    m
    t

    extraction from the lepton+jets and all-jets channels through a single likelihood function.
  9. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys. Rev. Lett., 2018 Feb 23;120(8):081801.
    PMID: 29542998 DOI: 10.1103/PhysRevLett.120.081801
    The first observation of electroweak production of same-sign W boson pairs in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 35.9    fb^{-1} collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. Events are selected by requiring exactly two leptons (electrons or muons) of the same charge, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. The observed significance of the signal is 5.5 standard deviations, where a significance of 5.7 standard deviations is expected based on the standard model. The ratio of measured event yields to that expected from the standard model at leading order is 0.90±0.22. A cross section measurement in a fiducial region is reported. Bounds are given on the structure of quartic vector boson interactions in the framework of dimension-8 effective field theory operators and on the production of doubly charged Higgs bosons.
  10. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys. Rev. Lett., 2018 Feb 16;120(7):071802.
    PMID: 29542941 DOI: 10.1103/PhysRevLett.120.071802
    An inclusive search for the standard model Higgs boson (H) produced with large transverse momentum (p_{T}) and decaying to a bottom quark-antiquark pair (bb[over ¯]) is performed using a data set of pp collisions at sqrt[s]=13  TeV collected with the CMS experiment at the LHC. The data sample corresponds to an integrated luminosity of 35.9  fb^{-1}. A highly Lorentz-boosted Higgs boson decaying to bb[over ¯] is reconstructed as a single, large radius jet, and it is identified using jet substructure and dedicated b tagging techniques. The method is validated with Z→bb[over ¯] decays. The Z→bb[over ¯] process is observed for the first time in the single-jet topology with a local significance of 5.1 standard deviations (5.8 expected). For a Higgs boson mass of 125 GeV, an excess of events above the expected background is observed (expected) with a local significance of 1.5 (0.7) standard deviations. The measured cross section times branching fraction for production via gluon fusion of H→bb[over ¯] with reconstructed p_{T}>450  GeV and in the pseudorapidity range -2.5
  11. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys. Rev. Lett., 2018 Mar 02;120(9):092301.
    PMID: 29547300 DOI: 10.1103/PhysRevLett.120.092301
    The azimuthal anisotropy Fourier coefficients (v_{n}) in 8.16 TeV p+Pb data are extracted via long-range two-particle correlations as a function of the event multiplicity and compared to corresponding results in pp and PbPb collisions. Using a four-particle cumulant technique, v_{n} correlations are measured for the first time in pp and p+Pb collisions. The v_{2} and v_{4} coefficients are found to be positively correlated in all collision systems. For high-multiplicity p+Pb collisions, an anticorrelation of v_{2} and v_{3} is observed, with a similar correlation strength as in PbPb data at the same multiplicity. The new correlation results strengthen the case for a common origin of the collectivity seen in p+Pb and PbPb collisions in the measured multiplicity range.
  12. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys. Rev. Lett., 2019 Apr 19;122(15):152001.
    PMID: 31050516 DOI: 10.1103/PhysRevLett.122.152001
    The modification of jet shapes in Pb-Pb collisions, relative to those in pp collisions, is studied for jets associated with an isolated photon. The data were collected with the CMS detector at the LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Jet shapes are constructed from charged particles with track transverse momenta (p_{T}) above 1  GeV/c in annuli around the axes of jets with p_{T}^{jet}>30  GeV/c associated with an isolated photon with p_{T}^{γ}>60  GeV/c. The jet shape distributions are consistent between peripheral Pb-Pb and pp collisions, but are modified for more central Pb-Pb collisions. In these central Pb-Pb events, a larger fraction of the jet momentum is observed at larger distances from the jet axis compared to pp, reflecting the interaction between the partonic medium created in heavy ion collisions and the traversing partons.
  13. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys. Rev. Lett., 2019 Apr 19;122(15):151802.
    PMID: 31050519 DOI: 10.1103/PhysRevLett.122.151802
    For the first time, a search for the rare decay of the W boson to three charged pions has been performed. Proton-proton collision data recorded by the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 77.3  fb^{-1}, have been analyzed. No significant excess is observed above the background expectation. An upper limit of 1.01×10^{-6} is set at 95% confidence level on the branching fraction of the W boson to three charged pions. This provides a strong motivation for theoretical calculations of this branching fraction.
  14. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(5):444.
    PMID: 31265003 DOI: 10.1140/epjc/s10052-019-6926-x
    A search for supersymmetry is presented based on events with at least one photon, jets, and large missing transverse momentum produced in proton-proton collisions at a center-of-mass energy of 13



