Displaying publications 81 - 100 of 163 in total

Abstract:
Sort:
  1. Nally JE, Arent Z, Bayles DO, Hornsby RL, Gilmore C, Regan S, et al.
    PLoS Negl Trop Dis, 2016 12;10(12):e0005174.
    PMID: 27935961 DOI: 10.1371/journal.pntd.0005174
    The greater white-toothed shrew (Crocidura russula) is an invasive mammalian species that was first recorded in Ireland in 2007. It currently occupies an area of approximately 7,600 km2 on the island. C. russula is normally distributed in Northern Africa and Western Europe, and was previously absent from the British Isles. Whilst invasive species can have dramatic and rapid impacts on faunal and floral communities, they may also be carriers of pathogens facilitating disease transmission in potentially naive populations. Pathogenic leptospires are endemic in Ireland and a significant cause of human and animal disease. From 18 trapped C. russula, 3 isolates of Leptospira were cultured. However, typing of these isolates by standard serological reference methods was negative, and suggested an, as yet, unidentified serovar. Sequence analysis of 16S ribosomal RNA and secY indicated that these novel isolates belong to Leptospira alstonii, a unique pathogenic species of which only 7 isolates have been described to date. Earlier isolations were limited geographically to China, Japan and Malaysia, and this leptospiral species had not previously been cultured from mammals. Restriction enzyme analysis (REA) further confirms the novelty of these strains since no similar patterns were observed with a reference database of leptospires. As with other pathogenic Leptospira species, these isolates contain lipL32 and do not grow in the presence of 8-azagunaine; however no evidence of disease was apparent after experimental infection of hamsters. These isolates are genetically related to L. alstonii but have a novel REA pattern; they represent a new serovar which we designate as serovar Room22. This study demonstrates that invasive mammalian species act as bridge vectors of novel zoonotic pathogens such as Leptospira.
  2. Cheng Q, Jing Q, Spear RC, Marshall JM, Yang Z, Gong P
    PLoS Negl Trop Dis, 2017 Jun;11(6):e0005701.
    PMID: 28640895 DOI: 10.1371/journal.pntd.0005701
    Dengue is a fast spreading mosquito-borne disease that affects more than half of the population worldwide. An unprecedented outbreak happened in Guangzhou, China in 2014, which contributed 52 percent of all dengue cases that occurred in mainland China between 1990 and 2015. Our previous analysis, based on a deterministic model, concluded that the early timing of the first imported case that triggered local transmission and the excessive rainfall thereafter were the most important determinants of the large final epidemic size in 2014. However, the deterministic model did not allow us to explore the driving force of the early local transmission. Here, we expand the model to include stochastic elements and calculate the successful invasion rate of cases that entered Guangzhou at different times under different climate and intervention scenarios. The conclusion is that the higher number of imported cases in May and June was responsible for the early outbreak instead of climate. Although the excessive rainfall in 2014 did increase the success rate, this effect was offset by the low initial water level caused by interventions in late 2013. The success rate is strongly dependent on mosquito abundance during the recovery period of the imported case, since the first step of a successful invasion is infecting at least one local mosquito. The average final epidemic size of successful invasion decreases exponentially with introduction time, which means if an imported case in early summer initiates the infection process, the final number infected can be extremely large. Therefore, dengue outbreaks occurring in Thailand, Singapore, Malaysia and Vietnam in early summer merit greater attention, since the travel volumes between Guangzhou and these countries are large. As the climate changes, destroying mosquito breeding sites in Guangzhou can mitigate the detrimental effects of the probable increase in rainfall in spring and summer.
  3. Zhang R, Lee WC, Lau YL, Albrecht L, Lopes SC, Costa FT, et al.
    PLoS Negl Trop Dis, 2016 08;10(8):e0004912.
    PMID: 27509168 DOI: 10.1371/journal.pntd.0004912
    Malaria parasites dramatically alter the rheological properties of infected red blood cells. In the case of Plasmodium vivax, the parasite rapidly decreases the shear elastic modulus of the invaded RBC, enabling it to avoid splenic clearance. This study highlights correlation between rosette formation and altered membrane deformability of P. vivax-infected erythrocytes, where the rosette-forming infected erythrocytes are significantly more rigid than their non-rosetting counterparts. The adhesion of normocytes to the PvIRBC is strong (mean binding force of 440pN) resulting in stable rosette formation even under high physiological shear flow stress. Rosetting may contribute to the sequestration of PvIRBC schizonts in the host microvasculature or spleen.
  4. Chua CL, Sam IC, Merits A, Chan YF
    PLoS Negl Trop Dis, 2016 08;10(8):e0004960.
    PMID: 27571254 DOI: 10.1371/journal.pntd.0004960
    BACKGROUND: Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus which causes epidemics of fever, severe joint pain and rash. Between 2005 and 2010, the East/Central/South African (ECSA) genotype was responsible for global explosive outbreaks across India, the Indian Ocean and Southeast Asia. From late 2013, Asian genotype CHIKV has caused outbreaks in the Americas. The characteristics of cross-antibody efficacy and epitopes are poorly understood.

