Displaying publications 81 - 100 of 315 in total

Abstract:
Sort:
  1. Jeofry H, Ross N, Le Brocq A, Graham AGC, Li J, Gogineni P, et al.
    Nat Commun, 2018 11 01;9(1):4576.
    PMID: 30385741 DOI: 10.1038/s41467-018-06679-z
    Satellite imagery reveals flowstripes on Foundation Ice Stream parallel to ice flow, and meandering features on the ice-shelf that cross-cut ice flow and are thought to be formed by water exiting a well-organised subglacial system. Here, ice-penetrating radar data show flow-parallel hard-bed landforms beneath the grounded ice, and channels incised upwards into the ice shelf beneath meandering surface channels. As the ice transitions to flotation, the ice shelf incorporates a corrugation resulting from the landforms. Radar reveals the presence of subglacial water alongside the landforms, indicating a well-organised drainage system in which water exits the ice sheet as a point source, mixes with cavity water and incises upwards into a corrugation peak, accentuating the corrugation downstream. Hard-bedded landforms influence both subglacial hydrology and ice-shelf structure and, as they are known to be widespread on formerly glaciated terrain, their influence on the ice-sheet-shelf transition could be more widespread than thought previously.
  2. Wen D, Li R, Jiang M, Li J, Liu Y, Dong X, et al.
    Neural Netw, 2021 Dec 25;148:23-36.
    PMID: 35051867 DOI: 10.1016/j.neunet.2021.12.010
    This study aims to explore an effective method to evaluate spatial cognitive ability, which can effectively extract and classify the feature of EEG signals collected from subjects participating in the virtual reality (VR) environment; and evaluate the training effect objectively and quantitatively to ensure the objectivity and accuracy of spatial cognition evaluation, according to the classification results. Therefore, a multi-dimensional conditional mutual information (MCMI) method is proposed, which could calculate the coupling strength of two channels considering the influence of other channels. The coupled characteristics of the multi-frequency combination were transformed into multi-spectral images, and the image data were classified employing the convolutional neural networks (CNN) model. The experimental results showed that the multi-spectral image transform features based on MCMI are better in classification than other methods, and among the classification results of six band combinations, the best classification accuracy of Beta1-Beta2-Gamma combination is 98.3%. The MCMI characteristics on the Beta1-Beta2-Gamma band combination can be a biological marker for the evaluation of spatial cognition. The proposed feature extraction method based on MCMI provides a new perspective for spatial cognitive ability assessment and analysis.
  3. Zhu P, Li J, Wen X, Huang Y, Yang H, Wang S, et al.
    J Environ Manage, 2022 Feb 07;308:114682.
    PMID: 35144065 DOI: 10.1016/j.jenvman.2022.114682
    This study investigated the effects of biochar-based solid acids (SAs) on carbon conversion, alpha diversity and bacterial community succession during cow manure composting with the goal of providing a new strategy for rapid carbon conversion during composting. The addition of SA prolonged the thermophilic phase and accelerated the degradation of lignocellulose; in particular, the degradation time of cellulose was shortened by 50% and the humus content was increased by 22.56% compared with the control group (CK). In addition, high-throughput sequencing results showed that SA improved the alpha diversity and the relative abundance of thermophilic bacteria, mainly Actinobacteria, increased by 12.955% compared with CK. A redundancy analysis (RDA) showed that Actinobacteria was positively correlated with the transformation of carbon.
  4. Xiang X, Wang Y, Huang G, Huang J, Gao M, Sun M, et al.
    J Steroid Biochem Mol Biol, 2023 Mar;227:106244.
    PMID: 36584773 DOI: 10.1016/j.jsbmb.2022.106244
    OBJECTIVE: 17β-estradiol (17β-E2) has been implicated in activating autophagy by upregulating SIRT3 (Sirtuin 3) expression, thereby inhibiting the senescence of vascular endothelial cells. Herein, we further examined the molecular mechanisms that regulate SIRT3 expression in 17β-E2-induced autophagy.

    METHODS: Reverse-transcription-polymerase chain reaction was employed to measure the expression of plasmacytoma variant translocation 1 (PVT1), microRNAs (miRNAs), and SIRT3, and the dual-luciferase assay was used to determine their interaction. Electron microscopy observes autophagosomes, green fluorescent protein-microtubule-associated protein 1 light chain 3 (GFP-LC3) staining, and immunoblot analysis with antibodies against LC3,beclin-1, and P62 were conducted to measure autophagy. Cellular senescence was determined using immunoblot analysis with anti-phosphorylated retinoblastoma and senescence-associated β-galactosidase staining.

