Displaying publications 81 - 100 of 169 in total

Abstract:
Sort:
  1. Siau YF, Le DQ, Suratman S, Jaaman SA, Tanaka K, Kotaro S
    Mar Pollut Bull, 2021 Jan;162:111878.
    PMID: 33341077 DOI: 10.1016/j.marpolbul.2020.111878
    Seasonal variations in total mercury concentrations [Hg] and trophic transfer through the food web were assessed using stable isotopic tracers for the Setiu Wetlands, Terengganu. The [Hg] measured in surface sediments and biota varied inversely between wet and dry seasons. Increased rainfall and water disturbance during the wet season are suggested as the main factors releasing Hg from surface sediments and enhancing the bioavailability of Hg to biota. The elevated Hg levels associated with the leaf stage suggested that litterfall and atmospheric deposition may be the main Hg inputs into mangrove food webs. The positive relationships between log [Hg] and δ15N provided evidence for Hg biomagnification, however low trophic magnification slopes in both seasons indicated that the ecological risk of Hg in the wetland would be negligible. The [Hg] in fish and commercial crabs were below the permitted limits for human consumption.
  2. Joni AAM, Mohamat-Yusuff F, Noor NAM, Mohamed KN, Ash'aari ZH, Kusin FM, et al.
    Mar Pollut Bull, 2021 Jun;167:112276.
    PMID: 33901978 DOI: 10.1016/j.marpolbul.2021.112276
    This paper aims to study the spatial and temporal patterns of selected agricultural runoff, specifically in terms of glyphosate, nitrate, and ammonia in bottom water, as well as their possible sources, within an active cockle farming area in Bagan Pasir, Perak, Malaysia. Samples were taken along the cockle farming area from March to November 2019. Glyphosate was analyzed using HPLC with both extraction and derivatization methods using 9-fluorenyl-methyl chloroformate (FMOC-Cl), while nitrate and ammonia levels were determined using the standard Hach method. Generally, glyphosate, nitrate, and ammonia were present within the study site with the average concentration of 37.44 ± 12.27 μg/l, 1.65 ± 0.52 mg/l, and 0.37 ± 0.19 mg/l, respectively. The results suggest that glyphosate and nitrate might be derived from an inland source, while a uniform and low level of ammonia suggested might originate from lithogenic origins. Continuous monitoring remains encouraged.
  3. Mateos-Molina D, Ben Lamine E, Antonopoulou M, Burt JA, Das HS, Javed S, et al.
    Mar Pollut Bull, 2021 Jun;167:112319.
    PMID: 33845352 DOI: 10.1016/j.marpolbul.2021.112319
    The United Arab Emirates (UAE) host valuable coastal and marine biodiversity that is subjected to multiple pressures under extreme conditions. To mitigate impacts on marine ecosystems, the UAE protects almost 12% of its Exclusive Economic Zone. This study mapped and validated the distribution of key coastal and marine habitats, species and critical areas for their life cycle in the Gulf area of the UAE. We identified gaps in the current protection of these ecological features and assessed the quality of the data used. The overall dataset showed good data quality, but deficiencies in information for the coastline of the north-western emirates. The existing protected areas are inadequate to safeguard key ecological features such as mangroves and coastal lagoons. This study offers a solid basis to understand the spatial distribution and protection of marine biodiversity in the UAE. This information should be considered for implementing effective conservation planning and ecosystem-based management.
  4. Fauziah SH, Rizman-Idid M, Cheah W, Loh KH, Sharma S, M R N, et al.
    Mar Pollut Bull, 2021 Jun;167:112258.
    PMID: 33839567 DOI: 10.1016/j.marpolbul.2021.112258
    The launch of Roadmap towards Zero Single-use Plastics in 2018 demands baseline data on the management of marine debris in Malaysia. In 2021, Malaysia is placed 28th top plastic polluter in the world with plastic consumption at 56 kg/capita/year, therefore data on mismanaged plastic is imperative. This paper reviews the abundance and distribution of marine debris in selected Malaysian beaches over the last decade (2010-2020) and discusses issue on its management. Plastic debris on beaches in Malaysia, was reported to range from 64 items/m2, to as high as 1930 items/m2, contributing 30-45% of total waste collected. Plastics film was the most dominant, mainly originated from packaging materials. Therefore, appropriate action including improved marine waste management system is crucial to tackle the problem, together with effective governance mechanisms. Various suggestions were proposed based on the statistical-environmental data to reduce the occurrence of marine debris in the country.
