Displaying publications 81 - 100 of 432 in total

Abstract:
Sort:
  1. Maurice Bilung L, Sin Chai L, Tahar AS, Ted CK, Apun K
    Biomed Res Int, 2018;2018:3067494.
    PMID: 30065935 DOI: 10.1155/2018/3067494
    This study aimed to identify Listeria spp. and L. monocytogenes, characterize the isolates, and determine the antibiotic resistance profiles of the isolates Listeria spp. and L. monocytogenes in fresh produce, fertilizer, and environmental samples from vegetable farms (organic and conventional farms). A total of 386 samples (vegetables, soil, water, and fertilizer with manure) were examined. The identification of bacterial isolates was performed using PCR and characterized using ERIC-PCR and BOX-PCR. The discriminating power of the typing method was analyzed using Simpson's Index of Diversity. Thirty-four (n=34) Listeria isolates were subjected to antimicrobial susceptibility test using the disc-diffusion technique. The PCR analysis revealed that Listeria spp. were present in 7.51% (29/386) of all the samples (vegetable, soil, fertilizer, and water). None of the samples examined were positive for the presence of L. monocytogenes. Percentages of 100% (15/15) and 73.30% (11/15) of the Listeria spp. isolated from vegetables, fertilizer, and soil from organic farm B had indistinguishable DNA fingerprints by using ERIC-PCR and BOX-PCR, respectively. Listeria spp. isolated from 86 samples of vegetable, fertilizer, and environment of organic farm A and conventional farm C had distinct DNA fingerprints. Simpson's Index of Diversity, D, of ERIC-PCR and BOX-PCR is 0.604 and 0.888, respectively. Antibiotic susceptibility test revealed that most of the Listeria spp. in this study were found to be resistant to ampicillin, rifampin, penicillin G, tetracycline, clindamycin, cephalothin, and ceftriaxone. The isolates had MAR index ranging between 0.31 and 0.85. In conclusion, hygienic measures at farm level are crucial to the reduction of Listeria transmission along the food chain.
  2. Dinarvand M, Rezaee M, Masomian M, Jazayeri SD, Zareian M, Abbasi S, et al.
    Biomed Res Int, 2013;2013:508968.
    PMID: 24151605 DOI: 10.1155/2013/508968
    The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase) and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM) with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO₃, Zn⁺², and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R²) more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v) sucrose, 2.5% (w/v) yeast extract, 2% (w/v) NaNO₃, 1.5 mM (v/v) Zn⁺², and 1% (v/v) Triton X-100) by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry.
  3. Md Sidek NL, Halim M, Tan JS, Abbasiliasi S, Mustafa S, Ariff AB
    Biomed Res Int, 2018;2018:5973484.
    PMID: 30363649 DOI: 10.1155/2018/5973484
    Nowadays, bacteriocin industry has substantially grown replacing the role of chemical preservatives in enhancing shelf-life and safety of food. The progress in bacteriocin study has been supported by the emerging of consumer demand on the applications of natural food preservatives. Since food is a complex ecosystem, the characteristics of bacteriocin determine the effectiveness of their incorporation into the food products. Among four commercial media (M17 broth, MRS broth, tryptic soy broth, and nutrient broth) tested, the highest growth of Pediococcus acidilactici kp10 and bacteriocin-like-inhibitory substance (BLIS) production were obtained in the cultivation with M17. BLIS production was found to be a growth associated process where the production was increased concomitantly with the growth of producing strain, P. acidilactici kp10. The antimicrobial property of BLIS against three indicator microorganisms (Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus) remained stable upon heating at 100°C but not detectable at 121°C. The BLIS activity was also observed to be stable and active at a wide pH range (pH 2 to pH 7). The BLIS activity remained constant at -20°C and -80°C for 1 month of storage. However, the activity dropped after 3 and 6 months of storage at 4°C, -20°C, and -80°C with more than 80% reduction. The ability of bacteriocin from P. acidilactici kp10 to inhibit food-borne pathogens while remaining stable and active at extreme pH and temperature is of potential interest for future applications in food preservatives.
