Displaying publications 81 - 100 of 272 in total

Abstract:
Sort:
  1. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2016 Jul 15;117(3):031802.
    PMID: 27472109 DOI: 10.1103/PhysRevLett.117.031802
    A search for narrow resonances decaying into dijet final states is performed on data from proton-proton collisions at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 18.8  fb^{-1}. The data were collected with the CMS detector using a novel technique called data scouting, in which the information associated with these selected events is much reduced, permitting collection of larger data samples. This technique enables CMS to record events containing jets at a rate of 1 kHz, by collecting the data from the high-level-trigger system. In this way, the sensitivity to low-mass resonances is increased significantly, allowing previously inaccessible couplings of new resonances to quarks and gluons to be probed. The resulting dijet mass distribution yields no evidence of narrow resonances. Upper limits are presented on the resonance cross sections as a function of mass, and compared with a variety of models predicting narrow resonances. The limits are translated into upper limits on the coupling of a leptophobic resonance Z_{B}^{'} to quarks, improving on the results obtained by previous experiments for the mass range from 500 to 800 GeV.
  2. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2016 Feb 19;116(7):071801.
    PMID: 26943527 DOI: 10.1103/PhysRevLett.116.071801
    A search for narrow resonances in proton-proton collisions at sqrt[s]=13  TeV is presented. The invariant mass distribution of the two leading jets is measured with the CMS detector using a data set corresponding to an integrated luminosity of 2.4  fb^{-1}. The highest observed dijet mass is 6.1 TeV. The distribution is smooth and no evidence for resonant particles is observed. Upper limits at 95% confidence level are set on the production cross section for narrow resonances with masses above 1.5 TeV. When interpreted in the context of specific models, the limits exclude string resonances with masses below 7.0 TeV, scalar diquarks below 6.0 TeV, axigluons and colorons below 5.1 TeV, excited quarks below 5.0 TeV, color-octet scalars below 3.1 TeV, and W^{'} bosons below 2.6 TeV. These results significantly extend previously published limits.
  3. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2019 Mar 01;122(8):081804.
    PMID: 30932612 DOI: 10.1103/PhysRevLett.122.081804
    A search for heavy, narrow resonances decaying to a Higgs boson and a photon (Hγ) has been performed in proton-proton collision data at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9  fb^{-1} collected with the CMS detector at the LHC in 2016. Events containing a photon and a Lorentz-boosted hadronically decaying Higgs boson reconstructed as a single, large-radius jet are considered, and the γ+jet invariant mass spectrum is analyzed for the presence of narrow resonances. To increase the sensitivity of the search, events are categorized depending on whether or not the large-radius jet can be identified as a result of the merging of two jets originating from b quarks. Results in both categories are found to agree with the predictions of the standard model. Upper limits on the production rate of Hγ resonances are set as a function of their mass in the range of 720-3250 GeV, representing the most stringent constraints to date.
  4. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2019 Dec 06;123(23):231803.
    PMID: 31868480 DOI: 10.1103/PhysRevLett.123.231803
    A search for narrow low-mass resonances decaying to quark-antiquark pairs is presented. The search is based on proton-proton collision events collected at 13 TeV by the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 35.9  fb^{-1}, recorded in 2016. The search considers the case where the resonance has high transverse momentum due to initial-state radiation of a hard photon. To study this process, the decay products of the resonance are reconstructed as a single large-radius jet with two-pronged substructure. The signal would be identified as a localized excess in the jet invariant mass spectrum. No evidence for such a resonance is observed in the mass range 10 to 125 GeV. Upper limits at the 95% confidence level are set on the coupling strength of resonances decaying to quark pairs. The results obtained with this photon trigger strategy provide the first direct constraints on quark-antiquark resonance masses below 50 GeV obtained at a hadron collider.
  5. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2017 Sep 15;119(11):111802.
