Displaying publications 81 - 100 of 509 in total

Abstract:
Sort:
  1. Amran M, Fediuk R, Vatin N, Lee YH, Murali G, Ozbakkaloglu T, et al.
    Materials (Basel), 2020 Sep 28;13(19).
    PMID: 32998362 DOI: 10.3390/ma13194323
    Foamed concrete (FC) is a high-quality building material with densities from 300 to 1850 kg/m3, which can have potential use in civil engineering, both as insulation from heat and sound, and for load-bearing structures. However, due to the nature of the cement material and its high porosity, FC is very weak in withstanding tensile loads; therefore, it often cracks in a plastic state, during shrinkage while drying, and also in a solid state. This paper is the first comprehensive review of the use of man-made and natural fibres to produce fibre-reinforced foamed concrete (FRFC). For this purpose, various foaming agents, fibres and other components that can serve as a basis for FRFC are reviewed and discussed in detail. Several factors have been found to affect the mechanical properties of FRFC, namely: fresh and hardened densities, particle size distribution, percentage of pozzolanic material used and volume of chemical foam agent. It was found that the rheological properties of the FRFC mix are influenced by the properties of both fibres and foam; therefore, it is necessary to apply an additional dosage of a foam agent to enhance the adhesion and cohesion between the foam agent and the cementitious filler in comparison with materials without fibres. Various types of fibres allow the reduction of by autogenous shrinkage a factor of 1.2-1.8 and drying shrinkage by a factor of 1.3-1.8. Incorporation of fibres leads to only a slight increase in the compressive strength of foamed concrete; however, it can significantly improve the flexural strength (up to 4 times), tensile strength (up to 3 times) and impact strength (up to 6 times). At the same time, the addition of fibres leads to practically no change in the heat and sound insulation characteristics of foamed concrete and this is basically depended on the type of fibres used such as Nylon and aramid fibres. Thus, FRFC having the presented set of properties has applications in various areas of construction, both in the construction of load-bearing and enclosing structures.
  2. Amran M, Lee YH, Fediuk R, Murali G, Mosaberpanah MA, Ozbakkaloglu T, et al.
    Materials (Basel), 2021 Nov 22;14(22).
    PMID: 34832474 DOI: 10.3390/ma14227074
    Rapid global infrastructural developments and advanced material science, amongst other factors, have escalated the demand for concrete. Cement, which is an integral part of concrete, binds the various individual solid materials to form a cohesive mass. Its production to a large extent emits many tons of greenhouse gases, with nearly 10% of global carbon (IV) oxide (CO2) emanating from cement production. This, coupled with an increase in the advocacy for environmental sustainability, has led to the development of various innovative solutions and supplementary cementitious materials. These aims to substantially reduce the overall volume of cement required in concrete and to meet the consistently increasing demand for concrete, which is projected to increase as a result of rapid construction and infrastructural development trends. Palm oil fuel ash (POFA), an industrial byproduct that is a result of the incineration of palm oil wastes due to electrical generation in power plants has unique properties, as it is a very reactive materials with robust pozzolanic tendencies, and which exhibits adequate micro-filling capabilities. In this study, a review on the material sources, affecting factors, and durability characteristics of POFA are carefully appraised. Moreover, in this study, a review of correlated literature with a broad spectrum of insights into the likely utilization of POFA-based eco-friendly concrete composites as a green material for the present construction of modern buildings is presented.
  3. Anas NAA, Fen YW, Yusof NA, Omar NAS, Ramdzan NSM, Daniyal WMEMM
    Materials (Basel), 2020 Jun 06;13(11).
