Displaying publications 81 - 100 of 200 in total

Abstract:
Sort:
  1. Syukri Y, Taher M, Martien R, Lukitaningsih E, Nugroho AE, Zakaria ZA
    Adv Pharm Bull, 2021 Jan;11(1):171-180.
    PMID: 33747864 DOI: 10.34172/apb.2021.018
    Purpose:
    Insulin resistance is a characteristic of non-insulin-dependent diabetes mellitus associated with obesity and caused by the failure of pancreatic beta cells to secrete sufficient amount of insulin. Andrographolide (AND) improves beta-cell reconstruction and inhibits fat-cell formation. This research aimed to improve the delivery of water-insoluble AND in self-nanoemulsifying (ASNE) formulation, tested in streptozotocin (STZ)-induced diabetic rats and 3T3-L1 preadipocyte cells.
    Methods:
    A conventional formulation of AND in suspension was used as a control. The experimental rats were orally administered with self-nanoemulsifying (SNE) and suspension of AND for 8 days. Measurements were performed to evaluate blood glucose levels in preprandial and postprandial conditions. Immunohistochemistry was used to assess the process of islet beta cell reconstruction. In vitro study was performed using cell viability and adipocyte differentiation assay to determine the delivery of AND in the formulation.
    Results:
    ASNE lowered blood glucose levels (day 4) faster than AND suspension (day 6). The histological testing showed that ASNE could regenerate pancreatic beta cells. Therefore, ASNE ameliorated pancreatic beta cells. The in vitro evaluation indicated the inhibition of adipocyte differentiation by both AND and ASNE, which occurred in a time-dependent manner. ASNE formulation had better delivery than AND.
    Conclusion:
    ASNE could improve the antidiabetic activity by lowering blood glucose levels, enhancing pancreatic beta cells, and inhibiting lipid formation in adipocyte cells.
  2. Zakaria ZA, Roosli RAJ, Marmaya NH, Omar MH, Basir R, Somchit MN
    Biomolecules, 2020 02 12;10(2).
    PMID: 32059475 DOI: 10.3390/biom10020280
    Dicranopteris linearis leaf has been reported to exert antinociceptive activity. The present study elucidates the possible mechanisms of antinociception modulated by the methanol extract of D. linearis leaves (MEDL) using various mouse models. The extract (25, 150, and 300 mg/kg) was administered orally to mice for 30 min priot to subjection to the acetic acid-induced writhing-, hot plate- or formalin-test to establish the antinociceptive profile of MEDL. The most effective dose was then used in the elucidation of possible mechanisms of action stage. The extract was also subjected to the phytochemical analyses. The results confirmed that MEDL exerted significant (p < 0.05) antinociceptive activity in those pain models as well as the capsaicin-, glutamate-, bradykinin- and phorbol 12-myristate 13-acetate (PMA)-induced paw licking model. Pretreatment with naloxone (a non-selective opioid antagonist) significantly (p < 0.05) reversed MEDL effect on thermal nociception. Only l-arginine (a nitric oxide (NO) donor) but not N(ω)-nitro-l-arginine methyl ester (l-NAME; a NO inhibitor) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; a specific soluble guanylyl cyclase inhibitor) significantly (p < 0.05) modified MEDL effect on the writhing test. Several polyphenolics and volatile antinociceptive compounds were detected in MEDL. In conclusion, MEDL exerted the opioid/NO-mediated antinociceptive activity, thus, justify D. linearis as a potential source for new analgesic agents development.
  3. Mohd Jamil MDH, Taher M, Susanti D, Rahman MA, Zakaria ZA
    Nutrients, 2020 Aug 26;12(9).
    PMID: 32858812 DOI: 10.3390/nu12092584
    Picrasma quassioides is a member of the Simaroubaceae family commonly grown in the regions of Asia, the Himalayas, and India and has been used as a traditional herbal medicine to treat various illnesses such as fever, gastric discomfort, and pediculosis. This study aims to critically review the presence of phytochemicals in P. quassioides and correlate their pharmacological activities with the significance of its use as traditional medicine. Data were collected by reviewing numerous scientific articles from several journal databases on the pharmacological activities of P. quassioides using certain keywords. As a result, approximately 94 phytochemicals extracted from P. quassioides were found to be associated with quassinoids, β-carbolines and canthinones. These molecules exhibited various pharmacological benefits such as anti-inflammatory, antioxidant, anti-cancer, anti-microbial, and anti-parasitic activities which help to treat different diseases. However, P. quassioides were also found to have several toxicity effects in high doses, although the evidence regarding these effects is limited in proving its safe use and efficacy as herbal medicine. Accordingly, while it can be concluded that P. quassioides may have many potential pharmacological benefits with more phytochemistry discoveries, further research is required to determine its real value in terms of quality, safety, and efficacy of use.
  4. Nik Yusof Fuad NF, Ching SM, Awg Dzulkarnain DH, Cheong AT, Zakaria ZA
    BMC Complement Med Ther, 2020 Jun 26;20(1):197.
    PMID: 32586306 DOI: 10.1186/s12906-020-02984-7
    BACKGROUND: Complementary alternative medicine (CAM) is widely used among postpartum mothers to maintain their well-being. This study aims to determine the prevalence and factors associated with CAM use among postpartum mothers in a primary-care clinic in Malaysia.

