Displaying publications 81 - 100 of 178 in total

Abstract:
Sort:
  1. Ayub HMU, Ahmed A, Lam SS, Lee J, Show PL, Park YK
    Bioresour Technol, 2022 Jan;344(Pt B):126399.
    PMID: 34822981 DOI: 10.1016/j.biortech.2021.126399
    Biofuels have become an attractive energy source because of the growing energy demand and environmental issues faced by fossil fuel consumption. Algal biomass, particularly microalgae, has excellent potential as feedstock to be converted to bio-oil, biochar, and combustible syngas via thermochemical conversion processes. Third-generation biofuels from microalgal feedstock are the promising option, followed by the first-generation and second-generation biofuels. This paper provides a review of the applications of thermochemical conversion techniques for biofuel production from algal biomass, comprising pyrolysis, gasification, liquefaction, and combustion processes. The progress in the thermochemical conversion of algal biomass is summarized, emphasizing the application of pyrolysis for its benefits over other processes. The review also encompasses the challenges and perspectives associated with the valorization of microalgae to biofuels ascertaining the potential opportunities and possibilities of extending the research into this area.
  2. Sonne C, Lam SS, Kim KH, Rinklebe J, Ok YS
    Chemosphere, 2020 Jun;248:125971.
    PMID: 32035380 DOI: 10.1016/j.chemosphere.2020.125971
    As reported in Chemosphere by Colles et al. (2020), there are multiple pathways for human exposure to poly- and perfluoroalkyl substances (PFAS). Now, a new chemical formation of C-F bonds in drug delivery lead to concerns for human exposure as these inert chemical formations are resistance to metabolic degradation and excretion.
  3. Bhardwaj R, Sharma T, Nguyen DD, Cheng CK, Lam SS, Xia C, et al.
    J Environ Manage, 2021 Jul 01;289:112468.
    PMID: 33823414 DOI: 10.1016/j.jenvman.2021.112468
    A continuous increase in the amount of greenhouse gases (GHGs) is causing serious threats to the environment and life on the earth, and CO2 is one of the major candidates. Reducing the excess CO2 by converting into industrial products could be beneficial for the environment and also boost up industrial growth. In particular, the conversion of CO2 into methanol is very beneficial as it is cheaper to produce from biomass, less inflammable, and advantageous to many industries. Application of various plants, algae, and microbial enzymes to recycle the CO2 and using these enzymes separately along with CO2-phillic materials and chemicals can be a sustainable solution to reduce the global carbon footprint. Materials such as MOFs, porphyrins, and nanomaterials are also used widely for CO2 absorption and conversion into methanol. Thus, a combination of enzymes and materials which convert the CO2 into methanol could energize the CO2 utilization. The CO2 to methanol conversion utilizes carbon better than the conventional syngas and the reaction yields fewer by-products. The methanol produced can further be utilized as a clean-burning fuel, in pharmaceuticals, automobiles and as a general solvent in various industries etc. This makes methanol an ideal fuel in comparison to the conventional petroleum-based ones and it is advantageous for a safer and cleaner environment. In this review article, various aspects of the circular economy with the present scenario of environmental crisis will also be considered for large-scale sustainable biorefinery of methanol production from atmospheric CO2.
  4. Chowdhury MA, Shuvho MBA, Shahid MA, Haque AKMM, Kashem MA, Lam SS, et al.
    Environ Res, 2021 Jan;192:110294.
    PMID: 33022215 DOI: 10.1016/j.envres.2020.110294
    The rapid spread of COVID-19 has led to nationwide lockdowns in many countries. The COVID-19 pandemic has played serious havoc on economic activities throughout the world. Researchers are immensely curious about how to give the best protection to people before a vaccine becomes available. The coronavirus spreads principally through saliva droplets. Thus, it would be a great opportunity if the virus spread could be controlled at an early stage. The face mask can limit virus spread from both inside and outside the mask. This is the first study that has endeavoured to explore the design and fabrication of an antiviral face mask using licorice root extract, which has antimicrobial properties due to glycyrrhetinic acid (GA) and glycyrrhizin (GL). An electrospinning process was utilized to fabricate nanofibrous membrane and virus deactivation mechanisms discussed. The nanofiber mask material was characterized by SEM and airflow rate testing. SEM results indicated that the nanofibers from electrospinning are about 15-30 μm in diameter with random porosity and orientation which have the potential to capture and kill the virus. Theoretical estimation signifies that an 85 L/min rate of airflow through the face mask is possible which ensures good breathability over an extensive range of pressure drops and pore sizes. Finally, it can be concluded that licorice root membrane may be used to produce a biobased face mask to control COVID-19 spread.
