Displaying publications 81 - 87 of 87 in total

Abstract:
Sort:
  1. Choudhury H, Pandey M, Chin PX, Phang YL, Cheah JY, Ooi SC, et al.
    Drug Deliv Transl Res, 2018 10;8(5):1545-1563.
    PMID: 29916012 DOI: 10.1007/s13346-018-0552-2
    Treatment of glioblastoma multiforme (GBM) is a predominant challenge in chemotherapy due to the existence of blood-brain barrier (BBB) which restricts delivery of chemotherapeutic agents to the brain together with the problem of drug penetration through hard parenchyma of the GBM. With the structural and mechanistic elucidation of the BBB under both physiological and pathological conditions, it is now viable to target central nervous system (CNS) disorders utilizing the presence of transferrin (Tf) receptors (TfRs). However, overexpression of these TfRs on the GBM cell surface can also help to avoid restrictions of GBM cells to deliver chemotherapeutic agents within the tumor. Therefore, targeting of TfR-mediated delivery could counteract drug delivery issues in GBM and create a delivery system that could cross the BBB effectively to utilize ligand-conjugated drug complexes through receptor-mediated transcytosis. Hence, approach towards successful delivery of antitumor agents to the gliomas has been making possible through targeting these overexpressed TfRs within the CNS and glioma cells. This review article presents a thorough analysis of current understanding on Tf-conjugated nanocarriers as efficient drug delivery system.
  2. Khan MA, Khan S, Kazi M, Alshehri SM, Shahid M, Khan SU, et al.
    Pharmaceutics, 2021 Oct 06;13(10).
    PMID: 34683925 DOI: 10.3390/pharmaceutics13101632
    Norfloxacin (NOR), widely employed as an anti-bacterial drug, has poor oral bioavailability. Nano based drug delivery systems are widely used to overcome the existing oral bioavailability challenges. Lipid-Polymer Hybrid Nanoparticles (LPHNs) exhibit the distinctive advantages of both polymeric and liposomes nanoparticles, while excluding some of their disadvantages. In the current study, NOR loaded LPHNs were prepared, and were solid amorphous in nature, followed by in vitro and in vivo evaluation. The optimized process conditions resulted in LPHNs with the acceptable particle size 121.27 nm, Polydispersity Index (PDI) of 0.214 and zeta potential of -32 mv. The addition of a helper lipid, oleic acid, and polymers, ethyl cellulose, substantially increased the encapsulation efficiency (EE%) (65% to 97%). In vitro study showed a sustained drug release profile (75% within 12 h) for NOR LPHNs. The optimized NOR LPHNs showed a significant increase (p < 0.05) in bioavailability compared to the commercial product. From the acute toxicity study, the LD50 value was found to be greater than 1600 mg/kg. The molecular modelling studies substantiated the experimental results with the best combination of polymers and surfactants that produced highly stable LPHNs. Therefore, LPHNs proved to be a promising system for the delivery of NOR, as well as for other antibiotics and hydrophobic drugs.
  3. Khan A, Hussain S, Ahmad S, Suleman M, Bukhari I, Khan T, et al.
    Comput Biol Med, 2022 02;141:105163.
    PMID: 34979405 DOI: 10.1016/j.compbiomed.2021.105163
    The spike protein of SARS-CoV-2 and the host ACE2 receptor plays a vital role in the entry to the cell. Among which the hotspot residue 501 is continuously subjected to positive selection pressure and induces unusual virulence. Keeping in view the importance of the hot spot residue 501, we predicted the potentially emerging structural variants of 501 residue. We analyzed the binding pattern of wild type and mutants (Spike RBD) to the ACE2 receptor by deciphering variations in the amino acids' interaction networks by graph kernels along with evolutionary, network metrics, and energetic information. Our analysis revealed that N501I, N501T, and N501V increase the binding affinity and alter the intra and inter-residue bonding networks. The N501T has shown strong positive selection and fitness in other animals. Docking results and repeated simulations (three times) confirmed the structural stability and tighter binding of these three variants, correlated with the previous results following the global stability trend. Consequently, we reported three variants N501I, N501T, and N501V could worsen the situation further if they emerged. The relations between the viral fitness and binding affinity is a complicated game thus the emergence of high affinity mutations in the SARS-CoV-2 RBD brings up the question of whether or not positive selection favours these mutations or not?
  4. Elangovan D, Long CS, Bakrin FS, Tan CS, Goh KW, Yeoh SF, et al.
    JMIR Med Inform, 2022 Jan 20;10(1):e17278.
    PMID: 35049516 DOI: 10.2196/17278
    BACKGROUND: Blockchain technology is a part of Industry 4.0's new Internet of Things applications: decentralized systems, distributed ledgers, and immutable and cryptographically secure technology. This technology entails a series of transaction lists with identical copies shared and retained by different groups or parties. One field where blockchain technology has tremendous potential is health care, due to the more patient-centric approach to the health care system as well as blockchain's ability to connect disparate systems and increase the accuracy of electronic health records.

    OBJECTIVE: The aim of this study was to systematically review studies on the use of blockchain technology in health care and to analyze the characteristics of the studies that have implemented blockchain technology.