    METHODS: This is a cross-sectional study of 725 postpartum mothers, aged 18 and above, attending a primary-care clinic. The systematic sampling method was used to recruit patients through a structured, self-administered questionnaire. Data analysis was conducted using SPSS version 23. Multiple logistic regression was used to identify the predictors of CAM use among postpartum mothers.

    RESULTS: The prevalence of CAM use among postpartum mothers was 85.5%. Manipulative body therapies, including massage, reflexology, hot stone compression and body wrapping were the most widely used methods of CAM (84.1%) among postpartum mothers, followed by biological-based therapies (33.1%). More than half of the respondents (52.1%) opted to use CAM, as they had observed good results from other CAM users. However, our study showed that 57.1% of mothers who consumed herbal medicine reported neonatal jaundice in their newborn. The median of the expenditure on CAM usage was 250 Malaysian Ringgits, or USD 61.3 per month. According to multiple logistic regression analyses, being Muslim (OR = 5.258, 95% CI: 2.952-9.368), being Malay (OR = 4.414, 95% CI: 1.18-16.56), having a higher educational level (OR = 2.561, 95% CI: 1.587-4.133) and having delivered via spontaneous vaginal delivery (OR: 5.660, 95% CI: 3.454-9.276) had a significantly positive association with CAM use among postpartum mothers.

    CONCLUSIONS: The prevalence of CAM use was high (8 out of 10) among postpartum mothers. Postpartum mothers who are Malay, Muslim, have a higher educational level and who have had spontaneous vaginal delivery tended to use CAM more. Manipulative body therapies, including massage, reflexology, hot stone compression and body wrapping, were the most widely used forms of CAM, followed by biological-based therapies. More than half of the mothers who consumed herbal medicine reported neonatal jaundice in their newborn. Thus, education to increase awareness regarding the consumption of herbs is urgently required in this country.

