Displaying publications 81 - 100 of 481 in total

Abstract:
Sort:
  1. Chan YJ, Chong MF, Law CL
    Bioresour Technol, 2012 Dec;125:145-57.
    PMID: 23026327 DOI: 10.1016/j.biortech.2012.08.118
    Thermophilic treatment of palm oil mill effluent (POME) was studied in a novel integrated anaerobic-aerobic bioreactor (IAAB). The IAAB was subjected to a program of steady-state operation over a range of organic loading rate (OLR)s, up to 30 g COD/L day in order to evaluate its treatment capacity. The thermophilic IAAB achieved high chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of more than 99% for OLR up to 18.5 g COD/L day. High methane yield of 0.32 LCH(4) (STP)/g COD(removed) with compliance of the final treated effluent to the discharge limit were achieved. This is higher than that of the mesophilic system due to the higher maximum specific growth rate (μ(max)) of the thermophilic microorganisms. Besides, coupling the model of Grau second order model (anaerobic system) with the model of Monod (aerobic system) will completely define the IAAB system.
  2. Mousavi S, Ibrahim S, Aroua MK
    Bioresour Technol, 2012 Dec;125:256-66.
    PMID: 23026342 DOI: 10.1016/j.biortech.2012.08.075
    In this study, a twin-chamber upflow bio-electrochemical reactor packed with palm shell granular activated carbon as biocarrier and third electrode was used for sequential nitrification and denitrification of nitrogen-rich wastewater under different operating conditions. The experiments were performed at a constant pH value for the denitrification compartment. The effect of variables, namely, electric current (I) and hydraulic retention time (HRT), on the pH was considered in the nitrification chamber. The response surface methodology was used based on three levels to develop empirical models for the study on the effects of HRT and current values as independent operating variables on NH(4)(+)-N removal. The results showed that ammonium was reduced within the function of an extensive operational range of electric intensity (20-50 mA) and HRT (6-24h). The optimum condition for ammonium oxidation (90%) was determined with an I of 32 mA and HRT of 19.2h.
  3. Al-Amrani WA, Lim PE, Seng CE, Ngah WS
    Bioresour Technol, 2012 Aug;118:633-7.
    PMID: 22704829 DOI: 10.1016/j.biortech.2012.05.090
    The objectives of this study were: (1) to investigate the role of mixed culture of biomass in the regeneration of mono-amine modified silica (MAMS) and granular activated carbon (GAC) loaded with Acid Orange 7 (AO7), (2) to quantify and compare the bioregeneration efficiencies of AO7-loaded MAMS and GAC using the sequential adsorption and biodegradation approach and (3) to evaluate the reusability of bioregenerated MAMS. The results show that considerably higher bioregeneration efficiency of AO7-loaded MAMS as compared to that of AO7-loaded GAC was achieved due to higher reversibility of adsorption of MAMS for AO7 and favorable pH factor resulting in more AO7 desorption. The progressive loss of adsorption capacity of MAMS for AO7 with multiple cycles of use suggests possible chemical and microbial fouling of the adsorption sites.
  4. Abdullah N, Yuzir A, Curtis TP, Yahya A, Ujang Z
    Bioresour Technol, 2013 Jan;127:181-7.
    PMID: 23131639 DOI: 10.1016/j.biortech.2012.09.047
    Understanding the relationship between microbial community and mechanism of aerobic granulation could enable wider applications of granules for high-strength wastewater treatment. The majority of granulation studies principally determine the engineering aspects of granules formation with little emphasis on the microbial diversity. In this study, three identical reactors namely R1, R2 and R3 were operated using POME at volumetric loadings of 1.5, 2.5 and 3.5 kg COD m(-3) d(-1), respectively. Aeration was provided at a volumetric flow rate of 2.5 cms(-1). Aerobic granules were successfully developed in R2 and R3 while bioflocs dominated R1 until the end of experiments. Fractal dimension (D(f)) averaged at 1.90 suggesting good compactness of granules. The PCR-DGGE results indicated microbial evolutionary shift throughout granulation despite different operating OLRs based on decreased Raup and Crick similarity indices upon mature granule formation. The characteristics of aerobic granules treating high strength agro-based wastewater are determined at different volumetric loadings.
  5. Ang TN, Ngoh GC, Chua AS
    Bioresour Technol, 2013 May;135:116-9.