    PMID: 28949210 DOI: 10.1103/PhysRevLett.119.111802
    A search is reported for a narrow vector resonance decaying to quark-antiquark pairs in proton-proton collisions at sqrt[s]=13  TeV, collected with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.7   fb^{-1}. The vector resonance is produced at large transverse momenta, with its decay products merged into a single jet. The resulting signature is a peak over background in the distribution of the invariant mass of the jet. The results are interpreted in the framework of a leptophobic vector resonance and no evidence is found for such particles in the mass range of 100-300 GeV. Upper limits at 95% confidence level on the production cross section are presented in a region of mass-coupling phase space previously unexplored at the LHC. The region below 140 GeV has not been explored by any previous experiments.
  6. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Dragicevic M, et al.
    Phys Rev Lett, 2021 Dec 24;127(26):261804.
    PMID: 35029469 DOI: 10.1103/PhysRevLett.127.261804
    A search for long-lived particles (LLPs) produced in decays of standard model (SM) Higgs bosons is presented. The data sample consists of 137  fb^{-1} of proton-proton collisions at sqrt[s]=13  TeV, recorded at the LHC in 2016-2018. A novel technique is employed to reconstruct decays of LLPs in the end cap muon detectors. The search is sensitive to a broad range of LLP decay modes and to masses as low as a few GeV. No excess of events above the SM background is observed. The most stringent limits to date on the branching fraction of the Higgs boson to LLPs subsequently decaying to quarks and τ^{+}τ^{-} are found for proper decay lengths greater than 6, 20, and 40 m, for LLP masses of 7, 15, and 40 GeV, respectively.
  7. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Dec 14;121(24):241802.
    PMID: 30608761 DOI: 10.1103/PhysRevLett.121.241802
    Three of the most significant measured deviations from standard model predictions, the enhanced decay rate for B→D^{(*)}τν, hints of lepton universality violation in B→K^{(*)}ℓℓ decays, and the anomalous magnetic moment of the muon, can be explained by the existence of leptoquarks (LQs) with large couplings to third-generation quarks and masses at the TeV scale. The existence of these states can be probed at the LHC in high energy proton-proton collisions. A novel search is presented for pair production of LQs coupled to a top quark and a muon using data at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9  fb^{-1}, recorded by the CMS experiment. No deviation from the standard model prediction has been observed and scalar LQs decaying exclusively into tμ are excluded up to masses of 1420 GeV. The results of this search are combined with those from previous searches for LQ decays into tτ and bν, which excluded scalar LQs below masses of 900 and 1080 GeV. Vector LQs are excluded up to masses of 1190 GeV for all possible combinations of branching fractions to tμ, tτ and bν. With this analysis, all relevant couplings of LQs with an electric charge of -1/3 to third-generation quarks are probed for the first time.
  8. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Jan 26;132(4):041802.
    PMID: 38335361 DOI: 10.1103/PhysRevLett.132.041802
    A search for dark matter in events with a displaced nonresonant muon pair and missing transverse momentum is presented. The analysis is performed using an integrated luminosity of 138  fb^{-1} of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV produced by the LHC in 2016-2018. No significant excess over the predicted backgrounds is observed. Upper limits are set on the product of the inelastic dark matter production cross section σ(pp→A^{'}→χ_{1}χ_{2}) and the decay branching fraction B(χ_{2}→χ_{1}μ^{+}μ^{-}), where A^{'} is a dark photon and χ_{1} and χ_{2} are states in the dark sector with near mass degeneracy. This is the first dedicated collider search for inelastic dark matter.
  9. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Damanakis K, et al.
    Phys Rev Lett, 2023 Jul 28;131(4):041801.
    PMID: 37566854 DOI: 10.1103/PhysRevLett.131.041801
    A search for the standard model (SM) Higgs boson (H) produced with transverse momentum (p_{T}) greater than 450 GeV and decaying to a charm quark-antiquark (cc[over ¯]) pair is presented. The search is performed using proton-proton collision data collected at sqrt[s]=13  TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138  fb^{-1}. Boosted H→cc[over ¯] decay products are reconstructed as a single large-radius jet and identified using a deep neural network charm tagging technique. The method is validated by measuring the Z→cc[over ¯] decay process, which is observed in association with jets at high p_{T} for the first time with a signal strength of 1.00_{-0.14}^{+0.17}(syst)±0.08(theo)±0.06(stat), defined as the ratio of the observed process rate to the SM expectation. The observed (expected) upper limit on σ(H)B(H→cc[over ¯]) is set at 47 (39) times the SM prediction at 95% confidence level.