    Te



    . The data correspond to an integrated luminosity of 35.9



    fb

    -
    1



    and were recorded at the LHC with the CMS detector in 2016. The analysis characterizes signal-like events by categorizing the data into various signal regions based on the number of jets, the number of
    b
    -tagged jets, and the missing transverse momentum. No significant excess of events is observed with respect to the expectations from standard model processes. Limits are placed on the gluino and top squark pair production cross sections using several simplified models of supersymmetric particle production with gauge-mediated supersymmetry breaking. Depending on the model and the mass of the next-to-lightest supersymmetric particle, the production of gluinos with masses as large as 2120



    Ge



    and the production of top squarks with masses as large as 1230



    Ge



    are excluded at 95% confidence level.
  15. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(4):364.
    PMID: 31180390 DOI: 10.1140/epjc/s10052-019-6855-8
    A search for the pair production of heavy vector-like partners
    T
    and
    B
    of the top and bottom quarks has been performed by the CMS experiment at the CERN LHC using proton-proton collisions at


    s

    =
    13


    Te



    . The data sample was collected in 2016 and corresponds to an integrated luminosity of 35.9



    fb

    -
    1



    . Final states studied for

    T

    T
    ¯


    production include those where one of the
    T
    quarks decays via

    T

    t
    Z

    and the other via

    T

    b
    W

    ,

    t
    Z

    , or

    t
    H

    , where
    H
    is a Higgs boson. For the

    B

    B
    ¯


    case, final states include those where one of the
    B
    quarks decays via

    B

    b
    Z

    and the other

    B

    t
    W

    ,

    b
    Z

    , or

    b
    H

    . Events with two oppositely charged electrons or muons, consistent with coming from the decay of a
    Z
    boson, and jets are investigated. The number of observed events is consistent with standard model background estimations. Lower limits at 95% confidence level are placed on the masses of the
    T
    and
    B
    quarks for a range of branching fractions. Assuming 100% branching fractions for

    T

    t
    Z

    , and

    B

    b
    Z

    ,
    T
    and
    B
    quark mass values below 1280 and 1130



    Ge



    , respectively, are excluded.
  16. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(5):421.
    PMID: 31178657 DOI: 10.1140/epjc/s10052-019-6909-y
    Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented. The analysis uses the LHC proton-proton collision data set recorded with the CMS detector in 2016 at


    s

    =
    13


    Te



    , corresponding to an integrated luminosity of 35.9



    fb

    -
    1



    . The combination is based on analyses targeting the five main Higgs boson production mechanisms (gluon fusion, vector boson fusion, and associated production with a
    W
    or
    Z
    boson, or a top quark-antiquark pair) and the following decay modes:

    H

    γ
    γ

    ,

    Z
    Z

    ,

    W
    W

    ,

    τ
    τ

    ,

    b
    b

    , and

    μ
    μ

    . Searches for invisible Higgs boson decays are also considered. The best-fit ratio of the signal yield to the standard model expectation is measured to be

    μ
    =
    1.17
    ±
    0.10

    , assuming a Higgs boson mass of

    125.09


    Ge



    . Additional results are given for various assumptions on the scaling behavior of the production and decay modes, including generic parametrizations based on ratios of cross sections and branching fractions or couplings. The results are compatible with the standard model predictions in all parametrizations considered. In addition, constraints are placed on various two Higgs doublet models.
  17. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(2):140.
    PMID: 31265001 DOI: 10.1140/epjc/s10052-018-5607-5
    A search for standard model production of four top quarks (

    t

    t
    ¯

    t

    t
    ¯


    ) is reported using events containing at least three leptons (

    e
    ,
    μ

    ) or a same-sign lepton pair. The events are produced in proton-proton collisions at a center-of-mass energy of 13