  5. Roheem FO, Mat Soad SZ, Ahmed QU, Ali Shah SA, Latip J, Zakaria ZA
    Molecules, 2019 Mar 13;24(6).
    PMID: 30871172 DOI: 10.3390/molecules24061006
    Digestive enzymes and free radical inhibitors are used to prevent complications resulting from diabetes. Entadaspiralis (family Leguminosae), which is a well-known medicinal plant in herbal medicine due to its various traditional and medicinal applications, was studied. Crude extracts were successively obtained from the stem bark using petroleum ether, chloroform and methanol as extracting solvents. The antioxidant activity of all the extracts, fractions and isolated compounds were estimated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene and 2,2'-azinobis(-3-ethylbenzothiazine-6-sulfonic acid) (ABTS) assays, while digestive enzymes inhibitory activity was assessed using α-amylase and α-glucosidase inhibitory methods. Structure elucidation of pure compounds was achieved through different spectroscopic analysis methods. Fractionation and purification of the most active methanol extract resulted in the isolation of a ferulic ester namely; (e)-hexyl 3-(4-hydroxy-3-methoxyphenyl) acrylate (FEQ-2) together with five known phenolic constituents, identified as kaempferol (FEQ-3), 5,4'-dihydroxy-3,7,3'-trimethoxyflavone (FEQ-2), gallic acid (FEQ-5), (+)-catechin (FEQ-7) and (-)-epicatechin (FEQ-8). FEQ-5 exhibited the strongest antioxidant and enzyme inhibitory activities followed by FEQ-3 and FEQ-4. FEQ-2 also displayed potent free radical scavenging activity with IC50 values of 13.79 ± 2.13 (DPPH) and 4.69 ± 1.25 (ABTS) µg/mL, respectively. All other compounds were found active either against free radicals or digestive enzymes.
  6. Hamzah S, Teh LK, Siew JS, Ahmad G, Wong HS, Zakaria ZA, et al.
    Can J Physiol Pharmacol, 2014 Jan;92(1):50-7.
    PMID: 24383873 DOI: 10.1139/cjpp-2013-0128
    Tacrolimus (FK506) is a calcineurin inhibitor with a narrow therapeutic index that exhibits large interindividual variation. Seventy-eight kidney transplant patients treated with tacrolimus were recruited to study the correlation of dose adjusted trough level (level/dose; L/D) of tacrolimus with CYP3A5 and ABCB1 genotypes, as well as the mRNA copy number of ABCB1 in blood. Patients were genotyped for ABCB1 (C1236T, G2677T/A, and C3435T) and CYP3A5 (G6986A), while ABCB1 mRNA transcript copy number was determined by absolute quantification (real-time PCR) in 46 patients. CYP3A5*3 genotypes were found to be a good predictor of tacrolimus L/D in kidney-transplant patients. Significantly higher L/D was observed among non-expressors (2.85, 95%: 2.05-3.70 (ng·mL(-1))/(mg·kg(-1))) as compared with the expressors (1.15, 95%: 0.95-1.80 (ng·mL(-1))/(mg·kg(-1))) of CYP3A5 (Mann-Whitney U test; P < 0.001). No correlation was observed between L/D and the ABCB1 genotypes. A significant inverse correlation of blood ABCB1 mRNA level with L/D was demonstrated (Spearman's Rank Order correlation; P = 0.016, rs = -0.348). However, in multiple regression analysis, only CYP3A5*3 genotype groups were found to be significantly correlated with tacrolimus L/D (P < 0.001). These findings highlight the importance of CYP3A5*3 pharmacogenotyping among kidney-transplant patients treated with tacrolimus, and confirm the role of blood cell P-glycoprotein in influencing the L/D for tacrolimus.
  7. Basit MA, Kadir AA, Loh TC, Abdul Aziz S, Salleh A, Zakaria ZA, et al.
    Animals (Basel), 2020 Nov 19;10(11).
    PMID: 33227911 DOI: 10.3390/ani10112150
    The current experiment was designed to estimate the comparative efficacy of selected phytobiotics Persicaria odorata leaf meal (POLM) and Piper betle leaf meal (PBLM) with halquinol, and tetracycline in broiler chickens. The 150-day-old broiler chickens were randomly assigned to five dietary groups. The dietary supplementation groups were the basal diet (BD), which served as the negative control (NC), and BD + 0.2 g/kg tetracycline, which served as the positive control (PC); BD + 0.03 g/kg halquinol (HAL), BD + 8 g/kg POLM (Po8), and BD + 4 g/kg PBLM (Pb4) were the treatment groups. Growth performance, gut morphology, ileal digestibility, and cecal microbiota composition were measured. On day 21, the body weight gain (BWG) was enhanced (p < 0.05) in the broiler chickens fed on phytobiotics (Po8 and Pb4) relative to the NC group, however, on day 42 and in terms of overall growth performance, BWG was enhanced (p < 0.05 in diets (Po8, Pb4, HAL and PC) in comparison with the NC group. Conversely, feed conversion ratio (FCR) was recorded reduced (p < 0.05) in