  5. Zhong H, Tang W, Li Z, Sonne C, Lam SS, Zhang X, et al.
    Nat Food, 2024 Apr 11.
    PMID: 38605129 DOI: 10.1038/s43016-024-00954-7
    Contamination of rice by the potent neurotoxin methylmercury (MeHg) originates from microbe-mediated Hg methylation in soils. However, the high diversity of Hg methylating microorganisms in soils hinders the prediction of MeHg formation and challenges the mitigation of MeHg bioaccumulation via regulating soil microbiomes. Here we explored the roles of various cropland microbial communities in MeHg formation in the potentials leading to MeHg accumulation in rice and reveal that Geobacteraceae are the key predictors of MeHg bioaccumulation in paddy soil systems. We characterized Hg methylating microorganisms from 67 cropland ecosystems across 3,600 latitudinal kilometres. The simulations of a rice-paddy biogeochemical model show that MeHg accumulation in rice is 1.3-1.7-fold more sensitive to changes in the relative abundance of Geobacteraceae compared to Hg input, which is recognized as the primary parameter in controlling MeHg exposure. These findings open up a window to predict MeHg formation and accumulation in human food webs, enabling more efficient mitigation of risks to human health through regulations of key soil microbiomes.
  6. Yan S, Ren T, Wan Mahari WA, Feng H, Xu C, Yun F, et al.
    Sci Total Environ, 2021 Aug 24;802:149835.
    PMID: 34461468 DOI: 10.1016/j.scitotenv.2021.149835
    Soil carbon supplementation is known to stimulate plant growth by improving soil fertility and plant nutrient uptake. However, the underlying process and chemical mechanism that could explain the interrelationship between soil carbon supplementation, soil micro-ecology, and the growth and quality of plant remain unclear. In this study, we investigated the influence and mechanism of soil carbon supplementation on the bacterial community, chemical cycling, mineral nutrition absorption, growth and properties of tobacco leaves. The soil carbon supplementation increased amino acid, carbohydrates, chemical energy metabolism, and bacterial richness in the soil. This led to increased content of sugar (23.75%), starch (13.25%), and chlorophyll (10.56%) in tobacco leaves. Linear discriminant analysis revealed 49 key phylotypes and significant increment of some of the Plant Growth-Promoting Rhizobacteria (PGPR) genera (Bacillus, Novosphingobium, Pseudomonas, Sphingomonas) in the rhizosphere, which can influence the tobacco growth. Partial Least Squares Path Modeling (PLS-PM) showed that soil carbon supplementation positively affected the sugar and starch contents in tobacco leaves by possibly altering the photosynthesis pathway towards increasing the aroma of the leaves, thus contributing to enhanced tobacco flavor. These findings are useful for understanding the influence of soil carbon supplementation on bacterial community for improving the yields and quality of tobacco in industrial plantation.
  7. Ren T, Feng H, Xu C, Xu Q, Fu B, Azwar E, et al.
    Chemosphere, 2022 Jan 22;294:133710.