    PMID: 32517196 DOI: 10.3390/ma13112591
    The modification of graphene quantum dots (GQDs) may drastically enhance their properties, therefore resulting in various related applications. This paper reported the preparation of novel cetyltrimethylammonium bromide/hydroxylated graphene quantum dots (CTAB/HGQDs) thin film using the spin coating technique. The properties of the thin film were then investigated and studied. The functional groups existing in CTAB/HGQDs thin film were confirmed by the Fourier transform infrared (FTIR) spectroscopy, while the atomic force microscope (AFM) displayed a homogenous surface of the thin film with an increase in surface roughness upon modification. Optical characterizations using UV-Vis absorption spectroscopy revealed a high absorption with an optical band gap of 4.162 eV. Additionally, the photoluminescence (PL) spectra illustrated the maximum emission peak of CTAB/HGQDs thin film at a wavelength of 444 nm. The sensing properties of the as-prepared CTAB/HGQDs thin film were studied using a surface plasmon resonance technique towards the detection of several heavy metal ions (HMIs) (Zn2+, Ni2+, and Fe3+). This technique generated significant results and showed that CTAB/HGQDs thin film has great potential for HMIs detection.
  4. Ansari AR, Ansari SA, Parveen N, Ansari MO, Osman Z
    Materials (Basel), 2021 Sep 03;14(17).
    PMID: 34501128 DOI: 10.3390/ma14175032
    In this work, silver (Ag) decorated reduced graphene oxide (rGO) coated with ultrafine CuO nanosheets (Ag-rGO@CuO) was prepared by the combination of a microwave-assisted hydrothermal route and a chemical methodology. The prepared Ag-rGO@CuO was characterized for its morphological features by field emission scanning electron microscopy and transmission electron microscopy while the structural characterization was performed by X-ray diffraction and Raman spectroscopy. Energy-dispersive X-ray analysis was undertaken to confirm the elemental composition. The electrochemical performance of prepared samples was studied by cyclic voltammetry and galvanostatic charge-discharge in a 2M KOH electrolyte solution. The CuO nanosheets provided excellent electrical conductivity and the rGO sheets provided a large surface area with good mesoporosity that increases electron and ion mobility during the redox process. Furthermore, the highly conductive Ag nanoparticles upon the rGO@CuO surface further enhanced electrochemical performance by providing extra channels for charge conduction. The ternary Ag-rGO@CuO nanocomposite shows a very high specific capacitance of 612.5 to 210 Fg-1 compared against rGO@CuO which has a specific capacitance of 375 to 87.5 Fg-1 and the CuO nanosheets with a specific capacitance of 113.75 to 87.5 Fg-1 at current densities 0.5 and 7 Ag-1, respectively.
  5. Anuar MF, Fen YW, Azizan MZ, Rahmat F, Mohd Zaid MH, Khaidir REM, et al.
    Materials (Basel), 2021 Feb 28;14(5).
    PMID: 33670923 DOI: 10.3390/ma14051141
    Arecanut husk (AH) was selected as a material for silica replacement in the synthesis process of glass-ceramics zinc silicate and also the fact that it has no traditional use and often being dumped and results in environmental issues. The process of pyrolysis was carried out at temperature 700 °C and above based on thermogravimetric analysis to produce arecanut husk ash (AHA). The average purity of the silica content in AHA ranged from 29.17% to 45.43%. Furthermore, zinc oxide was introduced to AHA and zinc silicate started to form at sintering temperature 700 °C and showed increased diffraction intensity upon higher sintering temperature of 600 °C to 1000 °C based on X-ray diffraction (XRD) analysis. The grain sizes of the zinc silicate increased from 1011 nm to 3518 nm based on the morphological studies carried out by field emission scanning electron microscopy (FESEM). In addition, the optical band gap of the sample was measured to be in the range from 2.410 eV to 2.697 eV after sintering temperature. From the data, it is believed that a cleaner production of low-cost zinc silicate can be achieved by using arecanut husk and have the potential to be used as phosphors materials.
  6. Anuar MF, Fen YW, Zaid MHM, Omar NAS, Khaidir REM
    Materials (Basel), 2020 Jun 04;13(11).