    METHODOLOGY/PRINCIPAL FINDINGS: We characterized human immune sera collected during two independent outbreaks in Malaysia of the Asian genotype in 2006 and the ECSA genotype in 2008-2010. Neutralizing capacity was analyzed against representative clinical isolates as well as viruses rescued from infectious clones of ECSA and Asian CHIKV. Using whole virus antigen and recombinant E1 and E2 envelope glycoproteins, we further investigated antibody binding sites, epitopes, and antibody titers. Both ECSA and Asian sera demonstrated stronger neutralizing capacity against the ECSA genotype, which corresponded to strong epitope-antibody interaction. ECSA serum targeted conformational epitope sites in the E1-E2 glycoprotein, and E1-E211K, E2-I2T, E2-H5N, E2-G118S and E2-S194G are key amino acids that enhance cross-neutralizing efficacy. As for Asian serum, the antibodies targeting E2 glycoprotein correlated with neutralizing efficacy, and I2T, H5N, G118S and S194G altered and improved the neutralization profile. Rabbit polyclonal antibody against the N-terminal linear neutralizing epitope from the ECSA sequence has reduced binding capacity and neutralization efficacy against Asian CHIKV. These findings imply that the choice of vaccine strain may impact cross-protection against different genotypes.

    CONCLUSION/SIGNIFICANCE: Immune serum from humans infected with CHIKV of either ECSA or Asian genotypes showed differences in binding and neutralization characteristics. These findings have implications for the continued outbreaks of co-circulating CHIKV genotypes and effective design of vaccines and diagnostic serological assays.

  5. Tomashek KM, Wills B, See Lum LC, Thomas L, Durbin A, Leo YS, et al.
    PLoS Negl Trop Dis, 2018 10;12(10):e0006497.
    PMID: 30286085 DOI: 10.1371/journal.pntd.0006497
    Dengue is a major public health problem worldwide. Although several drug candidates have been evaluated in randomized controlled trials, none has been effective and at present, early recognition of severe dengue and timely supportive care are used to reduce mortality. While the first dengue vaccine was recently licensed, and several other candidates are in late stage clinical trials, future decisions regarding widespread deployment of vaccines and/or therapeutics will require evidence of product safety, efficacy and effectiveness. Standard, quantifiable clinical endpoints are needed to ensure reproducibility and comparability of research findings. To address this need, we established a working group of dengue researchers and public health specialists to develop standardized endpoints and work towards consensus opinion on those endpoints. After discussion at two working group meetings and presentations at international conferences, a Delphi methodology-based query was used to finalize and operationalize the clinical endpoints. Participants were asked to select the best endpoints from proposed definitions or offer revised/new definitions, and to indicate whether contributing items should be designated as optional or required. After the third round of inquiry, 70% or greater agreement was reached on moderate and severe plasma leakage, moderate and severe bleeding, acute hepatitis and acute liver failure, and moderate and severe neurologic disease. There was less agreement regarding moderate and severe thrombocytopenia and moderate and severe myocarditis. Notably, 68% of participants agreed that a 50,000 to 20,000 mm3 platelet range be used to define moderate thrombocytopenia; however, they remained divided on whether a rapid decreasing trend or one platelet count should be case defining. While at least 70% agreement was reached on most endpoints, the process identified areas for further evaluation and standardization within the context of ongoing clinical studies. These endpoints can be used to harmonize data collection and improve comparability between dengue clinical trials.
  6. Suppiah J, Ching SM, Amin-Nordin S, Mat-Nor LA, Ahmad-Najimudin NA, Low GK, et al.
    PLoS Negl Trop Dis, 2018 09;12(9):e0006817.
    PMID: 30226880 DOI: 10.1371/journal.pntd.0006817
    BACKGROUND: Malaysia experienced an unprecedented dengue outbreak from the year 2014 to 2016 that resulted in an enormous increase in the number of cases and mortality as compared to previous years. The causes that attribute to a dengue outbreak can be multifactorial. Viral factors, such as dengue serotype and genotype, are the components of interest in this study. Although only a small number of studies investigated the association between the serotype of dengue virus and clinical manifestations, none of these studies included analyses on dengue genotypes. The present study aims to investigate dengue serotype and genotype-specific clinical characteristics among dengue fever and severe dengue cases from two Malaysian tertiary hospitals between 2014 and mid-2017.