    PMID: 35074326 DOI: 10.1016/j.chemosphere.2022.133710
    The usage of fertilizer with high nitrogen content in many countries, as well as its enormous surplus, has a negative impact on the soil ecological environment in agricultural system. This consumption of nitrogen fertilizer can be minimized by applying biochar to maintain the sufficient supply of nitrogen as nutrient to the near-root zone. This study investigated the effects of various amounts of biochar application (450, 900, 1350, and 1800 kg/hm2) and reduction of nitrogen fertilizer amount (10, 15, 20, and 25%) on the nutrients and microorganism community structure in rhizosphere growing tobacco plant. The microorganism community was found essential in improving nitrogen retention. Compared with conventional treatment, an application of biochar in rhizosphere soil increased the content of soil available phosphorus, organic matter and total nitrogen by 21.47%, 26.34%, and 9.52%, respectively. It also increased the abundance of microorganisms that are capable of degrading and utilizing organic matter and cellulose, such as Actinobacteria and Acidobacteria. The relative abundance of Chloroflexi was also increased by 49.67-78.61%, and the Acidobacteria increased by 14.79-39.13%. Overall, the application of biochar with reduced nitrogen fertilizer amount can regulate the rhizosphere microecological environment of tobacco plants and their microbial population structure, thereby promoting soil health for tobacco plant growth while reducing soil acidification and environmental pollution caused by excessive nitrogen fertilizer.
  8. Sonne C, Dietz R, Jenssen BM, Lam SS, Letcher RJ
    Trends Ecol Evol, 2021 05;36(5):421-429.
    PMID: 33602568 DOI: 10.1016/j.tree.2021.01.007
    Recent advances in environmental analytical chemistry have identified the presence of a large number of chemicals of emerging Arctic concern (CEACs) being transported long range to the region. There has been very limited temporal monitoring of CEACs and it is therefore unknown whether they are of increasing or decreasing concern. Likewise, information on potential biological adverse effects from CEACs on Arctic wildlife is lacking compared with legacy persistent organic pollutants (POPs) found at levels associated with health effects in marine mammals. Hence, there is a need to monitor CEACs along with POPs to support risk and regulatory CEAC assessments. We suggest pan-Arctic temporal trend studies of CEACs in wildlife including the establishment of toxicity thresholds to evaluate their potential effects on populations, biodiversity, and ecosystem services.
  9. Chen WH, Chang CM, Mutuku JK, Lam SS, Lee WJ
    Environ Res, 2021 06;197:110975.
    PMID: 33689824 DOI: 10.1016/j.envres.2021.110975
    The deposition phenomenon of microparticle and SAR-CoV-2 laced bioaerosol in human airways is studied by Taguchi methods and response surface methodology (RSM). The data used herein is obtained from simulations of airflow dynamics and deposition fractions of drug particle aerosols in the downstream airways of asthma patients using computational fluid dynamics (CFD) and discrete particle motion (DPM). Three main parameters, including airflow rate, drug dose, and particle size, affecting aerosol deposition in the lungs of asthma patients are examined. The highest deposition fraction (DF) is obtained at the flow rate of 45 L min-1, the drug dose of 200 μg·puff-1, and the particle diameter of 5 μm. The optimized combination of levels for the three parameters for maximum drug deposition is performed via the Taguchi method. The importance of the influencing factors rank as particle size > drug dose > flow rate. RSM reveals that the combination of 30 L min-1, 5 μm, 200 μg·puff- has the highest deposition fraction. In part, this research also studied the deposition of bioaerosols contaminated with the SAR-CoV-2 virus, and their lowest DF is 1.15%. The low DF of bioaerosols reduces the probability of the SAR-CoV-2 virus transmission.
  10. Chen WH, Chang CM, Mutuku JK, Lam SS, Lee WJ
    J Hazard Mater, 2021 08 15;416:125856.
    PMID: 34492805 DOI: 10.1016/j.jhazmat.2021.125856
    Inhalation of aerosols such as pharmaceutical aerosols or virus aerosol uptake is of great concern to the human population. To elucidate the underlying aerosol dynamics, the deposition fractions (DFs) of aerosols in healthy and asthmatic human airways of generations 13-15 are predicted. The Navier-stokes equations governing the gaseous phase and the discrete phase model for particles' motion are solved using numerical methods. The main forces responsible for deposition are inertial impaction forces and complex secondary flow velocities. The curvatures and sinusoidal folds in the asthmatic geometry lead to the formation of complex secondary flows and hence higher DFs. The intensities of complex secondary flows are strongest at the generations affected by asthma. The DF in the healthy airways is 0%, and it ranges from 1.69% to 52.93% in the asthmatic ones. From this study, the effects of the pharmaceutical aerosol particle diameters in the treatment of asthma patients can be established, which is conducive to inhibiting the inflammation of asthma airways. Furthermore, with the recent development of COVID-19 which causes pneumonia, the predicted physics and effective simulation methods of bioaerosols delivery to asthma patients are vital to prevent the exacerbation of the chronic ailment and the epidemic.