  4. Gopinath SC, Anbu P, Lakshmipriya T, Tang TH, Chen Y, Hashim U, et al.
    Biomed Res Int, 2015;2015:140726.
    PMID: 26180780 DOI: 10.1155/2015/140726
    Keratinases are proteolytic enzymes predominantly active when keratin substrates are available that attack disulfide bridges in the keratin to convert them from complex to simplified forms. Keratinases are essential in preparation of animal nutrients, protein supplements, leather manufacture, textile processing, detergent formulation, feather meal processing for feed and fertilizer, the pharmaceutical and biomedical industries, and waste management. Accordingly, it is necessary to develop a method for continuous production of keratinase from reliable sources that can be easily managed. Microbial keratinase is less expensive than conventionally produced keratinase and can be obtained from fungi, bacteria, and actinomycetes. In this overview, the expansion of information about microbial keratinases and important considerations in keratinase production are discussed.
  5. Ahmad P, Khandaker MU, Khan A, Rehman F, Din SU, Ali H, et al.
    Biomed Res Int, 2022;2022:3605054.
    PMID: 36420094 DOI: 10.1155/2022/3605054
    A simple process based on the dual roles of both magnesium oxide (MgO) and iron oxide (FeO) with boron (B) as precursors and catalysts has been developed for the synthesis of borate composites of magnesium and iron (Mg2B2O5-Fe3BO6) at 1200°C. The as-synthesized composites can be a single material with the improved and collective properties of both iron borates (Fe3BO6) and magnesium borates (Mg2B2O5). At higher temperatures, the synthesized Mg2B2O5-Fe3BO6 composite is found thermally more stable than the single borates of both magnesium and iron. Similarly, the synthesized composites are found to prevent the growth of both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) pathogenic bacteria on all the tested concentrations. Moreover, the inhibitory effect of the synthesized composite increases with an increase in concentration and is more pronounced against S. aureus as compared to E. coli.
  6. Tabassum N, Rafique U, Balkhair KS, Ashraf MA
    Biomed Res Int, 2014;2014:831989.
    PMID: 24689059 DOI: 10.1155/2014/831989
    The toxicity of organophosphate insecticides for nontarget organism has been the subject of extensive research for sustainable agriculture. Pakistan has banned the use of methyl/ethyl parathions, but they are still illegally used. The present study is an attempt to estimate the residual concentration and to suggest remedial solution of adsorption by different types of soils collected and characterized for physicochemical parameters. Sorption of pesticides in soil or other porous media is an important process regulating pesticide transport and degradation. The percentage removal of methyl parathion and ethyl parathion was determined through UV-Visible spectrophotometer at 276 nm and 277 nm, respectively. The results indicate that agricultural soil as compared to barren soil is more efficient adsorbent for both insecticides, at optimum batch condition of pH 7. The equilibrium between adsorbate and adsorbent was attained in 12 hours. Methyl parathion is removed more efficiently (by seven orders of magnitude) than ethyl parathion. It may be attributed to more available binding sites and less steric hindrance of methyl parathion. Adsorption kinetics indicates that a good correlation exists between distribution coefficient (Kd) and soil organic carbon. A general increase in Kd is noted with increase in induced concentration due to the formation of bound or aged residue.
  7. Abu Bakar AF, Yusoff I, Fatt NT, Othman F, Ashraf MA
    Biomed Res Int, 2013;2013:890803.