    RESULTS: Women with higher estrogen levels (during the 10-13th day of the menstrual cycle or premenopausal) exhibit markedly higher serum levels of PVT1 than women with lower estrogen levels (during the menstrual period or postmenopausal). The dual-luciferase assay showed that PVT1 acts as a sponge for miR-31, and miR-31 binds to its target gene, SIRT3. The 17β-E2 treatment increased the expression of PVT1 and SIRT3 and downregulated miR-31 expression in human umbilical vein endothelial cells (HUVECs). Consistently, PVT1 overexpression suppresses miR-31 expression, promotes 17β-E2-induced autophagy, and inhibits H2O2-induced senescence. miR-31 inhibitor increases SIRT3 expression and leads to activation of 17β-E2-induced autophagy and suppression of H2O2-induced senescence.

    CONCLUSION: Our findings demonstrated that 17β-E2 upregulates PVT1 gene expression and PVT1 functions as a sponge to inhibit miR-31, resulting in the upregulation of SIRT3 expression and activation of autophagy and subsequent inhibition of H2O2-induced senescence in HUVECs.

  5. Teo BW, Koh YY, Toh QC, Li J, Sinha AK, Shuter B, et al.
    Singapore Med J, 2014 Dec;55(12):656-9.
    PMID: 25630321
    INTRODUCTION: Clinical practice guidelines recommend using creatinine-based equations to estimate glomerular filtration rates (GFRs). While these equations were formulated for Caucasian-American populations and have adjustment coefficients for African-American populations, they are not validated for other ethnicities. The Chronic Kidney Disease-Epidemiology Collaborative Group (CKD-EPI) recently developed a new equation that uses both creatinine and cystatin C. We aimed to assess the accuracy of this equation in estimating the GFRs of participants (healthy and with chronic kidney disease [CKD]) from a multiethnic Asian population.

    METHODS: Serum samples from the Asian Kidney Disease Study and the Singapore Kidney Function Study were used. GFR was measured using plasma clearance of 99mTc-DTPA. GFR was estimated using the CKD-EPI equations. The performance of GFR estimation equations were examined using median and interquartile range values, and the percentage difference from the measured GFR.

    RESULTS: The study comprised 335 participants (69.3% with CKD; 38.5% Chinese, 29.6% Malays, 23.6% Indians, 8.3% others), with a mean age of 53.5 ± 15.1 years. Mean standardised serum creatinine was 127 ± 86 μmol/L, while mean standardised serum cystatin C and mean measured GFR were 1.43 ± 0.74 mg/L and 67 ± 33 mL/min/1.73 m2, respectively. The creatinine-cystatin C CKD-EPI equation performed the best, with an estimated GFR of 67 ± 35 mL/min/1.73 m2.