Pb4, Po8, HAL, and PC group in comparison with the NC group. Supplementation of phytobiotics (Po8 and Pb4), HAL and PC, positively improved the gut morphology compared to the NC group. Furthermore, the maximum (p < 0.05) villus height (VH) in duodenum and jejunum was observed in broilers fed on diet Pb4. Supplementation of phytobiotics, HAL and PC, improved (p < 0.05) the digestibility of dry matter (DM) (except for HAL), organic matter (OM), crude protein (CP), ether extract (EE), and ash compared to the NC group. Dietary supplementation of phytobiotics (Po8 and Pb4), HAL and PC, significantly reduced the E. coli, Salmonella, and Staphylococcus aureus (except for HAL) counts compared to the NC group. However, supplementation of Pb4 resulted in significantly decreased total anaerobic bacteria and Clostridium spp. counts compared to the NC group. In addition, supplementation of phytobiotics significantly increased the Lactobacillus count compared to HAL, PC, and NC groups. In conclusion, dietary supplementation of phytobiotics improved the gut morphology, positively modulated and maintained the dynamics of cecal microbiota with enhanced nutrient digestibility, thus, increased the growth performance. Based on current results, phytobiotics could be used as an alternative to AGPs for sustainable broiler chicken production.
  8. Zohdi RM, Zakaria ZA, Yusof N, Mustapha NM, Abdullah MN
    PMID: 21504052 DOI: 10.1002/jbm.b.31828
    Malaysian sea cucumber was incorporated into hydrogel formulation by using electron beam irradiation technique and was introduced as novel cross-linked Gamat Hydrogel dressing. This study investigated whether Gamat Hydrogel enhanced repair of deep partial skin thickness burn wound in rats and its possible mechanism. Wounds were treated with either Gamat Hydrogel, control hydrogel, OpSite® film dressing or left untreated. Skin samples were taken at 7, 14, 21, and 28 days post burn for histological and molecular evaluations. Gamat Hydrogel markedly enhanced wound contraction and improved histological reorganization of the regenerating tissue. Furthermore, the dressing modulated the inflammatory responses, stimulated the activation and proliferation of fibroblasts, and enhanced rapid production of collagen fiber network with a consequently shorter healing time. The level of proinflammatory cytokines; IL-1α, IL-1β, and IL-6, were significantly reduced in Gamat Hydrogel treated wounds compared with other groups as assessed by reverse transcription-polymerase chain reaction (RT-PCR). In summary, our results showed that Gamat Hydrogel promoted burn wound repair via a complex mechanism involving stimulation of tissue regeneration and regulation of pro-inflammatory cytokines. The resultant wound healing effects were attributed to the synergistic effect of the hydrogel matrix and incorporated sea cucumber.
  9. Dyary HO, Arifah AK, Sharma RS, Rasedee A, Mohd-Aspollah MS, Zakaria ZA, et al.
    Trop Biomed, 2014 Mar;31(1):89-96.
    PMID: 24862048 MyJurnal
    Trypanosoma evansi, the causative agent of "surra", infects many species of wild and domestic animals worldwide. In the current study, the aqueous and ethanolic extracts of six medicinal plants, namely, Aquilaria malaccensis, Derris elliptica, Garcinia hombroniana, Goniothalamus umbrosus, Nigella sativa, and Strobilanthes crispus were screened in vitro for activity against T. evansi. The cytotoxic activity of the extracts was evaluated on green monkey kidney (Vero) cells using MTT-cell proliferation assay. The median inhibitory concentrations (IC50) of the extracts ranged between 2.30 and 800.97 μg/ml and the median cytotoxic concentrations (CC50) ranged between 29.10 μg/ml and 14.53 mg/ml. The aqueous extract of G. hombroniana exhibited the highest selectivity index (SI) value of 616.36, followed by A. malaccensis aqueous extract (47.38). Phytochemical screening of the G. hombroniana aqueous extract revealed the presence of flavonoids, phenols, tannins, and saponins. It is demonstrated here that the aqueous extract of G. hombroniana has potential antitrypanosomal activity with a high SI, and may be considered as a potential source for the development of new antitrypanosomal compounds.
  10. Hassan H, Othman MF, Zakaria ZA, Saad FFA, Abdul Razak HR
    Curr Radiopharm, 2021;14(2):131-144.
    PMID: 33115398 DOI: 10.2174/1874471013999201027215704
    BACKGROUND: Organic solvents play an indispensable role in most of the radiopharmaceutical production stages. It is almost impossible to remove them entirely in the final formulation of the product.