  11. Nguyen VH, Nguyen BD, Pham HT, Lam SS, Vo DN, Shokouhimehr M, et al.
    Sci Rep, 2021 Feb 11;11(1):3641.
    PMID: 33574397 DOI: 10.1038/s41598-020-80886-x
    In this work, we proposed a facile approach to fabricate a superhydrophobic surface for anti-icing performance in terms of adhesive strength and freezing time. A hierarchical structure was generated on as-received Al plates using a wet etching method and followed with a low energy chemical compound coating. Surfaces after treatment exhibited the great water repellent properties with a high contact angle and extremely low sliding angle. An anti-icing investigation was carried out by using a custom-built apparatus and demonstrated the expected low adhesion and freezing time for icephobic applications. In addition, we proposed a model for calculating the freezing time. The experimented results were compared with theoretical calculation and demonstrated the good agreement, illustrating the importance of theoretical contribution in design icephobic surfaces. Therefore, this study provides a guideline for the understanding of icing phenomena and designing of icephobic surfaces.
  12. Van Tung T, Tran QB, Phuong Thao NT, Vi LQ, Hieu TT, Le S, et al.
    Chemosphere, 2020 Dec 15;268:129329.
    PMID: 33360937 DOI: 10.1016/j.chemosphere.2020.129329
    This study develops a method to reuse aquaculture wastewater and sediment from a catfish pond in order to increase agricultural productivity and protect the environment. Material flow analysis (MFA) is a central concept of this study that involves collecting catfish pond wastewater (CPW) and reusing it to irrigate five water spinach (Ipomoea aquatic) ponds before discharging it into a river. Typically, catfish pond sediment (CPS) was collected and composted to produce organic fertilizer for cornfields. The results revealed that pollutant removal efficiency of wastewater from CPW (by using water spinach) were total organic carbon (TOC) = 38.78%, nitrogen (N) = 27.07%, phosphorous (P) = 58.42%, and potassium (K) = 28.64%. By adding 20 tons of CPS compost per hectare of the cornfield, the corn yield boosted 15% compared to the control field. In addition, the water spinach grew and developed well in the medium of wastewater from the fish pond. Altogether, the results illustrate that catfish pond wastewater and sediment can act as organic fertilizers for crops meanwhile reduce environmental pollution from its reuse.
  13. Nguyen XC, Ly QV, Peng W, Nguyen VH, Nguyen DD, Tran QB, et al.
    J Hazard Mater, 2021 07 05;413:125426.
    PMID: 33621772 DOI: 10.1016/j.jhazmat.2021.125426
    This study evaluated and compared the performance of two vertical flow constructed wetlands (VF) using expanded clay (VF1) and biochar (VF2), of which both are low-cost, eco-friendly, and exhibit potentially high adsorption as compared to conventional filter layers. Both VFs achieved relatively high removal for organic matters (i.e. Biological oxygen demand during 5 days, BOD5) and nitrogen, accounting for 9.5 - 10.5 g.BOD5.m-2.d-1 and 3.5 - 3.6 g.NH4-N.m-2.d-1, respectively. The different filter materials did not exert any significant discrepancy to effluent quality in terms of suspended solids, organic matters and NO3-N (P > 0.05), but they did influence NH4-N effluent as evidenced by the removal rate of that by VF1 and VF2 being of 82.4 ± 5.7 and 84.6 ± 6.4%, respectively (P 
  14. Thanh Hai L, Tran QB, Tra VT, Nguyen TPT, Le TN, Schnitzer H, et al.
    Environ Pollut, 2020 Oct;265(Pt B):114853.