    METHODOLOGY AND PRINCIPAL FINDINGS: A total of 120 retrospective dengue serum specimens were subjected to serotyping and genotyping by Taqman Real-Time RT-PCR, sequencing and phylogenetic analysis. Subsequently, the dengue serotype and genotype data were statistically analyzed for 101 of 120 corresponding patients' clinical manifestations to generate a descriptive relation between the genetic components and clinical outcomes of dengue infected patients. During the study period, predominant dengue serotype and genotype were found to be DENV 1 genotype I. Additionally, non-severe clinical manifestations were commonly observed in patients infected with DENV 1 and DENV 3. Meanwhile, patients with DENV 2 infection showed significant warning signs and developed severe dengue (p = 0.007). Cases infected with DENV 2 were also commonly presented with persistent vomiting (p = 0.010), epigastric pain (p = 0.018), plasma leakage (p = 0.004) and shock (p = 0.038). Moreover, myalgia and arthralgia were highly prevalent among DENV 3 infection (p = 0.015; p = 0.014). The comparison of genotype-specific clinical manifestations showed that DENV 2 Cosmopolitan was significantly common among severe dengue patients. An association was also found between genotype I of DENV 3 and myalgia. In a similar vein, genotype III of DENV 3 was significantly common among patients with arthralgia.

    CONCLUSION: The current data contended that different dengue serotype and genotype had caused distinct clinical characteristics in infected patients.

  7. Vincent AT, Schiettekatte O, Goarant C, Neela VK, Bernet E, Thibeaux R, et al.
    PLoS Negl Trop Dis, 2019 05;13(5):e0007270.
    PMID: 31120895 DOI: 10.1371/journal.pntd.0007270
    The causative agents of leptospirosis are responsible for an emerging zoonotic disease worldwide. One of the major routes of transmission for leptospirosis is the natural environment contaminated with the urine of a wide range of reservoir animals. Soils and surface waters also host a high diversity of non-pathogenic Leptospira and species for which the virulence status is not clearly established. The genus Leptospira is currently divided into 35 species classified into three phylogenetic clusters, which supposedly correlate with the virulence of the bacteria. In this study, a total of 90 Leptospira strains isolated from different environments worldwide including Japan, Malaysia, New Caledonia, Algeria, mainland France, and the island of Mayotte in the Indian Ocean were sequenced. A comparison of average nucleotide identity (ANI) values of genomes of the 90 isolates and representative genomes of known species revealed 30 new Leptospira species. These data also supported the existence of two clades and 4 subclades. To avoid classification that strongly implies assumption on the virulence status of the lineages, we called them P1, P2, S1, S2. One of these subclades has not yet been described and is composed of Leptospira idonii and 4 novel species that are phylogenetically related to the saprophytes. We then investigated genome diversity and evolutionary relationships among members of the genus Leptospira by studying the pangenome and core gene sets. Our data enable the identification of genome features, genes and domains that are important for each subclade, thereby laying the foundation for refining the classification of this complex bacterial genus. We also shed light on atypical genomic features of a group of species that includes the species often associated with human infection, suggesting a specific and ongoing evolution of this group of species that will require more attention. In conclusion, we have uncovered a massive species diversity and revealed a novel subclade in environmental samples collected worldwide and we have redefined the classification of species in the genus. The implication of several new potentially infectious Leptospira species for human and animal health remains to be determined but our data also provide new insights into the emergence of virulence in the pathogenic species.
  8. Lam JY, Low GK, Chee HY
    PLoS Negl Trop Dis, 2020 02;14(2):e0008074.
    PMID: 32049960 DOI: 10.1371/journal.pntd.0008074
    BACKGROUND: Leptospirosis is often difficult to diagnose because of its nonspecific symptoms. The drawbacks of direct isolation and serological tests have led to the increased development of nucleic acid-based assays, which are more rapid and accurate. A meta-analysis was performed to evaluate the diagnostic accuracy of genetic markers for the detection of Leptospira in clinical samples.