  5. Miyazono K, Yamashita R, Miyamoto H, Ishak NHA, Tadokoro K, Shimizu Y, et al.
    Mar Pollut Bull, 2021 Sep;170:112631.
    PMID: 34175698 DOI: 10.1016/j.marpolbul.2021.112631
    Floating plastic debris was investigated in the transition region in the North Pacific between 141°E and 165°W to understand its transportation process from Asian coast to central subtropical Pacific. Distribution was influenced primarily by the current system and the generation process of the high concentration area differed between the western and eastern areas. West of 180°, debris largely accumulated around nearshore convergent area and was transported by eddies and quasi-stationary jet from south to the subarctic region. The average was 15% higher than that previously reported in 1989, suggesting an increase in plastic debris in 30 years. East of 180°, debris concentrated in the calm water downstream of the Kuroshio Extension Bifurcation with considerably high concentration (505,032 ± 991,989 pieces km-2), due to the accumulation of small transparent film caused by calm weather conditions, suggesting a further investigation on small plastic (<1 mm) in the subsurface depth in the subtropical North Pacific.
  6. Azman MA, Ramli MZ, Che Othman SF, Shafiee SA
    Mar Pollut Bull, 2021 Sep;170:112630.
    PMID: 34146861 DOI: 10.1016/j.marpolbul.2021.112630
    This study investigated the accumulation of debris at four sites, namely, Gebeng, Batu Hitam, Cherok Paloh, and Air Leleh, along the Pahang coastline, Peninsular Malaysia from March 2019 to February 2020. Plastic was the dominant debris (86.1%) and followed by cloth/fabric-based debris (6.0%), processed lumber debris (3.3%), rubber (2.7%), glass (1.5%), and metal (0.4%). The land-based debris (82.0%) was the major source of the deposition of marine waste. A statistically significant relationship was found between the seasonal variation and marine debris density in tidal and seasonal current along the Pahang coastline. In general, the Northeast Monsoon season had a higher amount of debris than the Southwest Monsoon season.
  7. Hamzah SR, Altrawneh RS, Anuar ST, Khalik WMAWM, Kolandhasamy P, Ibrahim YS
    Mar Pollut Bull, 2021 Sep;170:112617.
    PMID: 34139586 DOI: 10.1016/j.marpolbul.2021.112617
    In this study, the ingestion of microplastics by the deposit-feeding polychaete Namalycastis sp. in the estuarine area of the Setiu Wetlands, Malaysia was confirmed. Samples were collected from six stations, covering the wetland from the south to the north, bimonthly between November 2016 and November 2017. Microplastics were extracted from polychaete samples following digestion in an alkaline solution (10 M NaOH). They were identified by physical characteristics (i.e., shape and color under dissecting microscope and scanning electron microscope), and chemical analysis using a LUMOS Fourier Transform Infrared Microscope (μ-FTIR). A total of 3277 pieces were identified, which were dominated by filaments (99.79%) and with the majority transparent in color (84.71%). Most of the microplastics identified were polypropylene (PP) followed by polyamide (PA) based on their main peak in the of μ-FTIR spectrum. Principal component analysis demonstrated the dominance of microplastics at stations 3 and 4 of the sampling area, probably because of the influx from the open sea and from aquaculture. The findings of this research provide baseline information on microplastics ingested by benthic organisms and their fate in the estuarine food web.
  8. Tiyasha T, Tung TM, Bhagat SK, Tan ML, Jawad AH, Mohtar WHMW, et al.
    Mar Pollut Bull, 2021 Sep;170:112639.
    PMID: 34273614 DOI: 10.1016/j.marpolbul.2021.112639
    Dissolved oxygen (DO) is an important indicator of river health for environmental engineers and ecological scientists to understand the state of river health. This study aims to evaluate the reliability of four feature selector algorithms i.e., Boruta, genetic algorithm (GA), multivariate adaptive regression splines (MARS), and extreme gradient boosting (XGBoost) to select the best suited predictor of the applied water quality (WQ) parameters; and compare four tree-based predictive models, namely, random forest (RF), conditional random forests (cForest), RANdom forest GEneRator (Ranger), and XGBoost to predict the changes of dissolved oxygen (DO) in the Klang River, Malaysia. The total features including 15 WQ parameters from monitoring site data and 7 hydrological components from remote sensing data. All predictive models performed well as per the features selected by the algorithms XGBoost and MARS in terms applied statistical evaluators. Besides, the best performance noted in case of XGBoost predictive model among all applied predictive models when the feature selected by MARS and XGBoost algorithms, with the coefficient of determination (R2) values of 0.84 and 0.85, respectively, nonetheless the marginal performance came up by Boruta-XGBoost model on in this scenario.