    PMID: 32512704 DOI: 10.3390/ma13112555
    In this work, waste coconut husk ash was used to prepare a ZnO-SiO2 composite. Solid-state technique was used to fabricate the composite due to its producibility, simple procedure as well as lower production cost. At high sintering temperatures ranging from 600 °C to 1000 °C, the X-ray diffraction (XRD) peaks of the Zn2SiO4 showed high intensity, which indicated high crystallinity. Furthermore, the formation of broad bands of ZnO4, Si-O-Si, and SiO4 were detected by Fourier transform infrared (FTIR) spectroscopy and the bands became narrower with the increment of sintering temperature. Besides, the morphological image from field emission scanning electron microscopy (FESEM) showed the formation of densely packed grains and smooth surface composite with the increase of sintering temperature. Upon obtaining the absorbance spectrum from Ultraviolet-Visible (UV-Vis) spectroscopy, the optical band gap was calculated to be 4.05 eV at 1000 °C. The correlation between the structural and optical properties of ZnO-SiO2 composite was discussed in detail.
  7. Anumula L, Ramesh S, Kolaparthi VSK, Kirubakaran R, Karobari MI, Arora S, et al.
    Materials (Basel), 2022 Aug 17;15(16).
    PMID: 36013786 DOI: 10.3390/ma15165650
    BACKGROUND: The role of endogenous Matrix Metallo Proteinases in resin dentin bond deterioration over time has been well documented. The present study aimed to systematically review the literature; in vitro and ex vivo studies that assessed the outcomes of natural cross-linkers for immediate and long-term tensile bond strength were included.

    METHODS: The manuscript search was carried out in six electronic databases-PubMed/MEDLINE, LILACS, SciELO, Cochrane, Web of Science and DOAJ, without publication year limits. Only manuscripts in English (including the translated articles) were selected, and the last search was performed in December 2020. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was followed.

    RESULTS: From the 128 potentially eligible studies, 48 full-text articles were assessed for eligibility. After eligibility assessment and exclusions, 14 studies were considered for systematic review and seven studies for meta-analysis. Amongst the selected studies for meta-analysis, three had a medium and four had a low risk of bias.

    CONCLUSIONS: It was evidenced by the available data that Proanthocyanidin is the most efficient natural cross-linker to date, in preserving the bond strength even after ageing.

  8. Appaturi JN, Maireles-Torres P, Alomar TS, AlMasoud N, El-Bahy ZM, Ling TC, et al.
    Materials (Basel), 2023 Jun 29;16(13).
    PMID: 37445026 DOI: 10.3390/ma16134713
    Acetylation of glycerol to yield monoacetin (MAT), diacetin (DAT), and triacetin (TAT) over NiO-supported CeO2 (xNiO/CeO2) catalysts is reported. The catalysts were synthesized utilizing a sol-gel technique, whereby different quantities of NiO (x = 9, 27, and 45 wt%) were supported onto the CeO2 substrate, and hexadecyltrimethylammonium bromide (CTABr) served as a porogen. The utilization of EDX elemental mapping analysis confirmed the existence of evenly distributed Ni2+ ion and octahedral NiO nanoparticles on the CeO2 surface through the DRS UV-Vis spectroscopy. The most active catalyst is 27NiO/CeO2 based on TAT selectivity in the glycerol acetylation with ethanoic acid, attaining 97.6% glycerol conversion with 70.5% selectivity to TAT at 170 °C with a 1:10 glycerol/ethanoic acid molar ratio for 30 min using a non-microwave instant heating reactor. The 27NiO/CeO2 is reusable without significant decline in catalytic performance after ten consecutive reaction cycles, indicating high structure stability with accessible active acidity.
  9. Arab A, Sktani ZDI, Zhou Q, Ahmad ZA, Chen P
    Materials (Basel), 2019 Jul 31;12(15).