  10. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Damanakis K, et al.
    Phys Rev Lett, 2023 Aug 11;131(6):061801.
    PMID: 37625071 DOI: 10.1103/PhysRevLett.131.061801
    A search for the standard model Higgs boson decaying to a charm quark-antiquark pair, H→cc[over ¯], produced in association with a leptonically decaying V (W or Z) boson is presented. The search is performed with proton-proton collisions at sqrt[s]=13  TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138  fb^{-1}. Novel charm jet identification and analysis methods using machine learning techniques are employed. The analysis is validated by searching for Z→cc[over ¯] in VZ events, leading to its first observation at a hadron collider with a significance of 5.7 standard deviations. The observed (expected) upper limit on σ(VH)B(H→cc[over ¯]) is 0.94 (0.50_{-0.15}^{+0.22})pb at 95% confidence level (C.L.), corresponding to 14 (7.6_{-2.3}^{+3.4}) times the standard model prediction. For the Higgs-charm Yukawa coupling modifier, κ_{c}, the observed (expected) 95% C.L. interval is 1.1
  11. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Jun 01;120(22):221801.
    PMID: 29906166 DOI: 10.1103/PhysRevLett.120.221801
    A search for a heavy neutral lepton N of Majorana nature decaying into a W boson and a charged lepton is performed using the CMS detector at the LHC. The targeted signature consists of three prompt charged leptons in any flavor combination of electrons and muons. The data were collected in proton-proton collisions at a center-of-mass energy of 13 TeV, with an integrated luminosity of 35.9  fb^{-1}. The search is performed in the N mass range between 1 GeV and 1.2 TeV. The data are found to be consistent with the expected standard model background. Upper limits are set on the values of |V_{eN}|^{2} and |V_{μN}|^{2}, where V_{ℓN} is the matrix element describing the mixing of N with the standard model neutrino of flavor ℓ. These are the first direct limits for N masses above 500 GeV and the first limits obtained at a hadron collider for N masses below 40 GeV.
  12. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Damanakis K, et al.
    Phys Rev Lett, 2023 Sep 08;131(10):101801.
    PMID: 37739361 DOI: 10.1103/PhysRevLett.131.101801
    We present the first direct search for exotic Higgs boson decays H→AA, A→γγ in events with two photonlike objects. The hypothetical particle A is a low-mass spin-0 particle decaying promptly to a merged diphoton reconstructed as a single photonlike object. We analyze the data collected by the CMS experiment at sqrt[s]=13  TeV corresponding to an integrated luminosity of 136  fb^{-1}. No excess above the estimated background is found. We set upper limits on the branching fraction B(H→AA→4γ) of (0.9-3.3)×10^{-3} at 95% confidence level for masses of A in the range 0.1-1.2 GeV.
  13. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2017 Dec 01;119(22):221802.
    PMID: 29286783 DOI: 10.1103/PhysRevLett.119.221802
    A search for a signal consistent with the type-III seesaw mechanism in events with three or more electrons or muons is presented. The data sample consists of proton-proton collisions at sqrt[s]=13  TeV collected by the CMS experiment at the LHC in 2016 and corresponds to an integrated luminosity of 35.9  fb^{-1}. Selection criteria based on the number of leptons and the invariant mass of oppositely charged lepton pairs are used to distinguish the signal from the standard model background. The observations are consistent with the expectations from standard model processes. The results are used to place limits on the production of heavy fermions of the type-III seesaw model as a function of the branching ratio to each lepton flavor. In the scenario of equal branching fractions to each lepton flavor, heavy fermions with masses below 840 GeV are excluded. This is the most sensitive probe to date of the type-III seesaw mechanism.
  14. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2017 Jan 13;118(2):021802.
    PMID: 28128610 DOI: 10.1103/PhysRevLett.118.021802
    A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions at sqrt[s]=8  TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry, even in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5  fb^{-1}, recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. The most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino.