    PMID: 32480006 DOI: 10.1016/j.envpol.2020.114853
    This study proposes an integrated cattle breeding and cultivation system that provides zero emission and sustainable livelihood for the community in rural areas. The proposed integrated farming system improves agricultural productivity and environmental and sanitation conditions, minimizes the amount of waste, and increases the family income up to 41.55%. Several waste types can be recycled and transformed into valuable products, such as energy for cooking, organic fertilizer for crops, and cattle feed for breeding. Wastewater effluent from the biogas tank can be treated by biochar and results show that it then meets the standards for irrigation purposes. Also, the waste flow from cattle breeding supplies enough nutrients to cultivate plants, and the plants grown supply are adequate food for the 30 cows living on the farm. This research shows that the use of an integrated farming system could achieve zero-emission goal. Thereby, it provides a sustainable livelihood for cattle breeding family farms. The proposed integrated cattle breeding and cultivation system improves agricultural productivity, environmental and increases the farmer income up to 41.55%.
  15. Khounani Z, Hosseinzadeh-Bandbafha H, Nazemi F, Shaeifi M, Karimi K, Tabatabaei M, et al.
    J Environ Manage, 2021 Feb 01;279:111822.
    PMID: 33348185 DOI: 10.1016/j.jenvman.2020.111822
    The huge amount of agro-wastes generated due to expanding agricultural activities can potentially cause serious environmental and human health problems. Using the biorefinery concept, all parts of agricultural plants can be converted into multiple value-added bioproducts while reducing waste generation. This approach can be viewed as an effective strategy in developing and realizing a circular bioeconomy by accomplishing the dual goals of waste mitigation and energy recovery. However, the sustainability issue of biorefineries should still be thoroughly scrutinized using comprehensive resource accounting methods such as exergy-based approaches. In light of that, this study aims to conduct a detailed exergy analysis of whole-crop safflower biorefinery consisting of six units, i.e., straw handling, biomass pretreatment, bioethanol production, wastewater treatment, oil extraction, and biodiesel production. The analysis is carried out to find the major exergy sink in the developed biorefinery and discover the bottlenecks for further performance improvements. Overall, the wastewater treatment unit exhibits to be the major exergy sink, amounting to over 70% of the total thermodynamic irreversibility of the process. The biomass pretreatment and bioethanol production units account for 12.4 and 10.3% of the total thermodynamic inefficiencies of the process, respectively. The exergy rates associated with bioethanol, biodiesel, lignin, biogas, liquid digestate, seed cake, sodium sulfate, and glycerol are determined to be 5918.5, 16516.8, 10778.9, 1741.4, 6271.5, 15755.8, 3.4, and 823.5 kW, respectively. The overall exergetic efficiency of the system stands at 72.7%, demonstrating the adequacy of the developed biorefinery from the thermodynamic perspective.
  16. Ma X, Cai L, Chen L, Fei B, Lu J, Xia C, et al.
    J Environ Manage, 2021 May 15;286:112190.
    PMID: 33636623 DOI: 10.1016/j.jenvman.2021.112190
    As an abundant and fast-growing biomass, bamboo can be used as construction materials owing to its desirable physical and mechanical properties, environmentally friendly features, and alternative to replace toxic and hazardous wastes in industrial processing. In this study, grid material made from bamboo (termed 'bamboo grid') was developed and compared to commercially used polyvinyl chloride (PVC) as packing material in cooling towers; PVC packing has drawbacks such as fouling, deposit buildup, low durability, and is harmful to environments. The cooling capacity, energy efficiency and environmental impact of bamboo grid packing were evaluated via life cycle assessment (LCA), particularly the cumulative energy demand (CED) and the Building for Environmental and Economic Sustainability (BEES). Although the thermal performance of the PVC packing was found higher than that of the bamboo grid packing, the bamboo grid packing showed improved resistance characteristic, recording a total saving of 529.2 tons of standard coal during a six-month field test in a real thermal power generation plant. LCA results revealed that the utilization of bamboo-grid packing to replace PVC packing in cooling towers reduced total CED from 3420 MJ to 561 MJ per functional unit, achieving 6 times reduction. A desirable reduction ranging from 1.5 to 10.5 times was also recorded for the BEES indices. This LCA comparison analysis confirmed the improvement of energy efficiency and reduction of environmental impact by using the bamboo grid to replace PVC as packing material in cooling towers. The major environmental impact (BEES) indices (e.g., the total Global warming potential, Acidification, Eutrophication and Smog) were reduced by 1.5-10.5 times via the use of bamboo grid. The results demonstrate that bamboo grid packing is a good alternative to replace existing grid packing materials such as concrete and PVC that are harmful to human health and environments.