    OBJECTIVE: In this presented work, an analytical method by gas chromatography coupled with flame ionization detection (GC-FID) has been developed to determine organic solvents in radiopharmaceutical samples. The effect of injection holding time, temperature variation in the injection port, and the column temperature on the analysis time and resolution (R ≥ 1.5) of ethanol and acetonitrile was studied extensively.

    METHODS: The experimental conditions were optimized with the aid of further statistical analysis; thence, the proposed method was validated following the International Council for Harmonisation (ICH) Q2 (R1) guideline.

    RESULTS: The proposed analytical method surpassed the acceptance criteria including the linearity > 0.990 (correlation coefficient of R2), precision < 2%, LOD, and LOQ, accuracy > 90% for all solvents. The separation between ethanol and acetonitrile was acceptable with a resolution R > 1.5. Further statistical analysis of Oneway ANOVA revealed that the increment in injection holding time and variation of temperature at the injection port did not significantly affect the analysis time. Nevertheless, the variation in injection port temperature substantially influenced the resolution of ethanol and acetonitrile peaks (p < 0.05).

    CONCLUSION: The proposed analytical method has been successfully implemented to determine the organic solvent in the [18F]fluoro-ethyl-tyrosine ([18F]FET), [18F]fluoromisonidazole ([18F]FMISO), and [18F]fluorothymidine ([18F]FLT).

  11. Baharuddin AA, Roosli RAJ, Zakaria ZA, Md Tohid SF
    Pharm Biol, 2018 Dec;56(1):422-432.
    PMID: 30301390 DOI: 10.1080/13880209.2018.1495748
    CONTEXT: Dicranopteris linearis (Burm.f.) Underw. (Gleicheniaceae) has been scientifically proven to exert various pharmacological activities. Nevertheless, its anti-proliferative potential has not been extensively investigated.

    OBJECTIVE: To investigate the anti-proliferative potential of D. linearis leaves and determine possible mechanistic pathways.

    MATERIALS AND METHODS: MTT assay was used to determine the cytotoxic effects of D. linearis methanol (MEDL) and petroleum ether (PEEDL) extracts at concentrations of 100, 50, 25, 12.5, 6.25 and 3.125 µg/mL against a panel of cancer cell lines (breast [MCF-7 and MDA-MB-231], cervical [HeLa], colon [HT-29], hepatocellular [HepG2] and lung [A549]), as compared to negative (untreated) and positive [5-fluorouracil (5-FU)-treated] control groups. Mouse fibroblast cells (3T3) were used as normal cells. The mode of cell death was examined using morphological analysis via acridine orange (AO) and propidium iodide (PI) double staining. Cell cycle arrest was determined using flow cytometer, followed by annexin V-PI apoptosis detection kit.

    RESULTS: MEDL demonstrated the most significant growth inhibition against MDA-MB-231 cells (IC50 22.4 µg/mL). PEEDL showed no cytotoxic effect. Induction of apoptosis by MEDL was evidenced via morphological analysis and acridine orange propidium iodide staining. MEDL could induce S phase cell cycle arrest after 72 h of incubation. Early apoptosis induction in MDA-MB-231 cells was confirmed by annexin V-FITC and PI staining. Significant increase in apoptotic cells were detected after 24 h of treatment with 15.07% cells underwent apoptosis, and the amount escalated to 18.24% with prolonged 48 h incubation.

    CONCLUSIONS: MEDL has potential as a potent cytotoxic agent against MDA-MB-231 adenocarcinoma.