    CONCLUSION: The new creatinine-cystatin C equation estimated GFR with little bias, and had increased precision and accuracy in our multiethnic Asian population. This two-biomarker equation may increase the accuracy of population studies on CKD, without the need to consider ethnicity.
  6. Wu C, Zhong L, Yeh PJ, Gong Z, Lv W, Chen B, et al.
    Sci Total Environ, 2024 Jan 01;906:167632.
    PMID: 37806579 DOI: 10.1016/j.scitotenv.2023.167632
    Drought affects vegetation growth to a large extent. Understanding the dynamic changes of vegetation during drought is of great significance for agricultural and ecological management and climate change adaptation. The relations between vegetation and drought have been widely investigated, but how vegetation loss and restoration in response to drought remains unclear. Using the standardized precipitation evapotranspiration index (SPEI) and the normalized difference vegetation index (NDVI) data, this study developed an evaluation framework for exploring the responses of vegetation loss and recovery to meteorological drought, and applied it to the humid subtropical Pearl River basin (PRB) in southern China for estimating the loss and recovery of three vegetation types (forest, grassland, cropland) during drought using the observed NDVI changes. Results indicate that vegetation is more sensitive to drought in high-elevation areas (lag time  8 months). Vegetation loss (especially in cropland) is found to be more sensitive to drought duration than drought severity and peak. No obvious linear relationship between drought intensity and the extent of vegetation loss is found. Regardless of the intensity, drought can cause the largest probability of mild loss of vegetation, followed by moderate loss, and the least probability of severe loss. Large spatial variability in the probability of vegetation loss and recovery time is found over the study domain, with a higher probability (up to 50 %) of drought-induced vegetation loss and a longer recovery time (>7 months) mostly in the high-elevation areas. Further analysis suggests that forest shows higher but cropland shows lower drought resistance than other vegetation types, and grassland requires a shorter recovery time (4.2-month) after loss than forest (5.1-month) and cropland (4.8-month).
  7. Hanafin PO, Abdul Rahim N, Sharma R, Cess CG, Finley SD, Bergen PJ, et al.
    CPT Pharmacometrics Syst Pharmacol, 2023 Mar;12(3):387-400.
    PMID: 36661181 DOI: 10.1002/psp4.12923
    Carbapenemase-resistant Klebsiella pneumoniae (KP) resistant to multiple antibiotic classes necessitates optimized combination therapy. Our objective is to build a workflow leveraging omics and bacterial count data to identify antibiotic mechanisms that can be used to design and optimize combination regimens. For pharmacodynamic (PD) analysis, previously published static time-kill studies (J Antimicrob Chemother 70, 2015, 2589) were used with polymyxin B (PMB) and chloramphenicol (CHL) mono and combination therapy against three KP clinical isolates over 24 h. A mechanism-based model (MBM) was developed using time-kill data in S-ADAPT describing PMB-CHL PD activity against each isolate. Previously published results of PMB (1 mg/L continuous infusion) and CHL (Cmax : 8 mg/L; bolus q6h) mono and combination regimens were evaluated using an in vitro one-compartment dynamic infection model against a KP clinical isolate (108 CFU/ml inoculum) over 24 h to obtain bacterial samples for multi-omics analyses. The differentially expressed genes and metabolites in these bacterial samples served as input to develop a partial least squares regression (PLSR) in R that links PD responses with the multi-omics responses via a multi-omics pathway analysis. PMB efficacy was increased when combined with CHL, and the MBM described the observed PD well for all strains. The PLSR consisted of 29 omics inputs and predicted MBM PD response (R2  = 0.946). Our analysis found that CHL downregulated metabolites and genes pertinent to lipid A, hence limiting the emergence of PMB resistance. Our workflow linked insights from analysis of multi-omics data with MBM to identify biological mechanisms explaining observed PD activity in combination therapy.
  8. Xu S, Lan H, Teng Q, Li X, Jin Z, Qu Y, et al.
    Int J Biol Macromol, 2023 Aug 12;251:126286.
    PMID: 37579904 DOI: 10.1016/j.ijbiomac.2023.126286
    H7 avian influenza virus has caused multiple human infections and poses a severe public health threat. In response to the highly variable nature of AIVs, a novel, easily regenerated DNA vaccine has great potential in treating or preventing avian influenza pandemics. Nevertheless, DNA vaccines have many disadvantages, such as weak immunogenicity and poor in vivo delivery. To further characterize and solve these issues and develop a novel H7 AIV DNA vaccine with enhanced stability and immunogenicity, we constructed nine AIV DNA plasmids, and the immunogenicity screened showed that mice immunized with pβH7N2SH9 elicited stronger hemagglutination-inhibiting (HI) antibodies than other eight plasmid DNAs. Then, to address the susceptibility to degradation and low transfection rate of DNA vaccine in vivo, we developed pβH7N2SH9/DGL NPs by encapsulating the pβH7N2SH9 within the dendrigraft poly-l-lysines nanoparticles. As expected, these NPs exhibited excellent physical and chemical properties, were capable of promote lymphocyte proliferation, and induce stronger humoral and cellular responses than the naked pβH7N2SH9, including higher levels of HI antibodies than naked pβH7N2SH9, as well as the production of cytokines, namely, IL-2, IFN-α. Taken together, our results suggest that the construction of an immune-enhanced H7-AIV DNA nanovaccine may be a promising strategy against most influenza viruses.
  9. Wang M, Yang J, Zheng S, Jia L, Yong ZY, Yong EL, et al.
    Environ Sci Technol, 2023 Dec 19;57(50):21038-21049.