  15. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2019 Jan 11;122(1):011803.
    PMID: 31012697 DOI: 10.1103/PhysRevLett.122.011803
    A search is performed for dark matter particles produced in association with a top quark pair in proton-proton collisions at sqrt[s]=13  TeV. The data correspond to an integrated luminosity of 35.9  fb^{-1} recorded by the CMS detector at the LHC. No significant excess over the standard model expectation is observed. The results are interpreted using simplified models of dark matter production via spin-0 mediators that couple to dark matter particles and to standard model quarks, providing constraints on the coupling strength between the mediator and the quarks. These are the most stringent collider limits to date for scalar mediators, and the most stringent for pseudoscalar mediators at low masses.
  16. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2017 Oct 06;119(14):141802.
    PMID: 29053305 DOI: 10.1103/PhysRevLett.119.141802
    A search for charged Higgs bosons produced via vector boson fusion and decaying into W and Z bosons using proton-proton collisions at sqrt[s]=13  TeV is presented. The data sample corresponds to an integrated luminosity of 15.2  fb^{-1} collected with the CMS detector in 2015 and 2016. The event selection requires three leptons (electrons or muons), two jets with large pseudorapidity separation and high dijet mass, and missing transverse momentum. The observation agrees with the standard model prediction. Limits on the vector boson fusion production cross section times branching fraction for new charged physical states are reported as a function of mass from 200 to 2000 GeV and interpreted in the context of Higgs triplet models.
  17. Kanneganti A, Tan BYQ, Nik Ab Rahman NH, Leow AS, Denning M, Goh ET, et al.
    Singapore Med J, 2023 Nov;64(11):667-676.
    PMID: 35139631 DOI: 10.11622/smedj.2022014
    INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic has had an unprecedented impact in Asia and has placed significant burden on already stretched healthcare systems. We examined the impact of COVID-19 on the safety attitudes among healthcare workers (HCWs), as well as their associated demographic and occupational factors, and measures of burnout, depression and anxiety.

    METHODS: A cross-sectional survey study utilising snowball sampling was performed involving doctors, nurses and allied health professions from 23 hospitals in Singapore, Malaysia, India and Indonesia between 29 May 2020 and 13 July 2020. This survey collated demographic data and workplace conditions and included three validated questionnaires: the Safety Attitudes Questionnaire (SAQ), Oldenburg Burnout Inventory and Hospital Anxiety and Depression Scale. We performed multivariate mixed-model regression to assess independent associations with the SAQ total percentage agree rate (PAR).

    RESULTS: We obtained 3,163 responses. The SAQ total PARs were found to be 35.7%, 15.0%, 51.0% and 3.3% among the respondents from Singapore, Malaysia, India and Indonesia, respectively. Burnout scores were highest among respondents from Indonesia and lowest among respondents from India (70.9%-85.4% vs. 56.3%-63.6%, respectively). Multivariate analyses revealed that meeting burnout and depression thresholds and shifts lasting ≥12 h were significantly associated with lower SAQ total PAR.

    CONCLUSION: Addressing the factors contributing to high burnout and depression and placing strict limits on work hours per shift may contribute significantly towards improving safety culture among HCWs and should remain priorities during the pandemic.

  18. Low ZY, Yip AJW, Sharma A, Lal SK
    Virus Genes, 2021 Aug;57(4):307-317.