  12. Zakaria ZA, Kamisan FH, Mohd Nasir N, Teh LK, Salleh MZ
    Nutrients, 2019 Dec 04;11(12).
    PMID: 31817058 DOI: 10.3390/nu11122945
    This study aimed to determine the antioxidant and hepatoprotective activities of semi-purified aqueous partition obtained from the methanol extract of Dicranopteris linearis (AQDL) leaves against paracetamol (PCM)-induced liver intoxication in rats. The test solutions, AQDL (50, 250, and 500 mg/kg), were administered orally to rats (n = 6) once daily for seven consecutive days followed by the hepatotoxicity induction using 3 g/kg PCM (p.o.). Blood was collected for serum biochemical parameters analysis while the liver was collected for histopathological examination and endogenous antioxidant enzymes analysis. AQDL was also subjected to antioxidant determination and phytochemical analysis. Results obtained show that AQDL possessed high total phenolic content (TPC) value and remarkable radical scavenging activities. AQDL also significantly (p < 0.05) reduced the liver weight/body weight (LW/BW) ratio or serum level of ALT, AST, and total bilirubin while significantly (p < 0.05) increase the level of superoxide dismutase (SOD) and catalase (CAT) without affecting the malondialdehyde (MDA) in the liver indicating its hepatoprotective effect. Phytoconstituents analyses showed only the presence of saponins and triterpenes, but lack of flavonoids. In conclusion, AQDL exerts hepatoprotective activity via its high antioxidant potential and ability to modulate the endogenous enzymatic antioxidant defense system possibly via the synergistic action of saponins and triterpenes.
  13. Zakaria ZA, Mahmood ND, Omar MH, Taher M, Basir R
    Pharm Biol, 2019 Dec;57(1):335-344.
    PMID: 31068038 DOI: 10.1080/13880209.2019.1606836
    CONTEXT: Muntingia calabura L. (Muntingiaceae) exerts antioxidant and anti-inflammatory activities, thus, it might be a good hepatoprotective agent.

    OBJECTIVE: This study investigates the effect of methanol extract of M. calabura leaves (MMCL) on hepatic antioxidant and anti-inflammatory activities in CCl4-induced hepatotoxic rat.

    MATERIALS AND METHODS: Sprague Dawley rats (n = 6) were treated (p.o.) with 10% DMSO (Groups 1 and 2), 50 mg/kg N-acetylcysteine (Group 3) or, 50, 250, or 500 mg/kg MMCL (Groups 4-6) for 7 consecutive days followed by pretreatment (i.p.) with vehicle (Group 1) or 50% CCl4 in olive oil (v/v) (Groups 2-6) on day 7th. Plasma liver enzymes and hepatic antioxidant enzymes and pro-inflammatory cytokines concentrations were measured while liver histopathology was examined.