    TeV

    at the LHC, and the data sample, recorded in 2016, corresponds to an integrated luminosity of 35.9



    fb

    -
    1



    . Jet multiplicity and flavor are used to enhance signal sensitivity, and dedicated control regions are used to constrain the dominant backgrounds. The observed and expected signal significances are, respectively, 1.6 and 1.0 standard deviations, and the

    t

    t
    ¯

    t

    t
    ¯


    cross section is measured to be

    16
    .

    9

    -
    11.4


    +
    13.8






    fb

    , in agreement with next-to-leading-order standard model predictions. These results are also used to constrain the Yukawa coupling between the top quark and the Higgs boson to be less than 2.1 times its expected standard model value at 95% confidence level.
  18. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2018;78(3):242.
    PMID: 31264999 DOI: 10.1140/epjc/s10052-018-5691-6
    Events with no charged particles produced between the two leading jets are studied in proton-proton collisions at


    s

    =
    7




    TeV

    . The jets were required to have transverse momentum


    p

    T

    jet

    >
    40




    GeV

    and pseudorapidity


    1.5
    <
    |


    η
    jet


    |
    <
    4.7


    , and to have values of

    η
    jet

    with opposite signs. The data used for this study were collected with the CMS detector during low-luminosity running at the LHC, and correspond to an integrated luminosity of 8



    pb

    -
    1



    . Events with no charged particles with


    p
    T

    >
    0.2




    GeV

    in the interval

    -
    1
    <
    η
    <
    1

    between the jets are observed in excess of calculations that assume no color-singlet exchange. The fraction of events with such a rapidity gap, amounting to 0.5-1% of the selected dijet sample, is measured as a function of the

    p
    T

    of the second-leading jet and of the rapidity separation between the jets. The data are compared to previous measurements at the Tevatron, and to perturbative quantum chromodynamics calculations based on the Balitsky-Fadin-Kuraev-Lipatov evolution equations, including different models of the non-perturbative gap survival probability.
  19. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(7):564.
    PMID: 31397444 DOI: 10.1140/epjc/s10052-019-7058-z
    A search is presented for a heavy pseudoscalar boson
    A
    decaying to a Z  boson and a Higgs boson with mass of 125


    GeV

    . In the final state considered, the Higgs boson decays to a bottom quark and antiquark, and the Z  boson decays either into a pair of electrons, muons, or neutrinos. The analysis is performed using a data sample corresponding to an integrated luminosity of 35.9



    fb

    -
    1



    collected in 2016 by the CMS experiment at the LHC from proton-proton collisions at a center-of-mass energy of 13



    Te



    . The data are found to be consistent with the background expectations. Exclusion limits are set in the context of two-Higgs-doublet models in the
    A
    boson mass range between 225 and 1000


    GeV

    .
  20. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys. Rev. Lett., 2019 Jul 12;123(2):022001.
    PMID: 31386524 DOI: 10.1103/PhysRevLett.123.022001
    The transverse momentum spectra of D^{0} mesons from b hadron decays are measured at midrapidity (|y|<1) in pp and Pb-Pb collisions at a nucleon-nucleon center of mass energy of 5.02 TeV with the CMS detector at the LHC. The D^{0} mesons from b hadron decays are distinguished from prompt D^{0} mesons by their decay topologies. In Pb-Pb collisions, the B→D^{0} yield is found to be suppressed in the measured p_{T} range from 2 to 100  GeV/c as compared to pp collisions. The suppression is weaker than that of prompt D^{0} mesons and charged hadrons for p_{T} around 10  GeV/c. While theoretical calculations incorporating partonic energy loss in the quark-gluon plasma can successfully describe the measured B→D^{0} suppression at higher p_{T}, the data show an indication of larger suppression than the model predictions in the range of 2
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links