    METHODS: This study used a systematic review methodology to find literature related to the implementation aspect of blockchain technology in health care. Relevant papers were searched for using PubMed, SpringerLink, IEEE Xplore, Embase, Scopus, and EBSCOhost. A quality assessment of literature was performed on the 22 selected papers by assessing their trustworthiness and relevance.

    RESULTS: After full screening, 22 papers were included. A table of evidence was constructed, and the results of the selected papers were interpreted. The results of scoring for measuring the quality of the publications were obtained and interpreted. Out of 22 papers, a total of 3 (14%) high-quality papers, 9 (41%) moderate-quality papers, and 10 (45%) low-quality papers were identified.

    CONCLUSIONS: Blockchain technology was found to be useful in real health care environments, including for the management of electronic medical records, biomedical research and education, remote patient monitoring, pharmaceutical supply chains, health insurance claims, health data analytics, and other potential areas. The main reasons for the implementation of blockchain technology in the health care sector were identified as data integrity, access control, data logging, data versioning, and nonrepudiation. The findings could help the scientific community to understand the implementation aspect of blockchain technology. The results from this study help in recognizing the accessibility and use of blockchain technology in the health care sector.

  5. Rahim MA, Jan N, Khan S, Shah H, Madni A, Khan A, et al.
    Cancers (Basel), 2021 Feb 07;13(4).
    PMID: 33562376 DOI: 10.3390/cancers13040670
    The tumor-specific targeting of chemotherapeutic agents for specific necrosis of cancer cells without affecting the normal cells poses a great challenge for researchers and scientists. Though extensive research has been carried out to investigate chemotherapy-based targeted drug delivery, the identification of the most promising strategy capable of bypassing non-specific cytotoxicity is still a major concern. Recent advancements in the arena of onco-targeted therapies have enabled safe and effective tumor-specific localization through stimuli-responsive drug delivery systems. Owing to their promising characteristic features, stimuli-responsive drug delivery platforms have revolutionized the chemotherapy-based treatments with added benefits of enhanced bioavailability and selective cytotoxicity of cancer cells compared to the conventional modalities. The insensitivity of stimuli-responsive drug delivery platforms when exposed to normal cells prevents the release of cytotoxic drugs into the normal cells and therefore alleviates the off-target events associated with chemotherapy. Contrastingly, they showed amplified sensitivity and triggered release of chemotherapeutic payload when internalized into the tumor microenvironment causing maximum cytotoxic responses and the induction of cancer cell necrosis. This review focuses on the physical stimuli-responsive drug delivery systems and chemical stimuli-responsive drug delivery systems for triggered cancer chemotherapy through active and/or passive targeting. Moreover, the review also provided a brief insight into the molecular dynamic simulations associated with stimuli-based tumor targeting.
  6. Asghar N, Naqvi SA, Hussain Z, Rasool N, Khan ZA, Shahzad SA, et al.
    Chem Cent J, 2016;10:5.
    PMID: 26848308 DOI: 10.1186/s13065-016-0149-0
    Carica papaya is a well known medicinal plant used in the West and Asian countries to cope several diseases. Patients were advised to eat papaya fruit frequently during dengue fever epidemic in Pakistan by physicians. This study was conducted to establish Polyphenols, flavonoids and antioxidant potential profile of extracts of all major parts of the C. papaya with seven major solvents i.e. water, ethanol, methanol, n-butanol, dichloromethane, ethyl acetate, and n-hexane.
  7. Chaudhary A, Hussain Z, Aihetasham A, El-Sharnouby M, Abdul Rehman R, Azmat Ullah Khan M, et al.
    Saudi J Biol Sci, 2021 Sep;28(9):4867-4875.
    PMID: 34466060 DOI: 10.1016/j.sjbs.2021.06.081
    Unwanted agricultural waste is largely comprised of lignocellulosic substrate which could be transformed into sugars. The production of bioethanol from garbage manifested an agreeable proposal towards waste management as well as energy causation. The goal of this work is to optimize parameters for generation of bioethanol through fermentation by different yeast strains while Saccharomyces cerevisiae used as standard strain. The low cost fermentable sugars from pomegranate peels waste (PPW) were obtained by hydrolysis with HNO3 (1 to 5%). The optimum levels of hydrolysis time and temperature were elucidated via RSM (CCD) ranging from 30 to 60 min and 50 to 100 °C respectively. The result shows that optimum values (g/L) for reducing sugars was 61.45 ± 0.01 while for total carbohydrates was 236 ± 0.01. These values were found when PPW was hydrolyzed with 3% HNO3, at 75 °C for one hour. The hydrolyzates obtained from the dilute HNO3 pretreated PPW yielded a maximum of 0.43 ± 0.04, 0.41 ± 0.03 g ethanol per g of reducing sugars by both Metchnikowia sp. Y31 and M. cibodasensis Y34 at day 7 of ethanologenic experiment. The current study exhibited that by fermentation of dilute HNO3 hydrolyzates of PPW could develop copious amount of ethanol by optimized conditions.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links