    PMID: 31370216 DOI: 10.3390/ma12152440
    Zirconia toughened alumina (ZTA) is a promising advanced ceramic material for a wide range of applications that are subjected to dynamic loading. Therefore, the investigation of dynamic compressive strength, fracture toughness and hardness is essential for ZTA ceramics. However, the relationship between these mechanical properties in ZTA has not yet been established. An example of this relationship is demonstrated using ZTA samples added with MgO prepared through conventional sintering. The microstructure and mechanical properties of ZTA composites were characterized. The hardness of ZTA composites increased for ≤0.7 wt.% MgO due to the pinning effect of MgO and decrease of the porosity in the microstructure. Oppositely, the fracture toughness of ZTA composites continuously decreased due to the size reduction of Al2O3 grains. This is the main reason of deteriorate of dynamic compressive strength more than 0.2 wt.% of MgO addition. Therefore, the SHPB test shows the improvement of the dynamic compressive strength only up to a tiny amount (0.2 wt.% of MgO addition) into ZTA ceramics.
  10. Ariffin N, Abdullah MMAB, Postawa P, Zamree AbdRahim S, Mohd Arif Zainol MRR, Jaya RP, et al.
    Materials (Basel), 2021 Feb 08;14(4).
    PMID: 33567736 DOI: 10.3390/ma14040814
    This current work focuses on the synthesis of geopolymer-based adsorbent which uses kaolin as a source material, mixed with alkali solution consisting of 10M NaOH and Na2SiO3 as well as aluminium powder as a foaming agent. The experimental range for the aluminium powder was between 0.6, 0.8, 1.0 and 1.2wt%. The structure, properties and characterization of the geopolymer were examined using X-Ray Diffraction (XRD), Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Adsorption capacity and porosity were analysed based on various percentages of aluminium powder added. The results indicate that the use of aluminium powder exhibited a better pore size distribution and higher porosity, suggesting a better heavy metal removal. The maximum adsorption capacity of Cu2+ approached approximately 98%. The findings indicate that 0.8% aluminium powder was the optimal aluminium powder content for geopolymer adsorbent. The removal efficiency was affected by pH, adsorbent dosage and contact time. The optimum removal capacity of Cu2+ was obtained at pH 6 with 1.5 g geopolymer adsorbent and 4 h contact time. Therefore, it can be concluded that the increase in porosity increases the adsorption of Cu2+.
  11. Asaad MA, Huseien GF, Baghban MH, Raja PB, Fediuk R, Faridmehr I, et al.
    Materials (Basel), 2021 Dec 19;14(24).
    PMID: 34947461 DOI: 10.3390/ma14247867
    The inhibiting effect of Gum Arabic-nanoparticles (GA-NPs) to control the corrosion of reinforced concrete that exposed to carbon dioxide environment for 180 days has been investigated. The steel reinforcement of concrete in presence and absence of GA-NPs were examined using various standard techniques. The physical/surface changes of steel reinforcement was screened using weight loss measurement, electrochemical impedance spectroscopy (EIS), atomic force microscopy and scanning electron microscopy (SEM). In addition, the carbonation resistance of concrete as well screened using visual inspection (carbonation depth), concrete alkalinity (pH), thermogravimetric analysis (TGA), SEM, energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The GA-NPs inhibitor size was also confirmed by transmission electron microscopy (TEM). The results obtained revealed that incorporation of 3% GA-NPs inhibitor into concrete inhibited the corrosion process via adsorption of inhibitor molecules over the steel reinforcement surface resulting of a protective layer formation. Thus, the inhibition efficiency was found to increase up-to 94.5% with decreasing corrosion rate up-to 0.57 × 10-3 mm/year. Besides, the results also make evident the presence of GA-NPs inhibitor, ascribed to the consumption of calcium hydroxide, and reduced the Ca/Si to 3.72% and 0.69% respectively. Hence, C-S-H gel was developed and pH was increased by 9.27% and 12.5, respectively. It can be concluded that green GA-NPs have significant corrosion inhibition potential and improve the carbonation resistance of the concrete matrix to acquire durable reinforced concrete structures.
  12. Ashraf FB, Alam T, Islam MT
    Materials (Basel), 2017 Jul 05;10(7).