    PMID: 23138072 DOI: 10.1016/j.biortech.2012.09.045
    The performance of alkalis (NaOH and Ca(OH)2) and acids (H2SO4, HCl, H3PO4, CH3COOH, and HNO3) in the pretreatment of rice husk was screened, and a suitable reagent was assessed for subsequent optimization using response surface methodology. From the assessment, HCl that hydrolysed rice husk well was optimized with three parameters (HCl loading, pretreatment duration, and temperature) using Box-Behnken Design. The optimized condition (0.5% (w/v) HCl loading, 125 °C, 1.5 h) is relatively mild, and resulted in ~22.3mg TRS/ml hydrolysate. The reduced model developed has good predictability, where the predicted and experimental results differ by only 2%. The comprehensive structural characterization studies that involved FT-IR, XRD, SEM, and BET surface area determination showed that the pretreated rice husk consisted mainly of cellulose and lignin. Compared to untreated rice husk, pretreated rice husk possessed increased pore size and pore volume, which are expected to be beneficial for fungal growth during fermentation.
  6. Abu Hasan H, Abdullah SR, Kofli NT, Kamarudin SK
    Bioresour Technol, 2012 Nov;124:355-63.
    PMID: 22995166 DOI: 10.1016/j.biortech.2012.08.055
    This study determined the most effective microbes acting as ammonia-oxidising (AOB) and manganese-oxidising bacteria (MnOB) for the simultaneous removal of ammonia (NH(4)(+)-N) and manganese (Mn(2+)) from water. Two conditions of mixed culture of bacteria: an acclimatised mixed culture (mixed culture: MC) in a 5-L bioreactor and biofilm attached on a plastic medium (stages of mixed culture: SMC) in a biological aerated filter were isolated and identified using Biolog MicroSystem and 16S rRNA sequencing. A screening test for determining the most effective microbe in the removal of NH(4)(+)-N and Mn(2+) was initially performed using SMC and MC, respectively, and found that Bacillus cereus was the most effective microbe for the removal of NH(4)(+)-N and Mn(2+). Moreover, the simultaneous NH(4)(+)-N and Mn(2+) removal (above 95% removal for both NH(4)(+)-N and Mn(2+)) was achieved using a biological aerated filter under various operating conditions. Thus, the strain could act as an effective microbe of AOB and a MnOB for the simultaneous removal of NH(4)(+)-N and Mn(2+).
  7. Idris SS, Rahman NA, Ismail K
    Bioresour Technol, 2012 Nov;123:581-91.
    PMID: 22944493 DOI: 10.1016/j.biortech.2012.07.065
    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value.
  8. Mohidem NA, Mat HB
    Bioresour Technol, 2012 Jun;114:472-7.
    PMID: 22464060 DOI: 10.1016/j.biortech.2012.02.138
    The catalytic activity of free laccase and a novel sol-gel laccase (SOLAC) in ionic liquids and organic solvents was demonstrated by using 2,6-dimethoxyphenol (2,6-DMP) as a substrate. The enhancement of the catalytic activity of the SOLAC was observed and compared to the free laccase in both media. The oxidative biodegradation of o-chlorophenol as a model of phenolic environmental pollutants in organic media shows that the degradation was observed only when using water pre-saturated organic solvents or reverse micelle system. The SOLAC gave higher biodegradation rate in either aqueous or organic solvents, in which the optimum temperature was observed at 40 °C for the reverse micelle system as a reaction medium. All results demonstrated the potential use of the SOLAC for biodegradation of phenolic environmental pollutants in non-conventional media.
  9. Khayoon MS, Olutoye MA, Hameed BH
    Bioresour Technol, 2012 May;111:175-9.
    PMID: 22405756 DOI: 10.1016/j.biortech.2012.01.177
    Methyl esters were synthesized from crude karanj oil (CKO) by single step esterification with methanol using sulfuric acid (H(2)SO(4)) and phosphoric acid (H(3)PO(4)) as catalysts in a homogeneous batch process. H(3)PO(4) was less active than H(2)SO(4) during the process as it presented very low ester yields (<20%) for the various molar ratios of fatty acid to alcohol studied. With H(2)SO(4) as catalyst, the yield was as high as 89.8% at 65°C after 5h. The fatty acids profile of the oil (palmitic acid: ≈ 12%; stearic acid: ≈ 8%; oleic acid: ≈ 52% and linolenic acid of 17%) and the different reactivities of the acids were responsible for the observed differences in conversion to methyl esters. The findings attained with this study might contribute to the economic utilization of a non-edible feedstock.
  10. Tee HC, Lim PE, Seng CE, Nawi MA
    Bioresour Technol, 2012 Jan;104:235-42.