    PMID: 24102060 DOI: 10.1155/2013/890803
    The potential of three submerged aquatic plant species (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata) to be used for As, Al, and Zn phytoremediation was tested. The plants were exposed for 14 days under hydroponic conditions to mine waste water effluents in order to assess the suitability of the aquatic plants to remediate elevated multi-metals concentrations in mine waste water. The results show that the E. densa and H. verticillata are able to accumulate high amount of arsenic (95.2%) and zinc (93.7%) and resulted in a decrease of arsenic and zinc in the ambient water. On the other hand, C. piauhyensis shows remarkable aluminium accumulation in plant biomass (83.8%) compared to the other tested plants. The ability of these plants to accumulate the studied metals and survive throughout the experiment demonstrates the potential of these plants to remediate metal enriched water especially for mine drainage effluent. Among the three tested aquatic plants, H. verticillata was found to be the most applicable (84.5%) and suitable plant species to phytoremediate elevated metals and metalloid in mine related waste water.
  8. Jaganathan SK, Supriyanto E, Murugesan S, Balaji A, Asokan MK
    Biomed Res Int, 2014;2014:459465.
    PMID: 24895577 DOI: 10.1155/2014/459465
    Cardiovascular biomaterials (CB) dominate the category of biomaterials based on the demand and investments in this field. This review article classifies the CB into three major classes, namely, metals, polymers, and biological materials and collates the information about the CB. Blood compatibility is one of the major criteria which limit the use of biomaterials for cardiovascular application. Several key players are associated with blood compatibility and they are discussed in this paper. To enhance the compatibility of the CB, several surface modification strategies were in use currently. Some recent applications of surface modification technology on the materials for cardiovascular devices were also discussed for better understanding. Finally, the current trend of the CB, endothelization of the cardiac implants and utilization of induced human pluripotent stem cells (ihPSCs), is also presented in this review. The field of CB is growing constantly and many new investigators and researchers are developing interest in this domain. This review will serve as a one stop arrangement to quickly grasp the basic research in the field of CB.
  9. Sahebi M, Hanafi MM, Rafii MY, Azizi P, Abiri R, Kalhori N, et al.
    Biomed Res Int, 2017;2017:9064129.
    PMID: 28191468 DOI: 10.1155/2017/9064129
    Silicon (Si) is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties.
  10. Sahebi M, Hanafi MM, Rafii MY, Mahmud TMM, Azizi P, Osman M, et al.
    Biomed Res Int, 2018;2018:3158474.
    PMID: 30175125 DOI: 10.1155/2018/3158474
    Drought tolerance is an important quantitative trait with multipart phenotypes that are often further complicated by plant phenology. Different types of environmental stresses, such as high irradiance, high temperatures, nutrient deficiencies, and toxicities, may challenge crops simultaneously; therefore, breeding for drought tolerance is very complicated. Interdisciplinary researchers have been attempting to dissect and comprehend the mechanisms of plant tolerance to drought stress using various methods; however, the limited success of molecular breeding and physiological approaches suggests that we rethink our strategies. Recent genetic techniques and genomics tools coupled with advances in breeding methodologies and precise phenotyping will likely reveal candidate genes and metabolic pathways underlying drought tolerance in crops. The WRKY transcription factors are involved in different biological processes in plant development. This zinc (Zn) finger protein family, particularly members that respond to and mediate stress responses, is exclusively found in plants. A total of 89 WRKY genes in japonica and 97 WRKY genes in O. nivara (OnWRKY) have been identified and mapped onto individual chromosomes. To increase the drought tolerance of rice (Oryza sativa L.), research programs should address the problem using a multidisciplinary strategy, including the interaction of plant phenology and multiple stresses, and the combination of drought tolerance traits with different genetic and genomics approaches, such as microarrays, quantitative trait loci (QTLs), WRKY gene family members with roles in drought tolerance, and transgenic crops. This review discusses the newest advances in plant physiology for the exact phenotyping of plant responses to drought to update methods of analysing drought tolerance in rice. Finally, based on the physiological/morphological and molecular mechanisms found in resistant parent lines, a strategy is suggested to select a particular environment and adapt suitable germplasm to that environment.
  11. Atshan SS, Nor Shamsudin M, Lung LT, Sekawi Z, Pei Pei C, Karunanidhi A, et al.
    Biomed Res Int, 2013;2013:515712.
