Displaying publications 81 - 91 of 91 in total

Abstract:
Sort:
  1. Takebe Y, Tsujigiwa H, Katase N, Siar CH, Takabatake K, Fujii M, et al.
    J Oral Pathol Med, 2017 Jan;46(1):67-75.
    PMID: 27327904 DOI: 10.1111/jop.12467
    BACKGROUND: Tumor parenchyma-stromal interactions affect the properties of tumors and their dynamics. Our group previously showed that secreted frizzled related protein (sFRP)-2 impairs bone formation and promotes bone invasion in ameloblastoma. However, the effects of the secreted growth factors CCN2, TGF-β, and BMP4 on stromal tissues in ameloblastoma remain unclear.

    MATERIALS AND RESULTS: Thirty-five paraffin-embedded ameloblastoma cases, ameloblastoma-derived cell lines (AM-1), and primary cultures of ameloblastoma stromal fibroblasts (ASF) were used. Immunohistochemistry, MTT assay, Western blotting, and RT-PCR were performed on these samples. Parenchyma-stromal CCN2 overexpression correlated significantly with fibrous-type stroma, but not with myxoid-type stroma, suggesting a role of CCN2 in fibrosis (P < 0.05). Recombinant CCN2 induction of enhanced ASF proliferation in AM-1 medium supports this view. Conversely, BMP4 and TGF-β were expressed in myxoid-type fibroblasts, but little expression was found in parenchyma. RANKL-positive and CD68-positive stromal cell populations were significantly greater in myxoid-type tumor areas than in fibrous-type tumor areas, while a higher Ki-67 labeling index was recorded in ameloblastoma with fibrous-type stroma. These data suggest that stromal properties influence bone resorption-related activities and growth rates, respectively.

    CONCLUSIONS: These results suggest that the effects of secreted growth factors are governed by ameloblastoma parenchyma-stromal interactions. CCN2 promotes fibrogenesis independent of TGF-β signaling. Absence of CCN2 expression is associated with a phenotypic switch to a myxoid-type microenvironment that is conducive for TGF-β/BMP4 signaling to promote osteoclastogenesis.

  2. Siar CH, Rahman ZA, Tsujigiwa H, Mohamed Om Alblazi K, Nagatsuka H, Ng KH
    J Oral Pathol Med, 2016 Sep;45(8):591-8.
    PMID: 26752341 DOI: 10.1111/jop.12417
    BACKGROUND: Cell migration and invasion through interstitial tissues are dependent upon several specialized characteristics of the migratory cell notably generation of proteolytic membranous protrusions or invadopodia. Ameloblastoma is a benign odontogenic epithelial neoplasm with a locally infiltrative behaviour. Cortactin and MMT1-MMP are two invadopodia proteins implicated in its local invasiveness. Other invadopodia regulators, namely N-WASP, WIP and Src kinase remain unclarified. This study addresses their roles in ameloblastoma.

    MATERIALS AND METHOD: Eighty-seven paraffin-embedded ameloblastoma cases (20 unicystic, 47 solid/multicystic, 3 desmoplastic and 17 recurrent) were subjected to immunohistochemistry for expression of cortactin, N-WASP, WIP, Src kinase and F-actin, and findings correlated with clinicopathological parameters.

    RESULTS: Invadopodia proteins (except Src kinase) and F-actin were widely detected in ameloblastoma (cortactin: n = 73/87, 83.9%; N-WASP: n = 59/87; 67.8%; WIP: n = 77/87; 88.5%; and F-actin: n = 87/87, 100%). Protein localization was mainly cytoplasmic and/or membranous, and occasionally nuclear for F-actin. Cortactin, which functions as an actin-scaffolding protein, demonstrated significantly higher expression levels within ameloblastoma tumoral epithelium than in stroma (P < 0.05). N-WASP, which coordinates actin polymerization and invadopodia-mediated extracellular matrix degradation, was overexpressed in the solid/multicystic subtype (P < 0.05). WIP, an upstream regulator of N-WASP, and F-actin were significantly upregulated along the tumour invasive front compared to tumour centres (P < 0.05). Except for males with cortactin overexpression, other clinical parameters (age, ethnicity and anatomical site) showed no significant correlations.