    PMID: 28773113 DOI: 10.3390/ma10070752
    A Xi-shaped meta structure, has been introduced in this paper. A modified split-ring resonator (MSRR) and a capacitive loaded strip (CLS) were used to achieve the left-handed property of the metamaterial. The structure was printed using silver metallic nanoparticle ink, using a very low-cost photo paper as a substrate material. Resonators were inkjet-printed using silver nanoparticle metallic ink on paper to make this metamaterial flexible. It is also free from any kind of chemical waste, which makes it eco-friendly. A double negative region from 8.72 GHz to 10.91 GHz (bandwidth of 2.19 GHz) in the X-band microwave spectra was been found. Figure of merit was also obtained to measure any loss in the double negative region. The simulated result was verified by the performance of the fabricated prototype. The total dimensions of the proposed structure were 0.29 λ × 0.29 λ × 0.007 λ. It is a promising unit cell because of its simplicity, cost-effectiveness, and easy fabrication process.
  13. Ashrafi N, Azmah Hanim MA, Sarraf M, Sulaiman S, Hong TS
    Materials (Basel), 2020 Sep 15;13(18).
    PMID: 32942621 DOI: 10.3390/ma13184090
    Hybrid reinforcement's novel composite (Al-Fe3O4-SiC) via powder metallurgy method was successfully fabricated. In this study, the aim was to define the influence of SiC-Fe3O4 nanoparticles on microstructure, mechanical, tribology, and corrosion properties of the composite. Various researchers confirmed that aluminum matrix composite (AMC) is an excellent multifunctional lightweight material with remarkable properties. However, to improve the wear resistance in high-performance tribological application, hardening and developing corrosion resistance was needed; thus, an optimized hybrid reinforcement of particulates (SiC-Fe3O4) into an aluminum matrix was explored. Based on obtained results, the density and hardness were 2.69 g/cm3, 91 HV for Al-30Fe3O4-20SiC, after the sintering process. Coefficient of friction (COF) was decreased after adding Fe3O4 and SiC hybrid composite in tribology behaviors, and the lowest COF was 0.412 for Al-30Fe3O4-20SiC. The corrosion protection efficiency increased from 88.07%, 90.91%, and 99.83% for Al-30Fe3O4, Al-15Fe3O4-30SiC, and Al-30Fe3O4-20SiC samples, respectively. Hence, the addition of this reinforcement (Al-Fe3O4-SiC) to the composite shows a positive outcome toward corrosion resistance (lower corrosion rate), in order to increase the durability and life span of material during operation. The accomplished results indicated that, by increasing the weight percentage of SiC-Fe3O4, it had improved the mechanical properties, tribology, and corrosion resistance in aluminum matrix. After comparing all samples, we then selected Al-30Fe3O4-20SiC as an optimized composite.
  14. Aslantas K, Danish M, Hasçelik A, Mia M, Gupta M, Ginta T, et al.
    Materials (Basel), 2020 Jul 06;13(13).
    PMID: 32640567 DOI: 10.3390/ma13132998
    Micro-turning is a micro-mechanical cutting method used to produce small diameter cylindrical parts. Since the diameter of the part is usually small, it may be a little difficult to improve the surface quality by a second operation, such as grinding. Therefore, it is important to obtain the good surface finish in micro turning process using the ideal cutting parameters. Here, the multi-objective optimization of micro-turning process parameters such as cutting speed, feed rate and depth of cut were performed by response surface method (RSM). Two important machining indices, such as surface roughness and material removal rate, were simultaneously optimized in the micro-turning of a Ti6Al4V alloy. Further, the scanning electron microscope (SEM) analysis was done on the cutting tools. The overall results depict that the feed rate is the prominent factor that significantly affects the responses in micro-turning operation. Moreover, the SEM results confirmed that abrasion and crater wear mechanism were observed during the micro-turning of a Ti6Al4V alloy.
  15. Asyraf MRM, Rafidah M, Madenci E, Özkılıç YO, Aksoylu C, Razman MR, et al.
    Materials (Basel), 2023 Feb 20;16(4).