    PMID: 24455699 DOI: 10.1155/2013/515712
    This study evaluated whether genotypically different clinical isolates of S. aureus have similar susceptibilities to individual antibiotics. It further aims to check the impact of biofilm on the in vitro activity of vancomycin, daptomycin, linezolid, and tigecycline against S. aureus clones. The study used a total of 60 different clinical MSSA and MRSA isolates. Susceptibilities were performed in planktonic cultures by macrobroth dilution and epsilon-test (E test) system. Biofilm production was determined using an adherent plate assay. The efficacy of antimicrobial activities against biofilms formation was checked using confocal laser scanning microscopy (CLSM). The study found that similar and different spa, MLST, and SCCmec types displayed high variation in their susceptibilities to antibiotics with tigecycline and daptomycin being the most effective. The biofilms were found resistant to high concentrations of most antibiotics tested with daptomycin being the most effective drug used in adhesive biofilms. A considerable difference exists among similar and various clone types against antibiotics tested. This variation could have contributed to the degree of virulence even within the same clonal genotype and enhanced heterogeneity in the infection potential. Thus, the development of a rapid and precise identification profile for each clone in human infections is important.
  12. Noor NM, Aziz AA, Mostapa MR, Awang Z
    Biomed Res Int, 2015;2015:972728.
    PMID: 25667932 DOI: 10.1155/2015/972728
    This study was designed to examine the psychometric properties of Malay version of the Inventory of Functional Status after Childbirth (IFSAC).
  13. Tang PL, Hassan O, Maskat MY, Badri K
    Biomed Res Int, 2015;2015:891539.
    PMID: 26798644 DOI: 10.1155/2015/891539
    In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g(-1) lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced.
  14. Khorasani Esmaeili A, Mat Taha R, Mohajer S, Banisalam B
    Biomed Res Int, 2015;2015:643285.
    PMID: 26064936 DOI: 10.1155/2015/643285
    In the present study the extracts of in vivo and in vitro grown plants as well as callus tissue of red clover were tested for their antioxidant activities, using different extraction solvent and different antioxidant assays. The total flavonoid and phenolic contents as well as extraction yield of the extracts were also investigated to determine their correlation with the antioxidant activity of the extracts. Among all the tested extracts the highest amounts of total phenolic and total flavonoids content were found in methanol extract of in vivo grown plants. The antioxidant activity of tested samples followed the order in vivo plant extract > callus extract > in vitro extract. The highest reducing power, 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging, and chelating power were found in methanol extracts of in vivo grown red clover, while the chloroform fraction of in vivo grown plants showed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, superoxide anion radical scavenging and hydrogen peroxide scavenging compared to the other tested extracts. A significant correlation was found between the antioxidant activity of extracts and their total phenolic and total flavonoid content. According to the findings, the extract of in vitro culture of red clover especially the callus tissue possesses a comparable antioxidant activity to the in vivo cultured plants' extract.
  15. Carvajal-Zarrabal O, Nolasco-Hipolito C, Aguilar-Uscanga MG, Melo Santiesteban G, Hayward-Jones PM, Barradas-Dermitz DM
    Biomed Res Int, 2014;2014:595479.
    PMID: 24860825 DOI: 10.1155/2014/595479
    Metabolic changes, along with cardiovascular and hepatic factors, are associated with the development of diseases such as diabetes, dyslipidemia, and obesity. We evaluated the effect of avocado oil supplementation (centrifuged and solvent extracted), compared with olive oil, upon the hepatic function in sucrose-fed rats. Twenty-five rats were divided into five groups: control (basal diet), a sucrose-fed group (basal diet plus 30% sucrose solution), and three other groups (S-OO, S-AOC, and S-AOS, indicating basal diet plus 30% sucrose solution plus olive oil OO, avocado oil extracted by centrifugation AOC or using solvent AOS, resp.). Glucose, total cholesterol, triglycerides, total protein, albumin, globulin, direct bilirubin, glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, alkaline phosphatase, cholinesterase, and α -amylase concentrations were determined and avocado oil effect on them was studied. In some cases the induced metabolic alteration significantly affected total protein and bilirubin levels and also had a highly significant effect on α -amylase levels. AOC and AOS exhibited effects similar to those of olive oil, according to the nonsignificant difference in fatty acid profile observed by other authors. Avocado oil consumption could be beneficial in the control of altered metabolic profile illnesses as it presents effects on hepatic function biochemical markers similar to olive oil.