    METHODOLOGY AND PRINCIPLE FINDINGS: A literature search was performed in Scopus, PubMed, MEDLINE and non-indexed citations (via Ovid) by using suitable keyword combinations. Studies evaluating the performance of nucleic acid assays targeting leptospire genes in human or animal clinical samples against a reference test were included. Of the 1645 articles identified, 42 eligible studies involving 7414 samples were included in the analysis. The diagnostic performance of nucleic acid assays targeting the rrs, lipL32, secY and flaB genes was pooled and analyzed. Among the genetic markers analyzed, the secY gene showed the highest diagnostic accuracy measures, with a pooled sensitivity of 0.56 (95% CI: 0.50-0.63), a specificity of 0.98 (95% CI: 0.97-0.98), a diagnostic odds ratio of 46.16 (95% CI: 6.20-343.49), and an area under the curve of summary receiver operating characteristics curves of 0.94. Nevertheless, a high degree of heterogeneity was observed in this meta-analysis. Therefore, the present findings here should be interpreted with caution.

    CONCLUSION: The diagnostic accuracies of the studies examined for each genetic marker showed a significant heterogeneity. The secY gene exhibited higher diagnostic accuracy measures compared with other genetic markers, such as lipL32, flaB, and rrs, but the difference was not significant. Thus, these genetic markers had no significant difference in diagnostic accuracy for leptospirosis. Further research into these genetic markers is warranted.

  9. Baseler L, Scott DP, Saturday G, Horne E, Rosenke R, Thomas T, et al.
    PLoS Negl Trop Dis, 2016 Nov;10(11):e0005120.
    PMID: 27812087 DOI: 10.1371/journal.pntd.0005120
    BACKGROUND: Nipah virus causes respiratory and neurologic disease with case fatality rates up to 100% in individual outbreaks. End stage lesions have been described in the respiratory and nervous systems, vasculature and often lymphoid organs in fatal human cases; however, the initial target organs of Nipah virus infection have not been identified. Here, we detected the initial target tissues and cells of Nipah virus and tracked virus dissemination during the early phase of infection in Syrian hamsters inoculated with a Nipah virus isolate from Malaysia (NiV-M) or Bangladesh (NiV-B).

    METHODOLOGY/PRINCIPAL FINDINGS: Syrian hamsters were euthanized between 4 and 48 hours post intranasal inoculation and tissues were collected and analyzed for the presence of viral RNA, viral antigen and infectious virus. Virus replication was first detected at 8 hours post inoculation (hpi). Nipah virus initially targeted type I pneumocytes, bronchiolar respiratory epithelium and alveolar macrophages in the lung and respiratory and olfactory epithelium lining the nasal turbinates. By 16 hpi, virus disseminated to epithelial cells lining the larynx and trachea. Although the pattern of viral dissemination was similar for both virus isolates, the rate of spread was slower for NiV-B. Infectious virus was not detected in the nervous system or blood and widespread vascular infection and lesions within lymphoid organs were not observed, even at 48 hpi.