    RESULTS: MMCL, at 500 mg/kg, significantly (p 

  14. Jarrar QB, Hakim MN, Zakaria ZA, Cheema MS, Moshawih S
    Ultrastruct Pathol, 2020 Jan 02;44(1):130-140.
    PMID: 31967489 DOI: 10.1080/01913123.2020.1717705
    Mefenamic acid (MFA) treatment is associated with a number of cellular effects that potentiate the incidence of renal toxicity. The aim of this study is to investigate the potential ultrastructural alterations induced by various preparations of MFA (free MFA, MFA-Tween 80 liposomes, and MFA-DDC liposomes) on the renal tissues. Sprague-Dawley rats were subjected to a daily dose of MFA preparations for 28 days. Renal biopsies from all groups of rats under study were processed for transmission electron microscopic examination. The findings revealed that MFA preparations induced various ultrastructural alterations including mitochondrial injury, nuclear and lysosomal alterations, tubular cells steatosis, apoptotic activity, autophagy, and nucleophagy. These alterations were more clear in rats received free MFA, and MFA-Tween 80 liposomes than those received MFA-DDC liposomes. It is concluded that MFA-DDC liposomes are less potential to induce renal damage than free MFA and MFA-Tween 80 liposomes. Thus, MFA-DDC liposomes may offer an advantage of safe drug delivery.
  15. Bannur Z, Teh LK, Hennesy T, Rosli WR, Mohamad N, Nasir A, et al.
    Clin Biochem, 2014 Apr;47(6):427-31.
    PMID: 24582698 DOI: 10.1016/j.clinbiochem.2014.02.013
    Acute lymphoblastic leukaemia (ALL) has posed challenges to the clinician due to variable patients' responses and late diagnosis. With the advance in metabolomics, early detection and personalised treatment are possible.
  16. Razali S, Firus Khan AY, Khatib A, Ahmed QU, Abdul Wahab R, Zakaria ZA
    Front Pharmacol, 2021;12:741683.
    PMID: 34721030 DOI: 10.3389/fphar.2021.741683
    The leaves of Neolamarckia cadamba (NC) (Roxb.) Bosser (family: Rubiaceae) are traditionally used to treat breast cancer in Malaysia; however, this traditional claim is yet to be scientifically verified. Hence, this study was aimed to evaluate the anticancer effect of NC leaves' ethanol extract against breast cancer cell line (MCF-7 cells) using an in vitro cell viability, cytotoxicity, and gene expression assays followed by the gas chromatography analysis to further confirm active principles. Results revealed 0.2 mg/ml as the half maximal inhibitory concentration (IC50) against MCF-7. The extract exerted anticancer effect against MCF-7 cells in a dose- and time-dependent manner. The cell cycle assay showed that the extract arrested MCF-7 cells in the G0/G1 phase, and apoptosis was observed after 72 h by the Annexin-V assay. The gene expression assay revealed that the cell cycle arrest was associated with the downregulation of CDK2 and subsequent upregulation of p21 and cyclin E. The extract induced apoptosis via the mediation of the mitochondrial cell death pathways. A chromatography analysis revealed the contribution of D-pinitol and myo-inositol as the two major bioactive compounds to the activity observed. Overall, the study demonstrated that NC leaves' ethanol extract exerts anticancer effect against MCF-7 human breast cancer cells through the induction of apoptosis and cell cycle arrest, thereby justifying its traditional use for the treatment of breast cancer in Malaysia.
  17. Nasir NLM, Kamsani NE, Mohtarrudin N, Tohid SFM, Zakaria ZA
    Pak J Pharm Sci, 2020 Sep;33(5):2009-2016.
    PMID: 33824108
    Muntingia calabura (M. calabura), locally known as "kerukup siam" or "buah ceri" belongs to the family Muntingiaceae and has been scientifically demonstrated to exert various pharmacological activities. The objectives of the current study are to evaluate the antioxidant activities and to determine the subchronic toxicity of 90 days orally-administered methanol extract of M. calabura (MEMC) in male Sprague Dawley rats. The rats were randomly divided into four groups (n=6). Vehicle control received 8% tween 80 and treatment group received 50, 250 and 500 mg/kg of MEMC orally administered daily for 90 days. Blood collection was carried out to obtain the hematological and biochemical profile of the rats. The organs harvested were subjected to histopathological analysis. For the antioxidant test, the extract was subjected to antioxidant study using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH)- and superoxide anion-radical scavenging activity, total phenolic content (TPC) and phytochemical screening. Results obtained show that no adverse effects were observed during the experimental period. Hematological and biochemical analysis also showed no significant changes in this toxicity study. Besides, antioxidant analyses revealed that MEMC has higher DPPH- and SOD-radical scavenges activity as well as higher TPC value. In conclusion, M. calabura is safe for consumption and possesses beneficial antioxidant effect.
  18. Md Nasir NL, Kamsani NE, Mohtarrudin N, Othman F, Md Tohid SF, Zakaria ZA
    Pharm Biol, 2017 Dec;55(1):2102-2109.
    PMID: 28872373 DOI: 10.1080/13880209.2017.1371769
    CONTEXT: Leaves of Muntingia calabura (Elaeocarpaceae) are widely used in traditional medical practice; scientific findings show various pharmacological activities. However, its anticancer effect has not been investigated thoroughly yet.