    PMID: 36837376 DOI: 10.3390/ma16041747
    Fibre-reinforced polymer (FRP) composites have been selected as an alternative to conventional wooden timber cross arms. The advantages of FRP composites include a high strength-to-weight ratio, lightweight, ease of production, as well as optimal mechanical performance. Since a non-conductive cross arm structure is exposed to constant loading for a very long time, creep is one of the main factors that cause structural failure. In this state, the structure experiences creep deformation, which can result in serviceability problems, stress redistribution, pre-stress loss, and the failure of structural elements. These issues can be resolved by assessing the creep trends and properties of the structure, which can forecast its serviceability and long-term mechanical performance. Hence, the principles, approaches, and characteristics of creep are used to comprehend and analyse the behaviour of wood and composite cantilever structures under long-term loads. The development of appropriate creep methods and approaches to non-conductive cross arm construction is given particular attention in this literature review, including suitable mitigation strategies such as sleeve installation, the addition of bracing systems, and the inclusion of cross arm beams in the core structure. Thus, this article delivers a state-of-the-art review of creep properties, as well as an analysis of non-conductive cross arm structures using experimental approaches. Additionally, this review highlights future developments and progress in cross arm studies.
  16. Aw YY, Yeoh CK, Idris MA, Teh PL, Hamzah KA, Sazali SA
    Materials (Basel), 2018 Mar 22;11(4).
    PMID: 29565286 DOI: 10.3390/ma11040466
    Fused deposition modelling (FDM) has been widely used in medical appliances, automobile, aircraft and aerospace, household appliances, toys, and many other fields. The ease of processing, low cost and high flexibility of FDM technique are strong advantages compared to other techniques for thermoelectric polymer composite fabrication. This research work focuses on the effect of two crucial printing parameters (infill density and printing pattern) on the tensile, dynamic mechanical, and thermoelectric properties of conductive acrylonitrile butadiene styrene/zinc oxide (CABS/ZnO composites fabricated by FDM technique. Results revealed significant improvement in tensile strength and Young's modulus, with a decrease in elongation at break with infill density. Improvement in dynamic storage modulus was observed when infill density changed from 50% to 100%. However, the loss modulus and damping factor reduced gradually. The increase of thermal conductivity was relatively smaller compared to the improvement of electrical conductivity and Seebeck coefficient, therefore, the calculated figure of merit (ZT) value increased with infill density. Line pattern performed better than rectilinear, especially in tensile properties and electrical conductivity. From the results obtained, FDM-fabricated CABS/ZnO showed much potential as a promising candidate for thermoelectric application.
  17. Azani A, Halin DSC, Razak KA, Abdullah MMAB, Nabiałek M, Ramli MM, et al.
    Materials (Basel), 2021 Aug 13;14(16).
    PMID: 34443086 DOI: 10.3390/ma14164564
    Modification has been made to TiO2 thin film to improve the wettability and the absorption of light. The sol-gel spin coating method was successfully used to synthesize GO/TiO2 thin films using a titanium (IV) isopropoxide (TTIP) as a precursor. Different amounts of polyethylene glycol (PEG) (20 to 100 mg) were added into the parent sol solution to improve the optical properties and wettability of the GO/TiO2 thin film. The effect of different amounts of PEG was characterized using X-ray diffraction (XRD) for the phase composition, scanning electron microscopy (SEM) for microstructure observation, atomic force microscopy (AFM) for the surface topography, ultraviolet-visible spectrophotometry (UV-VIS) for the optical properties and wettability of the thin films by measuring the water contact angle. The XRD analysis showed the amorphous phase. The SEM and AFM images revealed that the particles were less agglomerated and surface roughness increases from 1.21 × 102 to 2.63 × 102 nm when the amount of PEG increased. The wettability analysis results show that the water contact angle of the thin film decreased to 27.52° with the increase of PEG to 80 mg which indicated that the thin film has hydrophilic properties. The optical properties also improved significantly, where the light absorbance wavelength became wider and the band gap was reduced from 3.31 to 2.82 eV with the presence of PEG.
  18. Azeez AB, Mohammed KS, Abdullah MMAB, Hussin K, Sandu AV, Razak RA
    Materials (Basel), 2013 Oct 23;6(10):4836-4846.