    CONCLUSIONS: Present results suggest that local invasiveness of ameloblastoma is dependent upon the migratory potential of its tumour cells as defined by their distribution of cortactin, N-WASP and WIP in correlation with F-actin cytoskeletal dynamics.

  3. Siar CH, Toh CG, Romanos G, Swaminathan D, Ong AH, Yaacob H, et al.
    J. Periodontol., 2003 May;74(5):571-8.
    PMID: 12816287
    Today, one critical goal in implant placement is the achievement of optimal soft tissue integration. Reports thus far have demonstrated successful soft tissue preservation in delayed loaded implants placed in anterior jaws. The aim of this study was to histomorphometrically examine the soft tissues around immediately loaded implants placed in the macaque posterior mandible.
  4. Ng KH, Chin CS, Jalleh RD, Siar CH, Ngui CH, Singaram SP
    Oral Surg. Oral Med. Oral Pathol., 1991 Dec;72(6):685-8.
    PMID: 1812451
    Zygomycosis is an uncommon polymorphic fungal disease. One clinical subtype, nasofacial zygomycosis, is caused by infectious exposure to the organism Conidiobolus coronatus. A case affecting the nose and lips of a 42-year-old Malay man is reported here. The clinicopathologic features and management of this disease are described, and its differential diagnosis is discussed.
  5. Siar CH, Ng KH, Rasool S, Ram S, Abdul Jalil A, Ng KP
    J Oral Sci, 2003 Sep;45(3):161-4.
    PMID: 14650581
    Though oral candidosis is an opportunistic fungal infection that commonly affects immunocompromised patients, little is known of its occurrence as a complication of Non-Hodgkin's lymphoma. This paper reports a case of oral candidosis in a 20-year-old Indonesian woman with this lymphoproliferative disease. She presented with acute pseudomembranous candidosis on the dorsum and lateral borders of the tongue, bilateral angular cheilitis and cheilocandidosis. The latter is a rare clinical variant of oral candidosis, and the lesions affecting the vermilion borders presented as an admixture of superficial erosions, ulcers and white plaques. Clinical findings were confirmed with oral smears and swabs that demonstrated the presence of hyphae, pseudohyphae and blastospores, and colonies identified as Candida albicans. A culture from a saline rinse was also positive for multiple candidal colonies. Lip and oral lesions were managed with Nystatin. The lesions regressed with subsequent crusting on the lips, and overall reduction in oral thrush. As Non-Hodgkin's lymphoma is a neoplastic disease that produces a chronic immunosuppressive state, management of its oral complications, including those due to oral candidosis, is considered a long-term indication.
  6. Kawai H, Tsujigiwa H, Siar CH, Nakano K, Takabatake K, Fujii M, et al.
    Int J Med Sci, 2018;15(12):1406-1414.
    PMID: 30275769 DOI: 10.7150/ijms.24370
    Background: The tumor microenvironment and its stromal cells play an important role in cancer development and metastasis. Bone marrow-derived cells (BMDCs), a rich source of hematopoietic and mesenchymal stem cells, putatively contribute to this tumoral stroma. However their characteristics and roles within the tumor microenvironment are unclear. In the present study, BMDCs in the tumor microenvironment were traced using the green fluorescent protein (GFP) bone marrow transplantation model. Methods: C57BL/6 mice were irradiated and rescued by bone marrow transplantation from GFP-transgenic mice. Lewis lung cancer cells were inoculated into the mice to generate subcutaneous allograft tumors or lung metastases. Confocal microscopy, immunohistochemistry for GFP, α-SMA, CD11b, CD31, CD34 and CD105, and double-fluorescent immunohistochemistry for GFP-CD11b, GFP-CD105 and GFP-CD31 were performed. Results: Round and dendritic-shaped GFP-positive mononuclear cells constituted a significant stromal subpopulation in primary tumor peripheral area (PA) and metastatic tumor area (MA) microenvironment, thus implicating an invasive and metastatic role for these cells. CD11b co-expression in GFP-positive cells suggests that round/dendritic cell subpopulations are possibly BM-derived macrophages. Identification of GFP-positive mononuclear infiltrates co-expressing CD31 suggests that these cells might be BM-derived angioblasts, whereas their non-reactivity for CD34, CD105 and α-SMA implies an altered vascular phenotype distinct from endothelial cells. Significant upregulation of GFP-positive, CD31-positive and GFP/CD31 double-positive cell densities positively correlated with PA and MA (P<0.05). Conclusion: Taken together, in vivo evidence of traceable GFP-positive BMDCs in primary and metastatic tumor microenvironment suggests that recruited BMDCs might partake in cancer invasion and metastasis, possess multilineage potency and promote angiogenesis.
  7. Siar CH, Oo VP, Nagatsuka H, Nakano K, Ng KH, Kawakami T
    Eur J Med Res, 2009 Jul 22;14(7):315-9.
    PMID: 19661015
    STATEMENT OF THE PROBLEM: Dysplasia, the morphological yardstick of epithelial precursor lesions, is the collective term for a variety of architectural and cytological changes within the altered oral epithelium. Angiogenic squamous dysplasia (ASD), a distinct morphological characteristic in pre-invasive bronchial lesions, describes the presence of capillary tufts that are closely juxtaposed to and projecting into the dysplastic bronchial epithelium.