    PMID: 22130081 DOI: 10.1016/j.biortech.2011.11.032
    The objectives of this study are to compare the performance of newly developed baffled and conventional horizontal subsurface-flow (HSF) constructed wetlands in the removal of nitrogen at the hydraulic retention times (HRT) of 2, 3 and 5 days and to evaluate the potential of rice husk as wetland media for wastewater treatment. The results show that the planted baffled unit achieved 74%, 84% and 99% ammonia nitrogen (NH(4)(+)-N) removal versus 55%, 70% and 96% for the conventional unit at HRT of 2, 3 and 5 days, respectively. The better performance of the baffled unit was explained by the longer pathway due to the up-flow and down-flow conditions sequentially thus allowing more contact of the wastewater with the rhizomes and micro-aerobic zones. Near complete total oxidized nitrogen was observed due to the use of rice husk as wetland media which provided the COD as the electron donor in the denitrification process.
  11. Lim JW, Seng CE, Lim PE, Ng SL, Sujari AN
    Bioresour Technol, 2011 Nov;102(21):9876-83.
    PMID: 21890353 DOI: 10.1016/j.biortech.2011.08.014
    The performance of moving bed sequencing batch reactors (MBSBRs) added with 8 % (v/v) of polyurethane (PU) foam cubes as carrier media in nitrogen removal was investigated in treating low COD/N wastewater. The results indicate that MBSBR with 8-mL cubes achieved the highest total nitrogen (TN) removal efficiency of 37% during the aeration period, followed by 31%, 24% and 19 % for MBSBRs with 27-, 64- and 125-mL cubes, respectively. The increased TN removal in MBSBRs was mainly due to simultaneous nitrification and denitrification (SND) process which was verified by batch studies. The relatively lower TN removal in MBSBR with larger PU foam cubes was attributed to the observation that larger PU foam cubes were not fully attached by biomass. Higher concentrations of 8-mL PU foam cubes in batch reactors yielded higher TN removal.
  12. Sajab MS, Chia CH, Zakaria S, Jani SM, Ayob MK, Chee KL, et al.
    Bioresour Technol, 2011 Aug;102(15):7237-43.
    PMID: 21620692 DOI: 10.1016/j.biortech.2011.05.011
    Chemically modified kenaf core fibres were prepared via esterification in the presence of citric acid (CA). The adsorption kinetics and isotherm studies were carried out under different conditions to examine the adsorption efficiency of CA-treated kenaf core fibres towards methylene blue (MB). The adsorption capacity of the kenaf core fibres increased significantly after the citric acid treatment. The values of the correlation coefficients indicated that the Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. The maximum adsorption capacity of the CA-treated kenaf core fibres was found to be 131.6mg/g at 60°C. Kinetic models, pseudo-first-order, pseudo-second-order and intraparticle diffusion, were employed to describe the adsorption mechanism. The kinetic data were found to fit pseudo-second-order model equation as compared to pseudo-first-order model. The adsorption of MB onto the CA-treated kenaf core fibres was spontaneous and endothermic.
  13. Yaakob Z, Sukarman IS, Narayanan B, Abdullah SR, Ismail M
    Bioresour Technol, 2012 Jan;104:695-700.
    PMID: 22113069 DOI: 10.1016/j.biortech.2011.10.058
    Transesterification reaction of Jatropha curcas oil with methanol was carried out in the presence of ash generated from Palm empty fruit bunch (EFB) in a heterogeneous catalyzed process. The ash was doped with KOH by impregnation to achieve a potassium level of 20 wt.%. Under optimum conditions for the EFB-catalyzed (65 °C, oil/methanol ratio of 15, 90 min, 20 wt.% EFB ash catalyst) and the KOH-EFB-catalyzed reactions (65 °C, oil/methanol ratio of 15, 45 min, 15 wt.% of KOH doped EFB ash), biodiesel (>98%) with specifications higher than those stipulated by European biodiesel quality standard EN 14214 was obtained.
  14. Foo KY, Hameed BH
    Bioresour Technol, 2011 Oct;102(20):9794-9.
    PMID: 21875789 DOI: 10.1016/j.biortech.2011.08.007
    Sunflower seed oil residue, a by-product of sunflower seed oil refining, was utilized as a feedstock for preparation of activated carbon (SSHAC) via microwave induced K(2)CO(3) chemical activation. SSHAC was characterized by Fourier transform infrared spectroscopy, nitrogen adsorption-desorption and elemental analysis. Surface acidity/basicity was examined with acid-base titration, while the adsorptive properties of SSHAC were quantified using methylene blue (MB) and acid blue 15 (AB). The monolayer adsorption capacities of MB and AB were 473.44 and 430.37 mg/g, while the Brunauer-Emmett-Teller surface area, Langmuir surface area and total pore volume were 1411.55 m(2)/g, 2137.72 m(2)/g and 0.836 cm(3)/g, respectively. The findings revealed the potential to prepare high surface area activated carbon from sunflower seed oil residue by microwave irradiation.
  15. Olutoye MA, Hameed BH
    Bioresour Technol, 2011 Jun;102(11):6392-8.