  9. Zhang H, Liu S, Wu K, Cui J, Zhu A, Zhang Y, et al.
    Mar Pollut Bull, 2021 Jul;168:112433.
    PMID: 33962084 DOI: 10.1016/j.marpolbul.2021.112433
    The heavy metal contents (Cr, Cu, Zn, Cd, Pb, Hg, and As) of 88 surface sediment samples from the western Sunda Shelf were analyzed to determine their spatial distribution patterns and contamination status. The results demonstrated that high enrichment regions of heavy metals were focused in the Kelantan, Pahang, and Ambat river estuaries, and deep water regions of the study area. These high enrichment regions were mainly controlled by riverine inputs and their hydrodynamic conditions. The enrichment factor (EF), geoaccumulation index (Igeo), and potential ecological risk index (PERI) were used to assess heavy metal accumulation. The results indicated that the study area was not significantly contaminated overall at the time of the study; however, Cd, As, and Hg were at levels corresponding to moderate contamination at many stations located in the Pahang River estuary, Kelantan River estuary, and north-eastern region of the study area, primarily because of anthropogenic activities.
  10. Zhao C, Wang G, Zhang M, Wang G, de With G, Bezhenar R, et al.
    Mar Pollut Bull, 2021 May 21;169:112515.
    PMID: 34023585 DOI: 10.1016/j.marpolbul.2021.112515
    Japan recently announced plans to discharge over 1.2 million tons of radioactive water from the Fukushima Daiichi Nuclear Power Plant (FDNPP) into the Pacific Ocean. The contaminated water can poses a threat to marine ecosystems and human health. To estimate the impact of the plan, here, we developed a three-dimensional global model to track the transport and dispersion of tritium released from the radioactive water of the FDNPP. The pollution scenarios for four release durations (1 month, 1 year, 5 years, and 10 years) were simulated. The simulation results showed that for the release in short-duration scenarios (1 month and 1 year), the peak plume with high tritium concentration shifted with the currents and finally reached the northeastern Pacific. For the long-duration scenarios (5 years and 10 years), the peak plume of the contaminated water was confined to coastal regions east of Japan.
  11. Sundar S, Roy PD, Chokkalingam L, Ramasamy N
    Mar Pollut Bull, 2021 May 26;169:112527.
    PMID: 34051519 DOI: 10.1016/j.marpolbul.2021.112527
    Beach sediments of Kanyakumari at the southernmost India were evaluated for metals and trace elements and to assess their possible impact on coastal ecosystems. Positive correlations (except for Cd and Sr) between them indicated metamorphic lithologies and heavy mineral deposits as possible sources. Significant-extremely high enrichment and very high contamination of Th, Zr, Mo, Ti and U reflected the presence of different heavy minerals. The geo-accumulation index, however, mirrored their variable abundances at different sites. Association of Cd with P suggested the influence of anthropogenic solid waste from fishing industry. It might have caused >41-fold enrichment of Cd and the Fe- Mn-oxides possibly acted as scavengers for 13-fold enrichment of As compared to UCC. Concentrations of Zn and Cr between ERL and ERM in 13% and 93% of the samples, and Ni > ERM in 87% of sediments suggest their bioavailability to seawater with a potential risk for coastal aquifers.
  12. Lim JH, Lee CW, Bong CW, Kudo I
    Mar Pollut Bull, 2021 May 25;169:112524.
    PMID: 34049069 DOI: 10.1016/j.marpolbul.2021.112524
    The dissolved organic nutrient conditions and bacterial process rates at two tropical coastal sites in Peninsular Malaysia (Port Klang and Port Dickson) were initially studied in 2004-2005 period and later revisited in 2010-2011. We observed that dissolved organic nitrogen (DON) increased about two- and ten-fold at Port Klang and Port Dickson, respectively and resulted in a significant change in DOC:DON ratio (t ≥ 2.077, p 
  13. Dash B, Rout SS, Lovaraju A, Charan Kumar B, Bharati A, Ganesh T, et al.
    Mar Pollut Bull, 2021 Oct;171:112775.