    PMID: 38064758 DOI: 10.1021/acs.est.3c06210
    Microplastic fibers from textiles have been known to significantly contribute to marine microplastic pollution. However, little is known about the microfiber formation and discharge during textile production. In this study, we have quantified microfiber emissions from one large and representative textile factory during different stages, spanning seven different materials, including cotton, polyester, and blended fabrics, to further guide control strategies. Wet-processing steps released up to 25 times more microfibers than home laundering, with dyeing contributing to 95.0% of the total emissions. Microfiber release could be reduced by using white coloring, a lower dyeing temperature, and a shorter dyeing duration. Thinner, denser yarns increased microfiber pollution, whereas using tightly twisted fibers mitigated release. Globally, wet textile processing potentially produced 6.4 kt of microfibers in 2020, with China, India, and the US as significant contributors. The study underlined the environmental impact of textile production and the need for mitigation strategies, particularly in dyeing processes and fiber choice. In addition, no significant difference was observed between the virgin polyesters and the used ones. Replacing virgin fibers with recycled fibers in polyester fabrics, due to their increasing consumption, might offer another potential solution. The findings highlighted the substantial impact of textile production on microfiber released into the environment, and optimization of material selection, knitting technologies, production processing, and recycled materials could be effective mitigation strategies.
  10. Tao J, Chen J, Li J, Mathurin L, Zheng JC, Li Y, et al.
    Proc Natl Acad Sci U S A, 2017 09 12;114(37):9832-9837.
    PMID: 28855335 DOI: 10.1073/pnas.1709163114
    The optimal functionalities of materials often appear at phase transitions involving simultaneous changes in the electronic structure and the symmetry of the underlying lattice. It is experimentally challenging to disentangle which of the two effects--electronic or structural--is the driving force for the phase transition and to use the mechanism to control material properties. Here we report the concurrent pumping and probing of Cu2S nanoplates using an electron beam to directly manipulate the transition between two phases with distinctly different crystal symmetries and charge-carrier concentrations, and show that the transition is the result of charge generation for one phase and charge depletion for the other. We demonstrate that this manipulation is fully reversible and nonthermal in nature. Our observations reveal a phase-transition pathway in materials, where electron-induced changes in the electronic structure can lead to a macroscopic reconstruction of the crystal structure.
  11. Chen X, Tan X, Li J, Jin Y, Gong L, Hong M, et al.
    PLoS One, 2013;8(12):e82861.
    PMID: 24340064 DOI: 10.1371/journal.pone.0082861
    Coxsackievirus A16 (CVA16) is responsible for nearly 50% of all the confirmed hand, foot, and mouth disease (HFMD) cases in mainland China, sometimes it could also cause severe complications, and even death. To clarify the genetic characteristics and the epidemic patterns of CVA16 in mainland China, comprehensive bioinfomatics analyses were performed by using 35 CVA16 whole genome sequences from 1998 to 2011, 593 complete CVA16 VP1 sequences from 1981 to 2011, and prototype strains of human enterovirus species A (EV-A). Analysis on complete VP1 sequences revealed that subgenotypes B1a and B1b were prevalent strains and have been co-circulating in many Asian countries since 2000, especially in mainland China for at least 13 years. While the prevalence of subgenotype B1c (totally 20 strains) was much limited, only found in Malaysia from 2005 to 2007 and in France in 2010. Genotype B2 only caused epidemic in Japan and Malaysia from 1981 to 2000. Both subgenotypes B1a and B1b were potential recombinant viruses containing sequences from other EV-A donors in the 5'-untranslated region and P2, P3 non-structural protein encoding regions.
  12. Zowawi HM, Forde BM, Alfaresi M, Alzarouni A, Farahat Y, Chong TM, et al.
    Sci Rep, 2015;5:15082.
    PMID: 26478520 DOI: 10.1038/srep15082
    Carbapenem resistant Enterobacteriaceae (CRE) pose an urgent risk to global human health. CRE that are non-susceptible to all commercially available antibiotics threaten to return us to the pre-antibiotic era. Using Single Molecule Real Time (SMRT) sequencing we determined the complete genome of a pandrug-resistant Klebsiella pneumoniae isolate, representing the first complete genome sequence of CRE resistant to all commercially available antibiotics. The precise location of acquired antibiotic resistance elements, including mobile elements carrying genes for the OXA-181 carbapenemase, were defined. Intriguingly, we identified three chromosomal copies of an ISEcp1-bla(OXA-181) mobile element, one of which has disrupted the mgrB regulatory gene, accounting for resistance to colistin. Our findings provide the first description of pandrug-resistant CRE at the genomic level, and reveal the critical role of mobile resistance elements in accelerating the emergence of resistance to other last resort antibiotics.
  13. Qiu Z, Shen Q, Jiang C, Yao L, Sun X, Li J, et al.
    Int J Nanomedicine, 2021;16:2311-2322.
    PMID: 33776435 DOI: 10.2147/IJN.S302396
    Background: Alzheimer's disease (AD) is a neurodegenerative chronic disorder that causes dementia and problems in thinking, cognitive impairment and behavioral changes. Amyloid-beta (Aβ) is a peptide involved in AD progression, and a high level of Aβ is highly correlated with severe AD. Identifying and quantifying Aβ levels helps in the early treatment of AD and reduces the factors associated with AD.