  17. Foong SY, Chan YH, Cheah WY, Kamaludin NH, Tengku Ibrahim TNB, Sonne C, et al.
    Bioresour Technol, 2021 Jan;320(Pt A):124299.
    PMID: 33129091 DOI: 10.1016/j.biortech.2020.124299
    Hydrogen and gaseous fuel derived from wastes have opened up promising alternative pathways for the production of renewable and sustainable fuels to substitute classical fossil energy resources that cause global warming and pollution. Existing review articles focus mostly on gasification, reforming and pyrolysis processes, with limited information on particularly gaseous fuel production via pyrolysis of various waste products. This review provides an overview on the recent advanced pyrolysis technology used in hydrogen and gaseous fuel production. The key parameters to maximize the production of specific compounds were discussed. More studies are needed to optimize the process parameters and improve the understanding of reaction mechanisms and co-relationship between these advanced techniques. These advanced techniques provide novel environmentally sustainable and commercially procedures for waste-based production of hydrogen and gaseous fuels.
  18. Wang J, Guo M, Luo Y, Shao D, Ge S, Cai L, et al.
    J Environ Manage, 2021 Jul 01;289:112506.
    PMID: 33831760 DOI: 10.1016/j.jenvman.2021.112506
    Polyelectrolyte composite nanospheres are relatively new adsorbents which have attracted much attention for their efficient pollutant removal and reuse performance. A novel polyelectrolyte nanosphere with magnetic function (SA@AM) was synthesized via the electrostatic reaction between the polyanionic sodium alginate (SA) and the surface of a prepared terminal amino-based magnetic nanoparticles (AMs). SA@AM showed a size of 15-22 nm with 6.85 emu·g-1 of magnetization value, exhibiting a high adsorption capacity on Pb(II) ions representing a common heavy metal pollutant, with a maximum adsorption capacity of 105.8 mg g-1. The Langmuir isotherm adsorption fits the adsorption curve, indicating uniform adsorption of Pb(II) on the SA@AM surfaces. Repeated adsorption desorption experiments showed that the removal ratio of Pb(II) by SA@AM was more than 76%, illustrating improved regeneration performance. These results provide useful information for the production of bio-based green magnetic nano scale adsorption materials for environmental remediation applications.
  19. Yang Y, Liew RK, Tamothran AM, Foong SY, Yek PNY, Chia PW, et al.
    Environ Chem Lett, 2021 Jan 13.
    PMID: 33462541 DOI: 10.1007/s10311-020-01177-5
    Dwindling fossil fuels and improper waste management are major challenges in the context of increasing population and industrialization, calling for new waste-to-energy sources. For instance, refuse-derived fuels can be produced from transformation of municipal solid waste, which is forecasted to reach 2.6 billion metric tonnes in 2030. Gasification is a thermal-induced chemical reaction that produces gaseous fuel such as hydrogen and syngas. Here, we review refuse-derived fuel gasification with focus on practices in various countries, recent progress in gasification, gasification modelling and economic analysis. We found that some countries that replace coal by refuse-derived fuel reduce CO2 emission by 40%, and decrease the amount municipal solid waste being sent to landfill by more than 50%. The production cost of energy via refuse-derived fuel gasification is estimated at 0.05 USD/kWh. Co-gasification by using two feedstocks appears more beneficial over conventional gasification in terms of minimum tar formation and improved process efficiency.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links