    PMID: 21486692 DOI: 10.1016/j.biortech.2011.03.039
    The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost.
  16. Foo KY, Hameed BH
    Bioresour Technol, 2012 Jan;104:679-86.
    PMID: 22101073 DOI: 10.1016/j.biortech.2011.10.005
    This work explores the feasibility of orange peel, a citrus processing biomass as an alternative precursor for preparation of activated carbon (OPAC) via microwave assisted K(2)CO(3) activation. The operational parameters, chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were investigated. The virgin characteristics of OPAC were examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherm, elemental analysis, surface acidity/basicity and zeta potential measurement. The optimum conditions resulted in OPAC with a monolayer adsorption capacity of 382.75 mg/g for methylene blue and carbon yield of 80.99%. The BET surface area, Langmuir surface area and total pore volume were identified to be 1104.45 m(2)/g, 1661.04 m(2)/g and 0.615 m(3)/g, respectively. Equilibrium data were simulated using the Langmuir, Freundlich, Dubinin-Radushkevich, Redlich-Peterson, and Toth isotherms, and kinetic data were fitted to the pseudo-first-order, pseudo-second-order and Elovich kinetic models.
  17. Cha TS, Chen JW, Goh EG, Aziz A, Loh SH
    Bioresour Technol, 2011 Nov;102(22):10633-40.
    PMID: 21967717 DOI: 10.1016/j.biortech.2011.09.042
    This study was undertaken to investigate the effects of different nitrate concentrations in culture medium on oil content and fatty acid composition of Chlorella vulgaris (UMT-M1) and Chlorella sorokiniana (KS-MB2). Results showed that both species produced significant higher (p<0.05) oil content at nitrate ranging from 0.18 to 0.66 mM with C. vulgaris produced 10.20-11.34% dw, while C. sorokiniana produced 15.44-17.32% dw. The major fatty acids detected include C16:0, C18:0, C18:1, C18:2 and C18:3. It is interesting to note that both species displayed differentially regulated fatty acid accumulation patterns in response to nitrate treatments at early stationary growth phase. Their potential use for biodiesel application could be enhanced by exploring the concept of binary blending of the two microalgae oils using developed mathematical equations to calculate the oil mass blending ratio and simultaneously estimated the weight percentage (wt.%) of desirable fatty acid compositions.
  18. Hadibarata T, Kristanti RA
    Bioresour Technol, 2012 Mar;107:314-8.
    PMID: 22209445 DOI: 10.1016/j.biortech.2011.12.046
    Armillaria sp. F022, a white-rot fungus isolated from a tropical rain forest in Samarinda, Indonesia, was used to biodegrade benzo[a]pyrene (BaP). Transformation of BaP, a 5-ring polycyclic aromatic hydrocarbon (PAH), by Armillaria sp. F022, which uses BaP as a source of carbon and energy, was investigated. However, biodegradation of BaP has been limited because of its bioavailability and toxicity. Five cosubstrates were selected as cometabolic carbon and energy sources. The results showed that Armillaria sp. F022 used BaP with and without cosubstrates. A 2.5-fold increase in degradation efficiency was achieved after addition of glucose. Meanwhile, the use of glucose as a cosubstrate could significantly stimulate laccase production compared with other cosubstrates and not using any cosubstrate. The metabolic pathway was elucidated by identifying metabolites, conducting biotransformation studies, and monitoring enzyme activities in cell-free extracts. The degradation mechanism was determined through the identification of several metabolites: benzo[a]pyrene-1,6-quinone, 1-hydroxy-2-benzoic acid, and benzoic acid.
  19. Olutoye MA, Lee SC, Hameed BH
    Bioresour Technol, 2011 Dec;102(23):10777-83.
    PMID: 21983406 DOI: 10.1016/j.biortech.2011.09.033
    Fatty acid methyl esters (FAME) were produced from palm oil using eggshell modified with magnesium and potassium nitrates to form a composite, low-cost heterogeneous catalyst for transesterification. The catalyst, prepared by the combination of impregnation/co-precipitation was calcined at 830 °C for 4 h. Transesterification was conducted at a constant temperature of 65 °C in a batch reactor. Design of experiment (DOE) was used to optimize the reaction parameters, and the conditions that gave highest yield of FAME (85.8%) was 5.35 wt.% catalyst loading at 4.5 h with 16:1 methanol/oil molar ratio. The results revealed that eggshell, a solid waste, can be utilized as low-cost catalyst after modification with magnesium and potassium nitrates for biodiesel production.
  20. Taufiqurrahmi N, Mohamed AR, Bhatia S
    Bioresour Technol, 2011 Nov;102(22):10686-94.
    PMID: 21924606 DOI: 10.1016/j.biortech.2011.08.068
    The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links