    Materials and Methods: This research introduced a dual probe detection system involving aptamers and antibodies to identify Aβ. Aptamers and antibodies were attached to the gold (Au) urchin and hybrid on the carbon nanohorn-modified surface. The nanohorn was immobilized on the sensor surface by using an amine linker, and then a Au urchin dual probe was immobilized.

    Results: This dual probe-modified surface enhanced the current flow during Aβ detection compared with the surface with antibody as the probe. This dual probe interacted with higher numbers of Aβ peptides and reached the detection limit at 10 fM with R2=0.992. Furthermore, control experiments with nonimmune antibodies, complementary aptamer sequences and control proteins did not display the current responses, indicating the specific detection of Aβ.

    Conclusion: Aβ-spiked artificial cerebrospinal fluid showed a similar response to current changes, confirming the selective identification of Aβ.

  14. Liu J, Andersson A, Zhong G, Geng X, Ding P, Zhu S, et al.
    Sci Total Environ, 2020 Jul 03;744:140359.
    PMID: 32688001 DOI: 10.1016/j.scitotenv.2020.140359
    Black Carbon (BC) deteriorates air quality and contributes to climate warming, yet its regionally- and seasonally-varying emission sources are poorly constrained. Here we employ natural abundance radiocarbon (14C) measurements of BC intercepted at a northern Malaysia regional receptor site, Bachok, to quantify the relative biomass vs. fossil source contributions of atmospheric BC, in a first year-round study for SE Asia (December 2015-December 2016). The annual average 14C signature suggests as large contributions from biomass burning as from fossil fuel combustion. This is similar to findings from analogous measurements at S Asian receptors sites (~50% biomass burning), while E Asia sites are dominated by fossil emission (~20% biomass burning). The 14C-based source fingerprinting of BC in the dry spring season in SE Asia signals an even more elevated biomass burning contribution (~70% or even higher), presumably from forest, shrub and agricultural fires. This is consistent with this period showing also elevated ratio of organic carbon to BC (up from ~5 to 30) and estimates of BC emissions from satellite fire data. Hence, the present study emphasizes the importance of mitigating dry season vegetation fires in SE Asia.
  15. Ho PJ, Lau HSH, Ho WK, Wong FY, Yang Q, Tan KW, et al.
    Sci Rep, 2020 01 16;10(1):503.
    PMID: 31949192 DOI: 10.1038/s41598-019-57341-7
    Incidence of breast cancer is rising rapidly in Asia. Some breast cancer risk factors are modifiable. We examined the impact of known breast cancer risk factors, including body mass index (BMI), reproductive and hormonal risk factors, and breast density on the incidence of breast cancer, in Singapore. The study population was a population-based prospective trial of screening mammography - Singapore Breast Cancer Screening Project. Population attributable risk and absolute risks of breast cancer due to various risk factors were calculated. Among 28,130 women, 474 women (1.7%) developed breast cancer. The population attributable risk was highest for ethnicity (49.4%) and lowest for family history of breast cancer (3.8%). The proportion of breast cancers that is attributable to modifiable risk factor BMI was 16.2%. The proportion of breast cancers that is attributable to reproductive risk factors were low; 9.2% for age at menarche and 4.2% for number of live births. Up to 45.9% of all breast cancers could be avoided if all women had breast density <12% and BMI <25 kg/m2. Notably, sixty percent of women with the lowest risk based on non-modifiable risk factors will never reach the risk level recommended for mammography screening. A combination of easily assessable breast cancer risk factors can help to identify women at high risk of developing breast cancer for targeted screening. A large number of high-risk women could benefit from risk-reduction and risk stratification strategies.
  16. Zhang R, Wang S, Huang X, Yang Y, Fan H, Yang F, et al.
    Anal Chim Acta, 2020 Jan 15;1094:142-150.
    PMID: 31761041 DOI: 10.1016/j.aca.2019.10.012