    CONCLUSIONS/SIGNIFICANCE: Nipah virus initially targets the respiratory system. Virus replication in the brain and infection of blood vessels in non-respiratory tissues does not occur during the early phase of infection. However, virus replicates early in olfactory epithelium and may serve as the first step towards nervous system dissemination, suggesting that development of vaccines that block virus dissemination or treatments that can access the brain and spinal cord and directly inhibit virus replication may be necessary for preventing central nervous system pathology.

  10. Abu Hassan MR, Aziz N, Ismail N, Shafie Z, Mayala B, Donohue RE, et al.
    PLoS Negl Trop Dis, 2019 03;13(3):e0007243.
    PMID: 30883550 DOI: 10.1371/journal.pntd.0007243
    BACKGROUND: Melioidosis, a fatal infectious disease caused by Burkholderia pseudomallei, is increasingly diagnosed in tropical regions. However, data on risk factors and the geographic epidemiology of the disease are still limited. Previous studies have also largely been based on the analysis of case series data. Here, we undertook a more definitive hospital-based matched case-control study coupled with spatial analysis to identify demographic, socioeconomic and landscape risk factors for bacteremic melioidosis in the Kedah region of northern Malaysia.

    METHODOLOGY/PRINCIPAL FINDINGS: We obtained patient demographic and residential information and clinical presentation and medical history data from 254 confirmed melioidosis cases and 384 matched controls attending Hospital Sultanah Bahiyah (HSB), the main tertiary hospital of Alor Setar, the capital city of Kedah, during the period between 2005 and 2011. Crude and adjusted odds ratios employing conditional logistic regression analysis were used to assess if melioidosis in this region is related to risk factors connected with socio-demographics, various behavioural characteristics, and co-occurring diseases. Spatial clusters of cases were determined using a continuous Poisson model as deployed in SaTScan. A land cover map in conjunction with mapped case data was used to determine disease-land type associations using the Fisher's exact test deploying simulated p-values. Crude and adjusted odds ratios indicate that melioidosis in this region is related to gender (males), race, occupation (farming) and co-occurring chronic diseases, particularly diabetes. Spatial analyses of disease incidence, however, showed that disease risk and geographic clustering of cases are related strongly to land cover types, with risk of disease increasing non-linearly with the degree of human modification of the natural ecosystem.

    CONCLUSIONS/SIGNIFICANCE: These findings indicate that melioidosis represents a complex socio-ecological public health problem in Kedah, and that its control requires an understanding and modification of the coupled human and natural variables that govern disease transmission in endemic communities.