    PMID: 34375747 DOI: 10.1016/j.marpolbul.2021.112775
    The present study examines historical perspectives of the macrobenthic community in response to different phases of anthropogenic perturbations in Kakinada Bay, a tropical embayment on the east coast of India. Multivariate analysis of the snapshot data (1958-2017) revealed considerable changes in the Bay environment following a breakwater construction across the Bay mouth in 1997. Subsequently, port expansion activities, industrialization, urbanization, and geomorphic alterations in the Godavari delta brought deterrent changes in the Bay. The fluctuations over the years in hydrographical and sediment characteristics increased environmental heterogeneity and caused significant spatio-temporal shifts in the macrobenthic community between 1995-1996 and 2016-2017. The observed variabilities were suggestive of anthropogenic perturbations of the system with future repercussions on Bay ecosystem functioning. Overall, this study provides evidence on the long-term impact of anthropogenic activities on coastal marine communities and stresses the importance of macrobenthos as bioindicators of such changes in tropical systems.
  14. Pang SY, Suratman S, Tay JH, Mohd Tahir N
    Mar Pollut Bull, 2021 Oct;171:112736.
    PMID: 34325152 DOI: 10.1016/j.marpolbul.2021.112736
    The distribution of aliphatic hydrocarbons in three sediment cores from Brunei Bay was investigated in order to understand their sources and the biogeochemical processes of these hydrocarbons. The total concentrations of C15 to C37n-alkanes ranged from 0.70 to 16.5 μg g-1. Traces of hopanes with C29-C31 carbon homologs were detected in the study area. The carbon preference index (CPI15-37) ranged from 1.23 to 3.42 coupled with the natural n-alkane ratio (NAR19-32) ratios (1.52 to 5.34), and the presence of unresolved complex mixtures and hopanes, suggested slight contamination by anthropogenic hydrocarbons, presumably derived from activities along the coasts. The presence of C27 trisnorhopene and diploptene, as well as their association with long-chain and short-chain n-alkanes, revealed a depositional environment of organic matter in the sediment cores.
  15. Ismail A, Toriman ME, Juahir H, Kassim AM, Zain SM, Ahmad WKW, et al.
    Mar Pollut Bull, 2016 Oct 15;111(1-2):339-346.
    PMID: 27397593 DOI: 10.1016/j.marpolbul.2016.06.089
    Extended use of GC-FID and GC-MS in oil spill fingerprinting and matching is significantly important for oil classification from the oil spill sources collected from various areas of Peninsular Malaysia and Sabah (East Malaysia). Oil spill fingerprinting from GC-FID and GC-MS coupled with chemometric techniques (discriminant analysis and principal component analysis) is used as a diagnostic tool to classify the types of oil polluting the water. Clustering and discrimination of oil spill compounds in the water from the actual site of oil spill events are divided into four groups viz. diesel, Heavy Fuel Oil (HFO), Mixture Oil containing Light Fuel Oil (MOLFO) and Waste Oil (WO) according to the similarity of their intrinsic chemical properties. Principal component analysis (PCA) demonstrates that diesel, HFO, MOLFO and WO are types of oil or oil products from complex oil mixtures with a total variance of 85.34% and are identified with various anthropogenic activities related to either intentional releasing of oil or accidental discharge of oil into the environment. Our results show that the use of chemometric techniques is significant in providing independent validation for classifying the types of spilled oil in the investigation of oil spill pollution in Malaysia. This, in consequence would result in cost and time saving in identification of the oil spill sources.
  16. Mu D, Yuan D, Feng H, Xing F, Teo FY, Li S
    Mar Pollut Bull, 2017 Jan 30;114(2):705-714.
    PMID: 27802871 DOI: 10.1016/j.marpolbul.2016.10.056
    Sediment cores and overlying water samples were collected at four sites in Tianjin Coastal Zone, Bohai Bay, to investigate nutrient (N, P and Si) exchanges across the sediment-water interface. The exchange fluxes of each nutrient species were estimated based on the porewater profiles and laboratory incubation experiments. The results showed significant differences between the two methods, which implied that molecular diffusion alone was not the dominant process controlling nutrient exchanges at these sites. The impacts of redox conditions and bioturbation on the nutrient fluxes were confirmed by the laboratory incubation experiments. The results from this study showed that the nutrient fluxes measured directly from the incubation experiment were more reliable than that predicted from the porewater profiles. The possible impacts causing variations in the nutrient fluxes include sewage discharge and land reclamation.