  16. Keng Yoon Y, Ashraf Ali M, Choon TS, Ismail R, Chee Wei A, Suresh Kumar R, et al.
    Biomed Res Int, 2013;2013:926309.
    PMID: 24381946 DOI: 10.1155/2013/926309
    A total of seven novel benzimidazoles were synthesized by a 4-step reaction starting from 4-fluoro-3-nitrobenzoic acid under relatively mild reaction conditions. The synthesized compounds were screened for their antimycobacterial activity against M. tuberculosis H₃₇Rv (MTB-H₃₇Rv) and INH-resistant M. tuberculosis (INHR-MTB) strains using agar dilution method. Three of them displayed good activity with MIC of less than 0.2 μM. Compound ethyl 1-(2-(4-(4-(ethoxycarbonyl)-2-aminophenyl)piperazin-1-yl)ethyl)-2-(4-(5-(4-fluorophenyl)pyridin-3-ylphenyl-1H-benzo[d]imidazole-5-carboxylate (5 g) was found to be the most active with MIC of 0.112 μM against MTB-H₃₇Rv and 6.12 μM against INHR-MTB, respectively.
  17. Zakaria NI, Ismail MR, Awang Y, Megat Wahab PE, Berahim Z
    Biomed Res Int, 2020;2020:2706937.
    PMID: 32090071 DOI: 10.1155/2020/2706937
    Chilli (Capsicum annum L.) plant is a high economic value vegetable in Malaysia, cultivated in soilless culture containers. In soilless culture, the adoption of small container sizes to optimize the volume of the growing substrate could potentially reduce the production cost, but will lead to a reduction of plant growth and yield. By understanding the physiological mechanism of the growth reduction, several potential measures could be adopted to improve yield under restricted root conditions. The mechanism of growth reduction of plants subjected to root restriction remains unclear. This study was conducted to determine the physiological mechanism of growth reduction of root-restricted chilli plants grown in polyvinyl-chloride (PVC) column of two different volumes, 2392 cm3(root-restricted) and 9570 cm3(control) in soilless culture. Root restriction affected plant growth, physiological process, and yield of chilli plants. Root restriction reduced the photosynthesis rate and photochemical activity of PSII, and increased relative chlorophyll content. Limited root growth in root restriction caused an accumulation of high levels of sucrose in the stem and suggested a transition of the stem as a major sink organ for photoassimilate. Growth reduction in root restriction was not related to limited carbohydrate production, but due to the low sink demand from the roots. Reduction of the total yield per plant about, 23% in root restriction was concomitant, with a slightly increased harvest index which reflected an increased photoassimilate partitioning to the fruit production and suggested more efficient fruits production in the given small plant size of root restriction.
  18. Farook MS, Mahmoud O, Ibrahim MA, Berkathullah M
    Biomed Res Int, 2021;2021:6652250.
    PMID: 33628801 DOI: 10.1155/2021/6652250
    Objectives: To evaluate the in vitro effectiveness of desensitizing agents in reducing dentine permeability.