    OBJECTIVE: To determine whether ASD-like phenomenon occurs in oral epithelial precursor lesions, and to speculate on its relevance.

    METHODS: Twenty cases each of mild, moderate and severe oral dysplasia (inclusive of carcinoma-in-situ), and 10 normal oral mucosa (normal controls) were serial sectioned for H and E staining, and for microvessel density (MVD) scoring with CD31, CD34 and CD105. Microcapillary pattern images were digitally captured for 3-D reconstruction.

    RESULTS: Oral ASD foci consisting of CD31- and CD34-positive capillary loops abutting onto the overlying dysplastic oral epithelium (and causing it to assume an irregular or papillary surface configuration) were identified in moderate (3/20; 15%) and severe dysplasia (13/20; 65%), but not in normal oral mucosa and mild dysplasia. MVD score demonstrated increasing vascularity as epithelium progressed from normal to severe dysplasia (p<0.05). CD105 demonstrated increase neovascularization in all dysplasia grades (p<0.05).

    CONCLUSIONS: These preliminary findings taken together suggest that: 1. ASD-like phenomenon may be an important intermediary biomarker in oral precursor lesions; and 2. architectural alterations of the entire disturbed mucosa may be a more useful pre-malignancy index.

  8. Siar CH, Kawakami T, Buery RR, Nakano K, Tomida M, Tsujigiwa H, et al.
    Eur J Med Res, 2011 Nov 10;16(11):501-6.
    PMID: 22027644
    Notch signaling is an evolutionarily conserved mechanism that enables adjacent cells to adopt different fates. Ghost cells (GCs) are anucleate cells with homogeneous pale eosinophilic cytoplasm and very pale to clear central areas (previous nucleus sites). Although GCs are present in a variety of odontogenic lesions notably the calcifying cystic odontogenic tumor (CCOT), their nature and process of formation remains elusive. The aim of this study was to investigate the role of Notch signaling in the cell fate specification of GCs in CCOT. Immunohistochemical staining for four Notch receptors (Notch1, Notch2, Notch3 and Notch4) and three ligands (Jagged1, Jagged2 and Delta1) was performed on archival tissues of five CCOT cases. Level of positivity was quantified as negative (0), mild (+), moderate (2+) and strong (3+). Results revealed that GCs demonstrated overexpression for Notch1 and Jagged1 suggesting that Notch1-Jagged1 signaling might serve as the main transduction mechanism in cell fate decision for GCs in CCOT. Protein localizations were largely membranous and/or cytoplasmic. Mineralized GCs also stained positive implicating that the calcification process might be associated with upregulation of these molecules. The other Notch receptors and ligands were weak to absent in GCs and tumoral epithelium. Stromal endothelium and fibroblasts were stained variably positive.
  9. Siar CH, Yeo KB, Nakano K, Nagatsuka H, Tsujigiwa H, Tomida M, et al.
    Eur J Med Res, 2011 Jul 25;16(7):331-4.
    PMID: 21813375
    Wegener's granulomatosis is a rare multi-system disease characterized by the classic triad of necrotizing granulomas affecting the upper and lower respiratory tracts, disseminated vasculitis and glomerulonephritis. Oral lesions as a presenting feature are only encountered in 2% of these cases. Hyperplastic gingival lesions or strawberry gingivitis, is a characteristic sign of Wegener's granulomatosis. The latter consists of reddish-purple exophytic gingival swellings with petechial haemorrhages thus resembling strawberries. Recognition of this feature is of utmost importance for timely diagnosis and definitive management of this potentially fatal disease. A case of strawberry gingivitis as the first presenting sign of Wegener's granulomatosis affecting a 50-year-old Malay male is reported here. The differential diagnosis of red lesions that may present in the gingiva is discussed.
  10. Siar CH, Ha KO, Aung LO, Nakano K, Tsujigiwa H, Nagatsuka H, et al.
    Eur J Med Res, 2010 Oct 25;15(10):456-60.
    PMID: 21156405
    BACKGROUND: notch receptors are critical determinants of cell fate in a variety of organisms. Notch signaling is involved in the chondrogenic specification of neural crest cells. Aberrant Notch activity has been implicated in numerous human diseases including cancers; however its role in chondrogenic tumors has not been clarified.