  17. Khodami S, Surif M, W O WM, Daryanabard R
    Mar Pollut Bull, 2017 Jan 15;114(1):615-622.
    PMID: 27887731 DOI: 10.1016/j.marpolbul.2016.09.038
    This study aimed to evaluate the spatial and temporal distribution of heavy metals (Cd, Cr, Cu, Co, Fe, Pb, Ni, V, and Zn) in the sediments of Bayan Lepas Free Industrial Zone of Penang, Malaysia. Ten sampling stations were selected and sediment samples were collected during low tide (2012-2013). Metals were analyzed and the spatial distribution of metals were evaluated based on GIS mapping. According to interim sediment quality guidelines (ISQG), metal contents ranged from below low level to above high level at different stations. Based on the geoaccumulation index (Igeo) of sediment, sampling stations were categorized from unpolluted to strongly polluted. The enrichment factor (EF) of metals in the sediment varied between no enrichment to extremely high enrichment. The potential ecological risk index (RI) indicated Bayan Lepas FIZ was at low risk.
  18. Rozaimi M, Fairoz M, Hakimi TM, Hamdan NH, Omar R, Ali MM, et al.
    Mar Pollut Bull, 2017 Jun 30;119(2):253-260.
    PMID: 28460878 DOI: 10.1016/j.marpolbul.2017.03.073
    Seagrass meadows provide important carbon sequestration services but anthropogenic activities modify the natural ecosystem and inevitably lower carbon storage capacity. The tropical mixed-species meadows in the Sungai Pulai Estuary (Johor, Malaysia) are impacted by such activities. In this study, we provide baseline estimates for carbon stores analysed from sediment cores. In sediment depths up to 100cm, organic (OC) and inorganic carbon (IC) stores were 43-101MgCha-1 and 46-83MgCha-1, respectively, and are in the lower end of global average values. The bulk of OC (53-98%) originated from seston suggesting that the meadows had low capacity to retain seagrass-derived organic matter. The species factor resulted in some variability in OC stores but did not appear to influence IC values. The low carbon stores in the meadow may be a direct result of sediment disturbances but natural biogeochemical processes are not discounted as possible causal factors.
  19. Shuaibu HK, Khandaker MU, Alrefae T, Bradley DA
    Mar Pollut Bull, 2017 Jun 15;119(1):423-428.
    PMID: 28342594 DOI: 10.1016/j.marpolbul.2017.03.026
    Activity concentrations of primordial radionuclides in sand samples collected from the coastal beaches surrounding Penang Island have been measured using conventional γ-ray spectrometry, while in-situ γ-ray doses have been measured through use of a portable radiation survey meter. The mean activity concentrations for 226Ra, 232Th and 40K at different locations were found to be less than the world average values, while the Miami Bay values for 226Ra and 232Th were found to be greater, at 1023±47 and 2086±96Bqkg̶ 1 respectively. The main contributor to radionuclide enrichment in Miami Bay is the presence of monazite-rich black sands. The measured data were compared against literature values and also recommended limits set by the relevant international bodies. With the exception of Miami Bay, considered an elevated background radiation area that would benefit from regular monitoring, Penang island beach sands typically pose no significant radiological risk to the local populace and tourists visiting the leisure beaches.
  20. Showen R, Dunson C, Woodman GH, Christopher S, Lim T, Wilson SC
    Mar Pollut Bull, 2018 Mar;128:496-507.
    PMID: 29571401 DOI: 10.1016/j.marpolbul.2018.01.029
    Results are presented of a demonstration of real-time fish blast location in Sabah, Malaysia using a networked hydroacoustic array based on the ShotSpotter gunshot location system. A total of six acoustic sensors - some fixed and others mobile - were deployed at ranges from 1 to 9 km to detect signals from controlled test blasts. This allowed the blast locations to be determined to within 60 m accuracy, and for the calculated locations to be displayed on a map on designated internet-connected computers within 10 s. A smaller three-sensor system was then installed near Semporna in Eastern Sabah that determined the locations of uncontrolled blasts set off by local fishermen. The success of these demonstrations shows that existing technology can be used to protect reefs and permit more effective management of blast fishing activity through improved detection and enforcement measures and enhanced community engagement.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links