    OBJECTIVE: The objective of this study is to study the chemoprevention effects of MEMCL against azoxymethane (AOM)-induced colon cancer and to examine the involvement of endogenous antioxidants Materials and methods: Male Sprague-Dawley rats, divided into five groups (n = 7), were injected intraperitoneally once weekly for 2 weeks with 15 mg/kg AOM, except for the normal group (received saline). The animals were then administered orally for 8 weeks with 8% Tween-80 (vehicle; normal group), 8% Tween-80 (vehicle; cancer group) or, 50, 250 or 500 mg/kg MEMC. After treatments, colon samples were collected from each rat for the histopathological analysis, quantification of aberrant crypt foci formed and determination of colon antioxidant levels. MEMC was also subjected to HPLC analysis.

    RESULTS: The extract exerted significant (p 

  19. Halim SZ, Zakaria ZA, Omar MH, Mohtarrudin N, Wahab IRA, Abdullah MNH
    BMC Complement Altern Med, 2017 Nov 09;17(1):488.
    PMID: 29121900 DOI: 10.1186/s12906-017-1992-9
    BACKGROUND: Melastoma malabathricum L. (family Melastomaceae; MM) and Muntingia calabura L. (family Elaeocarpaceae; MC) have been separately reported to possess gastroprotective activity. In an attempt to develop a pharmaceutical product with antiulcer potential, the synergistic gastroprotective activity of methanolic extract of a mixture of MM and MC (MMMC) at various ratios was evaluated in rat models.

    METHODS: Rats were pre-treated orally with 2% Tween 80 (vehicle), 100 mg/kg ranitidine (reference drug) or MMMC (ratios of 1:1, 1:3 and 3:1 (v/v); doses of 15, 150 or 300 mg/kg) and then subjected to the ethanol-induced gastric ulcer or pyloric ligation assays. Stomach of rats from the former assay was collected and subjected to the macroscopic and microscopic observations, and enzymatic and non-enzymatic antioxidant studies while the gastric juice content and tissue from the latter assay were subjected to the antisecretory activity study. The UHPLC analysis of MMMC was also performed.

    RESULT: MMMC, in the ratio 1:1, demonstrated the most effective (P 

  20. Zakaria ZA, Mahmood ND, Mamat SS, Nasir N, Omar MH
    Front Pharmacol, 2017;8:982.
    PMID: 29497375 DOI: 10.3389/fphar.2017.00982
    Methanol extract ofMuntingia calaburaL. (family Muntingiaceae) leaf has been reported to exert various pharmacological activities including hepatoprotection. The present study was carried out to identify the most effective hepatoprotective partition derived from the extract and to determine the mechanisms of action involved. The extract was partitioned using solvents with different polarity to yield petroleum ether (PEMC), ethyl acetate (EAMC), and aqueous (AQMC) extracts. Each extract, at 250 mg/kg, was subjected to the paracetamol (PCM)-induced hepatotoxic assay and several parameters such as liver weight, liver/body weight ratio, serum liver enzymes' level, and histopathological examinations were determined. Each partition was also tested for their antioxidant and anti-inflammatory potentials. The most effective extract (AQMC) was prepared in additional dose of 50 and 500 mg/kg, and then subjected to the same liver toxicity test in addition to the endogenous antioxidant enzymes assay. Moreover, AQMC was also subjected to the phytochemical screening and HPLC analysis. Overall, from the results obtained: AQMC exerted significant (p< 0.05): (i) antioxidant activity when assessed using the DPPH, SOD and ORAC assays with high TPC detected; (ii) anti-inflammatory activity via LOX, but not XO pathway; (iii) hepatoprotective activity indicated by its ability to reverse the effect of PCM on the liver weight and liver/body weight ratio, the level of serum liver enzymes (ALT, AST, and ALP), and activity of several endogenous antioxidant enzymes (SOD and CAT). Phytochemicals analyses demonstrated the presence of several flavonoid-based bioactive compounds such as gallic acid and quercetin, which were reported to possess hepatoprotective activity. In conclusion, AQMC exerts hepatoprotective activity against the PCM-induced toxicity possibly by having a remarkable antioxidant potential and ability to activate the endogenous antioxidant system possibly via the synergistic action of its phytoconstituents.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links