    Methods: The efficacy of desensitizing agents in reducing dentine permeability by occluding dentine tubules was evaluated using a fluid filtration device that conducts at 100 cmH2O (1.4 psi) pressure, and SEM/EDX analyses were evaluated and compared. Forty-two dentine discs (n = 42) of 1 ± 0.2 mm width were obtained from caries-free permanent human molars. Thirty dentine discs (n = 30) were randomly divided into 3 groups (n = 10): Group 1: 2.7% wt. monopotassium-monohydrogen oxalate (Mp-Mh oxalate), Group 2: RMGI XT VAR, and Group 3: LIQ SiO2. Dentine permeability was measured following treatment application after 10 minutes, storage in artificial saliva after 10 minutes and 7 days, and citric acid challenge for 3 minutes. Data were analysed with a repeated measures ANOVA test. Dentine discs (n = 12) were used for SEM/EDX analyses to acquire data on morphological changes on dentine surface and its mineral content after different stages of treatment.

    Results: Desensitizing agents' application on the demineralized dentine discs exhibited significant reduction of permeability compared to its maximum acid permeability values. Mp-Mh oxalate showed a significant reduction in dentine permeability (p < 0.05) when compared to RMGI XT VAR and LIQ SiO2. On SEM/EDX analysis, all the agents formed mineral precipitates that occluded the dentine tubules.

    Conclusions: 2.7% wt. monopotassium-monohydrogen oxalate was significantly effective in reducing dentine permeability compared to RMGI XT VAR and LIQ SiO2.

  19. Salhi N, Mohammed Saghir SA, Terzi V, Brahmi I, Ghedairi N, Bissati S
    Biomed Res Int, 2017;2017:7526291.
    PMID: 29226147 DOI: 10.1155/2017/7526291
    Aim: This study investigated the antifungal properties of aqueous extracts obtained from indigenous plants that grow spontaneously in the Northern Sahara of Algeria. The activities of these plants in controlling two fungal species that belong to Fusarium genus were evaluated in an in vitro assay.

    Materials and Methods: Fresh aerial parts of four plant species (Artemisia herba alba, Cotula cinerea, Asphodelus tenuifolius, and Euphorbia guyoniana) were collected for the preparation of aqueous extracts. Two levels of dilution (10% and 20%) of the pure extracts were evaluated against Fusarium graminearum and Fusarium sporotrichioides.

    Results: The results of this study revealed that the A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana aqueous extracts are effective at both concentrations of 10% and 20% for the Fusarium mycelia growth inhibition. In particular, A. tenuifolius extract is effective against F. graminearum, whereas F. sporotrichioides mycelium growth is strongly affected by the E. guyoniana 20% extract. The phytochemical characterization of the compositions of the aqueous extracts has revealed that the presence of some chemical compounds (tannins, flavonoids, saponins, steroids, and alkaloids) is likely to be responsible for the antifungal activities sought.

    Conclusion: The antifungal properties of A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana make these plants of potential interest for the control of fungi affecting both wheat yield and safety.

  20. Seyed MA, Jantan I, Bukhari SN
    Biomed Res Int, 2014;2014:536508.
    PMID: 25247178 DOI: 10.1155/2014/536508
    The treatment of most cancers is still inadequate, despite tremendous steady progress in drug discovery and effective prevention. Nature is an attractive source of new therapeutics. Several medicinal plants and their biomarkers have been widely used for the treatment of cancer with less known scientific basis of their functioning. Although a wide array of plant derived active metabolites play a role in the prevention and treatment of cancer, more extensive scientific evaluation of their mechanisms is still required. Styryl-lactones are a group of secondary metabolites ubiquitous in the genus Goniothalamus that have demonstrated to possess antiproliferative activity against cancer cells. A large body of evidence suggests that this activity is associated with the induction of apoptosis in target cells. In an effort to promote further research on the genus Goniothalamus, this review offers a broad analysis of the current knowledge on Goniothalamin (GTN) or 5, 6, dihydro-6-styryl-2-pyronone (C13H12O2), a natural occurring styryl-lactone. Therefore, it includes (i) the source of GTN and other metabolites; (ii) isolation, purification, and (iii) the molecular mechanisms of actions of GTN, especially the anticancer properties, and summarizes the role of GTN which is crucial for drug design, development, and application in future for well-being of humans.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links