    PMID: 34061288 DOI: 10.1007/s11262-021-01846-9
    The Coronavirus Disease 2019 (COVID-19), a pneumonic disease caused by the SARS Coronavirus 2 (SARS-CoV-2), is the 7th Coronavirus to have successfully infected and caused an outbreak in humans. Genome comparisons have shown that previous isolates, the SARS-related coronavirus (SARSr-CoV), including the SARS-CoV are closely related, yet different in disease manifestation. Several explanations were suggested for the undetermined origin of SARS-CoV-2, in particular, bats, avian and Malayan pangolins as reservoir hosts, owing to the high genetic similarity. The general morphology and structure of all these viral isolates overlap with analogous disease symptoms such as fever, dry cough, fatigue, dyspnoea and headache, very similar to the current SARS-CoV-2. Chest CT scans for SARS-CoV-2, SARS-CoV and MERS-CoV reveal pulmonary lesions, bilateral ground-glass opacities, and segmental consolidation in the lungs, a common pathological trait. With greatly overlapping similarities among the previous coronavirus, the SARS-CoV, it becomes interesting to observe marked differences in disease severity of the SARS-CoV-2 thereby imparting it the ability to rapidly transmit, exhibit greater stability, bypass innate host defences, and increasingly adapt to their new host thereby resulting in the current pandemic. The most recent B.1.1.7, B.1.351 and P.1 variants of SARS-CoV-2, highlight the fact that changes in amino acids in the Spike protein can contribute to enhanced infection and transmission efficiency. This review covers a comparative analysis of previous coronavirus outbreaks and highlights the differences and similarities among different coronaviruses, including the most recent isolates that have evolved to become easily transmissible with higher replication efficiency in humans.
  19. Alharbi KS, Almalki WH, Makeen HA, Albratty M, Meraya AM, Nagraik R, et al.
    J Food Biochem, 2022 Dec;46(12):e14387.
    PMID: 36121313 DOI: 10.1111/jfbc.14387
    Breast cancer (BC) is one of the most challenging cancers to treat, accounting for many cancer-related deaths. Over some years, chemotherapy, hormone treatment, radiation, and surgeries have been used to treat cancer. Unfortunately, these treatment options are unsuccessful due to crucial adverse reactions and multidrug tolerance/resistance. Although it is clear that substances in the nutraceuticals category have a lot of anti-cancer activity, using a supplementary therapy strategy, in this case, could be very beneficial. Nutraceuticals are therapeutic agents, which are nutrients that have drug-like characteristics and can be used to treat diseases. Plant nutraceuticals categorized into polyphenols, terpenoids, vitamins, alkaloids, and flavonoids are part of health food products, that have great potential for combating BC. Nutraceuticals can reduce BC's severity, limit malignant cell growth, and modify cancer-related mechanisms. Nutraceuticals acting by attenuating Hedgehog, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Notch, and Wnt/β-catenin signaling are the main pathways in controlling the self-renewal of breast cancer stem cells (BCSCs). This article reviews some important nutraceuticals and their modes of action, which can be very powerful versus BC. PRACTICAL APPLICATIONS: Nutraceuticals' importance to the control and diagnosis of breast cancer is undeniable and cannot be overlooked. Natural dietary compounds have a wide range of uses and have been used in traditional medicine. In addition, these natural chemicals can enhance the effectiveness of other traditional medicines. They may also be used as a treatment process independently because of their capacity to affect several cancer pathways. This study highlights a variety of natural chemicals, and their mechanisms of action, routes, synergistic effects, and future potentials are all examined.
  20. Sharma V, Singh A, Chauhan S, Sharma PK, Chaudhary S, Sharma A, et al.
    Curr Drug Deliv, 2023 Sep 05.
    PMID: 37670704 DOI: 10.2174/1567201821666230905090621
    Drug discovery and development (DDD) is a highly complex process that necessitates precise monitoring and extensive data analysis at each stage. Furthermore, the DDD process is both time-consuming and costly. To tackle these concerns, artificial intelligence (AI) technology can be used, which facilitates rapid and precise analysis of extensive datasets within a limited timeframe. The pathophysiology of cancer disease is complicated and requires extensive research for novel drug discovery and development. The first stage in the process of drug discovery and development involves identifying targets. Cell structure and molecular functioning are complex due to the vast number of molecules that function constantly, performing various roles. Furthermore, scientists are continually discovering novel cellular mechanisms and molecules, expanding the range of potential targets. Accurately identifying the correct target is a crucial step in the preparation of a treatment strategy. Various forms of AI, such as machine learning, neural-based learning, deep learning, and network-based learning, are currently being utilised in applications, online services, and databases. These technologies facilitate the identification and validation of targets, ultimately contributing to the success of projects. This review focuses on the different types and subcategories of AI databases utilised in the field of drug discovery and target identification for cancer.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links