    METHOD: tissue samples from a case of primary chondrosarcoma of the maxilla and its recurrent tumor were examined immunohistochemically for Notch1-4 and their ligands (Jagged1, Jagged2 and Delta1) expression.

    RESULTS: both primary and recurrent tumors were histopathologically diagnosed as conventional hyaline chondrosarcoma (WHO Grade I). Hypercellular tumor areas strongly expressed Notch3 and Jagged1 in spindle and pleomorphic cells suggesting up-regulation of these protein molecules at sites of tumor proliferation. Expression patterns were distinct with some overlap. Differentiated malignant and atypical chondrocytes demonstrated variable expression levels of Jagged1, and weak to absent staining for Notch1, 4 and Delta1. Protein immunolocalization was largely membranous and cytoplasmic, sometimes outlining the lacunae of malignant chondrocytes. Hyaline cartilage demonstrated a diffuse or granular precipitation of Jagged1 suggesting presence of soluble Jagged1 activity at sites of abnormal chondrogenesis. No immunoreactivity for the other Notch members was observed. Calcified cartilage was consistently Notch-negative indicating down-regulation of Notch with cartilage maturation. Stromal components namely endothelial cells and fibroblasts variably expressed Notch1, 3 and Jagged1 but were mildly or non-reactive for the other members.

    CONCLUSIONS: Results indicate that Notch signaling pathway may participate in cellular differentiation and proliferation in chondrosarcoma. Findings implicate Notch3 and Jagged1 as key molecules that influence the differentiation and maturation of cells of chondrogenic lineage.

  11. Al-Namnam NM, Kutty MG, Chai WL, Ha KO, Kim KH, Siar CH, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Mar 01;72:332-340.
    PMID: 28024594 DOI: 10.1016/j.msec.2016.11.086
    Recently, a modified form of a three-dimension (3D) porous poly(caprolactone-trifumarate) (PCLTF) scaffold has been produced using a fabrication technique that involves gelatin microparticles porogen leaching. This poly(caprolactone trifumarate-gelatin microparticles) (PCLTF-GMPs) scaffold has been shown to be biocompatible, more flowable clinically, and has a shorter degradation time as compared to its existing predecessors. In this report, a detailed characterization of this new scaffold was performed by testing its cytocompatibility, analyzing the surface topography, and understanding its thermal, physical and mechanical properties. The result showed that the PCLTF-GMPs has no critical cytotoxic effect. To confirm improvement, the surface properties were compared against the older version of PCLTF fabricated using salt porogen leaching. This PCLTF-GMPs scaffold showed no significant difference (unpaired t-test; p>0.05) in mechanical properties before and after gelatin leaching. However, it is mechanically weaker when compared to its predecessors. It has a high biodegradability rate of 16weeks. The pore size produced ranges from 40 to 300μm, and the RMS roughness is 613.7±236.9nm. These characteristics are condusive for osteoblast in-growth, as observed by the extension of filopodia across the macropores. Overall, this newly produced material has good thermal, physical and mechanical properties that complements its biocompatibility and ease of use.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links