    PMID: 28788363 DOI: 10.3390/ma6104836
    Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised (137)Cs and ⁶⁰Co radioactive elements with photon energies of 0.662 MeV for (137)Cs and two energy levels of 1.17 and 1.33 MeV for the ⁶⁰Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10(-3) for (137)Cs and 0.92 ± 1.57 × 10(-3) for ⁶⁰Co. Substantial improvement in attenuation performance by 20%-25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%-30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities.
  19. Azimi EA, Abdullah MMAB, Vizureanu P, Salleh MAAM, Sandu AV, Chaiprapa J, et al.
    Materials (Basel), 2020 Feb 24;13(4).
    PMID: 32102345 DOI: 10.3390/ma13041015
    A geopolymer has been reckoned as a rising technology with huge potential for application across the globe. Dolomite refers to a material that can be used raw in producing geopolymers. Nevertheless, dolomite has slow strength development due to its low reactivity as a geopolymer. In this study, dolomite/fly ash (DFA) geopolymer composites were produced with dolomite, fly ash, sodium hydroxide, and liquid sodium silicate. A compression test was carried out on DFA geopolymers to determine the strength of the composite, while a synchrotron Micro-Xray Fluorescence (Micro-XRF) test was performed to assess the elemental distribution in the geopolymer composite. The temperature applied in this study generated promising properties of DFA geopolymers, especially in strength, which displayed increments up to 74.48 MPa as the optimum value. Heat seemed to enhance the strength development of DFA geopolymer composites. The elemental distribution analysis revealed exceptional outcomes for the composites, particularly exposure up to 400 °C, which signified the homogeneity of the DFA composites. Temperatures exceeding 400 °C accelerated the strength development, thus increasing the strength of the DFA composites. This appears to be unique because the strength of ordinary Portland Cement (OPC) and other geopolymers composed of other raw materials is typically either maintained or decreases due to increased heat.
  20. Azis RS, Che Muda NN, Hassan J, Shaari AH, Ibrahim IR, Mustaffa MS, et al.
    Materials (Basel), 2018 Nov 06;11(11).
    PMID: 30404131 DOI: 10.3390/ma11112190
    This paper investigates the effect of the ratio of ammonium nitrate (AN) on the structural, microstructural, magnetic, and alternating current (AC) conductivity properties of barium hexaferrite (BaFe12O19). The BaFe12O19 were prepared by using the salt melt method. The samples were synthesized using different powder-to-salt weight ratio variations (1:3, 1:4, 1:5, 1:6 and 1:7) of BaCO₃ + Fe₂O₃ and ammonium nitrate salt. The NH₄NO₃ was melted on a hot plate at 170 °C. A mixture of BaCO₃ and Fe₂O₃ were added into the NH₄NO₃ melt solution and stirred for several hours using a magnetic stirrer under a controlled temperature of 170 °C. The heating temperature was then increased up to 260 °C for 24 hr to produce an ash powder. The x-ray diffraction (XRD) results show the intense peak of BaFe12O19 for all the samples and the presence of a small amount of the impurity Fe₂O₃ in the samples, at a ratio of 1:5 and 1:6. From the Fourier transform infra-red (FTIR) spectra, the band appears at 542.71 cm - 1 and 432.48 cm - 1 , which corresponding to metal⁻oxygen bending and the vibration of the octahedral sites of BaFe12O19. The field emission scanning electron microscope (FESEM) images show that the grains of the samples appear to stick each other and agglomerate at different masses throughout the image with the grain size 5.26, 5.88, 6.14, 6.22, and 6.18 µm for the ratios 1:3, 1:4, 1:5, 1:6, and 1:7 respectively. From the vibrating sample magnetometer (VSM) analysis, the magnetic properties of the sample ratio at 1:3 show the highest value of coercivity Hc of 1317 Oe, a saturation magnetization Ms of 91 emu/g, and a remnant Mr of 44 emu/g, respectively. As the temperature rises, the AC conductivity is increases with an increase in frequency.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links