  11. Blasdell KR, Morand S, Perera D, Firth C
    PLoS Negl Trop Dis, 2019 02;13(2):e0007141.
    PMID: 30811387 DOI: 10.1371/journal.pntd.0007141
    Although leptospirosis is traditionally considered a disease of rural, agricultural and flooded environments, Leptospira spp. are found in a range of habitats and infect numerous host species, with rodents among the most significant reservoirs and vectors. To explore the local ecology of Leptospira spp. in a city experiencing rapid urbanization, we assessed Leptospira prevalence in rodents from three locations in Malaysian Borneo with differing levels of anthropogenic influence: 1) high but stable influence (urban); 2) moderate yet increasing (developing); and 3) low (rural). A total of 116 urban, 122 developing and 78 rural rodents were sampled, with the majority of individuals assigned to either the Rattus rattus lineage R3 (n = 165) or Sundamys muelleri (n = 100). Leptospira spp. DNA was detected in 31.6% of all rodents, with more urban rodents positive (44.8%), than developing (32.0%) or rural rodents (28.1%), and these differences were statistically significant. The majority of positive samples were identified by sequence comparison to belong to known human pathogens L. interrogans (n = 57) and L. borgpetersenii (n = 38). Statistical analyses revealed that both Leptospira species occurred more commonly at sites with higher anthropogenic influence, particularly those with a combination of commercial and residential activity, while L. interrogans infection was also associated with low forest cover, and L. borgpetersenii was more likely to be identified at sites without natural bodies of water. This study suggests that some features associated with urbanization may promote the circulation of Leptospira spp., resulting in a potential public health risk in cities that may be substantially underestimated.
  12. AhbiRami R, Zuharah WF
    PLoS Negl Trop Dis, 2020 03;14(3):e0008075.
    PMID: 32218580 DOI: 10.1371/journal.pntd.0008075
    The massive flood in Malaysia's east coast in December 2014 has placed Kelantan in a possible dengue outbreak risk. At this point, community awareness is essential in preventing disease spread. However, no data on knowledge, attitude, and practice (KAP) of dengue in Kelantan have existed in relevance to flood disaster, although such information is necessary for the vector control programs. The purpose of this study is to assess the KAP regarding dengue among school children from flooded and unflooded areas and to evaluate the effectiveness of the dengue health education program in improving their KAP level. A school-based pre- and post-tests design was utilized in this study whereby a booklet on dengue was distributed during the interphase of the tests. The information collected was on the socio-demographic, KAP and the source of dengue information. We statistically compared the KAP between the two study sites and the pre- and post-test scores to evaluate the health education program. A total of 203 students participated in the survey, and 51.7% of them were flood victims. When comparing the baseline KAP, the respondents from the unflooded area had higher knowledge scores compared to those from the flooded area (P<0.05), while non-significant differences were observed in the attitude and practice between the two study areas (P>0.05). The health education program significantly improved knowledge and practice in the flooded area and knowledge only in the unflooded area (P<0.05). The multinomial regression analysis suggests that age and dengue history are the primary determinants that influence the high practice level in both areas. We suggest the need to increase routine dengue health education programs to all age groups targeting both high and low dengue risk areas, and the necessity to ensure the translation of positive knowledge and attitude changes into real dengue preventive practices.
  13. van Doremalen N, Lambe T, Sebastian S, Bushmaker T, Fischer R, Feldmann F, et al.
    PLoS Negl Trop Dis, 2019 06;13(6):e0007462.
    PMID: 31170144 DOI: 10.1371/journal.pntd.0007462
    Nipah virus (NiV) is a highly pathogenic re-emerging virus that causes outbreaks in South East Asia. Currently, no approved and licensed vaccine or antivirals exist. Here, we investigated the efficacy of ChAdOx1 NiVB, a simian adenovirus-based vaccine encoding NiV glycoprotein (G) Bangladesh, in Syrian hamsters. Prime-only as well as prime-boost vaccination resulted in uniform protection against a lethal challenge with NiV Bangladesh: all animals survived challenge and we were unable to find infectious virus either in oral swabs, lung or brain tissue. Furthermore, no pathological lung damage was observed. A single-dose of ChAdOx1 NiVB also prevented disease and lethality from heterologous challenge with NiV Malaysia. While we were unable to detect infectious virus in swabs or tissue of animals challenged with the heterologous strain, a very limited amount of viral RNA could be found in lung tissue by in situ hybridization. A single dose of ChAdOx1 NiVB also provided partial protection against Hendra virus and passive transfer of antibodies elicited by ChAdOx1 NiVB vaccination partially protected Syrian hamsters against NiV Bangladesh. From these data, we conclude that ChAdOx1 NiVB is a suitable candidate for further NiV vaccine pre-clinical development.
  14. Lara A, Cong Y, Jahrling PB, Mednikov M, Postnikova E, Yu S, et al.