    α-synuclein is a predominantly expressing neuronal protein for understanding the neurodegenerative disorders. A diagnosing system with aggregated α-synuclein encoded by SNCA gene is necessary to make the precautionary treatment against Parkinson's disease (PD). Herein, gold-nanourchin conjugated anti-α-synuclein antibody was desired as the probe and seeded on single-walled carbon nanotube (SWCN) integrated interdigitated electrode (IDE). The surface morphology of SWCN-modified IDE and gold urchin-antibody conjugates were observed under FESEM, FETEM and AFM, the existing elements were confirmed. Voltammetry analysis revealed that the limit of fibril-formed α-synuclein detection was improved by 1000 folds (1 fM) with gold-nanourchin-antibody modified surface, compared to the surface with only antibody (1 pM). Validating the interaction of α-synuclein by Enzyme-linked Immunosorbent Assay was displayed the detection limit as 10 pM. IDE has a good reproducibility and a higher selectivity on α-synuclein as evidenced by the interactive analysis with the control proteins, PARK1 and DJ-1.
  17. Wu H, Sun Y, Wong WL, Cui J, Li J, You X, et al.
    Eur J Med Chem, 2020 Mar 01;189:112042.
    PMID: 31958737 DOI: 10.1016/j.ejmech.2020.112042
    Transforming growth factor-β (TGF-β) plays an important role in regulating epithelial to mesenchymal transition (EMT) and the TGF-β signaling pathway is a potential target for therapeutic intervention in the development of many diseases, such as fibrosis and cancer. Most currently available inhibitors of TGF-β signaling function as TGF-β receptor I (TβR-I) kinase inhibitors, however, such kinase inhibitors often lack specificity. In the present study, we targeted the extracellular protein binding domain of the TGF-β receptor II (TβR-II) to interfere with the protein-protein interactions (PPIs) between TGF-β and its receptors. One compound, CJJ300, inhibited TGF-β signaling by disrupting the formation of the TGF-β-TβR-I-TβR-II signaling complex. Treatment of A549 cells with CJJ300 resulted in the inhibition of downstream signaling events such as the phosphorylation of key factors along the TGF-β pathway and the induction of EMT markers. Concomitant with these effects, CJJ300 significantly inhibited cell migration. The present study describes for the first time a designed molecule that can regulate TGF-β-induced signaling and EMT by interfering with the PPIs required for the formation of the TGF-β signaling complex. Therefore, CJJ300 can be an important lead compound with which to study TGF-β signaling and to design more potent TGF-β signaling antagonists.
  18. Tao ZY, Liu WP, Dong J, Feng XX, Yao DW, Lv QL, et al.
    Trop Biomed, 2020 Dec 01;37(4):911-918.
    PMID: 33612745 DOI: 10.47665/tb.37.4.911
    The purification of parasite-infected erythrocytes from whole blood containing leucocytes is crucial for many downstream genetic and molecular assays in parasitology. Current methodologies to achieve this are often costly and time consuming. Here, we demonstrate the successful application of a cheap and simple Non-Woven Fabric (NWF) filter for the purification of parasitized red blood cells from whole blood. NWF filtration was applied to the malaria-parasitized blood of three strains of mice, and one strain of rat, and to Babesia gibsoni parasitized dog blood. Before and after filtration, the white blood cell (WBC) removal rates and red blood cell (RBC) recovery rates were measured. After NWF filter treatment of rodent malaria-infected blood, the WBC removal rates and RBC recovery rates were, for Kunming mice: 99.51%±0.30% and 86.12%±8.37%; for BALB/C mice: 99.61%±0.15% and 80.74%±7.11%; for C57 mice: 99.71%±0.12% and 84.87%±3.83%; for Sprague-Dawley rats: 99.93%±0.03% and 83.30%±2.96%. Microscopy showed WBCs were efficiently removed from infected dog blood samples, and there was no obvious morphological change of B. gibsoni parasites. NWF filters efficiently remove leukocytes from malaria parasite-infected mouse and rat blood, and are also suitable for filtration of B. gibsoni-infected dog blood.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links