    PLoS Negl Trop Dis, 2019 06;13(6):e0007454.
    PMID: 31166946 DOI: 10.1371/journal.pntd.0007454
    The ability to appropriately mimic human disease is critical for using animal models as a tool for understanding virus pathogenesis. In the case of Nipah virus (NiV), infection of humans appears to occur either through inhalation, contact with or consumption of infected material. In two of these circumstances, respiratory or sinusoidal exposure represents a likely route of infection. In this study, intermediate-size aerosol particles (~7 μm) of NiV-Malaysia were used to mimic potential routes of exposure by focusing viral deposition in the upper respiratory tract. Our previous report showed this route of exposure extended the disease course and a single animal survived the infection. Here, analysis of the peripheral immune response found minimal evidence of systemic inflammation and depletion of B cells during acute disease. However, the animal that survived infection developed an early IgM response with rapid development of neutralizing antibodies that likely afforded protection. The increase in NiV-specific antibodies correlated with an expansion of the B cell population in the survivor. Cell-mediated immunity was not clearly apparent in animals that succumbed during the acute phase of disease. However, CD4+ and CD8+ effector memory cells increased in the survivor with correlating increases in cytokines and chemokines associated with cell-mediated immunity. Interestingly, kinetic changes of the CD4+ and CD8bright T cell populations over the course of acute disease were opposite from animals that succumbed to infection. In addition, increases in NK cells and basophils during convalescence of the surviving animal were also evident, with viral antigen found in NK cells. These data suggest that a systemic inflammatory response and "cytokine storm" are not major contributors to NiV-Malaysia pathogenesis in the AGM model using this exposure route. Further, these data demonstrate that regulation of cell-mediated immunity, in addition to rapid production of NiV specific antibodies, may be critical for surviving NiV infection.
  15. Murphy A, Rajahram GS, Jilip J, Maluda M, William T, Hu W, et al.
    PLoS Negl Trop Dis, 2020 05;14(5):e0007504.
    PMID: 32392222 DOI: 10.1371/journal.pntd.0007504
    In South East Asia, dengue epidemics have increased in size and geographical distribution in recent years. We examined the spatiotemporal distribution and epidemiological characteristics of reported dengue cases in the predominantly rural state of Sabah, in Malaysian Borneo-an area where sylvatic and urban circulation of pathogens are known to intersect. Using a public health data set of routinely notified dengue cases in Sabah between 2010 and 2016, we described demographic and entomological risk factors, both before and after a 2014 change in the clinical case definition for the disease. Annual dengue incidence rates were spatially variable over the 7-year study period from 2010-2016 (state-wide mean annual incidence of 21 cases/100,000 people; range 5-42/100,000), but were highest in rural localities in the western districts of the state (Kuala Penyu, Nabawan, Tenom and Kota Marudu). Eastern districts exhibited lower overall dengue rates, although a high proportion of severe (haemorrhagic) dengue cases (44%) were focused in Sandakan and Tawau. Dengue incidence was highest for those aged between 10 and 29 years (24/100,000), and was slightly higher for males compared to females. Available vector surveillance data indicated that during large outbreaks in 2015 and 2016 the mosquito Aedes albopictus was more prevalent in both urban and rural households (House Index of 64%) than Ae. aegypti (15%). Demographic patterns remained unchanged both before and after the dengue case definition was changed; however, in the years following the change, reported case numbers increased substantially. Overall, these findings suggest that dengue outbreaks in Sabah are increasing in both urban and rural settings. Future studies to better understand the drivers of risk in specific age groups, genders and geographic locations, and to test the potential role of Ae. albopictus in transmission, may help target dengue prevention and control efforts.
  16. Cools P, van Lieshout L, Koelewijn R, Addiss D, Ajjampur SSR, Ayana M, et al.
    PLoS Negl Trop Dis, 2020 06;14(6):e0008231.
    PMID: 32544158 DOI: 10.1371/journal.pntd.0008231
    BACKGROUND: Nucleic acid amplification tests (NAATs) are increasingly being used as diagnostic tools for soil-transmitted helminths (STHs; Ascaris lumbricoides, Trichuris trichiura, Necator americanus, Ancylostoma duodenale and A. ceylanicum), Strongyloides stercoralis and Schistosoma in human stool. Currently, there is a large diversity of NAATs being applied, but an external quality assessment scheme (EQAS) for these diagnostics is lacking. An EQAS involves a blinded process where test results reported by a laboratory are compared to those reported by reference or expert laboratories, allowing for an objective assessment of the diagnostic performance of a laboratory. In the current study, we piloted an international EQAS for these helminths (i) to investigate the feasibility of designing and delivering an EQAS; (ii) to assess the diagnostic performance of laboratories; and (iii) to gain insights into the different NAAT protocols used.

    METHODS AND PRINCIPAL FINDINGS: A panel of twelve stool samples and eight DNA samples was validated by six expert laboratories for the presence of six helminths (Ascaris, Trichuris, N. americanus, Ancylostoma, Strongyloides and Schistosoma). Subsequently this panel was sent to 15 globally dispersed laboratories. We found a high degree of diversity among the different DNA extraction and NAAT protocols. Although most laboratories performed well, we could clearly identify the laboratories that were poorly performing.

    CONCLUSIONS/SIGNIFICANCE: We showed the technical feasibility of an international EQAS for the NAAT of STHs, Strongyloides and Schistosoma. In addition, we documented that there are clear benefits for participating laboratories, as they can confirm and/or improve the diagnostic performance of their NAATs. Further research should aim to identify factors that explain poor performance of NAATs.

  17. Muh F, Kim N, Nyunt MH, Firdaus ER, Han JH, Hoque MR, et al.
    PLoS Negl Trop Dis, 2020 06;14(6):e0008323.
    PMID: 32559186 DOI: 10.1371/journal.pntd.0008323
    Malaria is caused by multiple different species of protozoan parasites, and interventions in the pre-elimination phase can lead to drastic changes in the proportion of each species causing malaria. In endemic areas, cross-reactivity may play an important role in the protection and blocking transmission. Thus, successful control of one species could lead to an increase in other parasite species. A few studies have reported cross-reactivity producing cross-immunity, but the extent of cross-reactive, particularly between closely related species, is poorly understood. P. vivax and P. knowlesi are particularly closely related species causing malaria infections in SE Asia, and whilst P. vivax cases are in decline, zoonotic P. knowlesi infections are rising in some areas. In this study, the cross-species reactivity and growth inhibition activity of P. vivax blood-stage antigen-specific antibodies against P. knowlesi parasites were investigated. Bioinformatics analysis, immunofluorescence assay, western blotting, protein microarray, and growth inhibition assay were performed to investigate the cross-reactivity. P. vivax blood-stage antigen-specific antibodies recognized the molecules located on the surface or released from apical organelles of P. knowlesi merozoites. Recombinant P. vivax and P. knowlesi proteins were also recognized by P. knowlesi- and P. vivax-infected patient antibodies, respectively. Immunoglobulin G against P. vivax antigens from both immune animals and human malaria patients inhibited the erythrocyte invasion by P. knowlesi. This study demonstrates that there is extensive cross-reactivity between antibodies against P. vivax to P. knowlesi in the blood stage, and these antibodies can potently inhibit in vitro invasion, highlighting the potential cross-protective immunity in endemic areas.
  18. Chong NS, Smith SR, Werkman M, Anderson RM
    PLoS Negl Trop Dis, 2021 08;15(8):e0009625.
    PMID: 34339450 DOI: 10.1371/journal.pntd.0009625
    The World Health Organization has recommended the application of mass drug administration (MDA) in treating high prevalence neglected tropical diseases such as soil-transmitted helminths (STHs), schistosomiasis, lymphatic filariasis, onchocerciasis and trachoma. MDA-which is safe, effective and inexpensive-has been widely applied to eliminate or interrupt the transmission of STHs in particular and has been offered to people in endemic regions without requiring individual diagnosis. We propose two mathematical models to investigate the impact of MDA on the mean number of worms in both treated and untreated human subpopulations. By varying the efficay of drugs, initial conditions of the models, coverage and frequency of MDA (both annual and biannual), we examine the dynamic behaviour of both models and the possibility of interruption of transmission. Both models predict that the interruption of transmission is possible if the drug efficacy is sufficiently high, but STH infection remains endemic if the drug efficacy is sufficiently low. In between these two critical values, the two models produce different predictions. By applying an additional round of biannual and annual MDA, we find that interruption of transmission is likely to happen in both cases with lower drug efficacy. In order to interrupt the transmission of STH or eliminate the infection efficiently and effectively, it is crucial to identify the appropriate efficacy of drug, coverage, frequency, timing and number of rounds of MDA.
  19. Hajissa K, Islam MA, Sanyang AM, Mohamed Z
    PLoS Negl Trop Dis, 2022 Feb 11;16(2):e0009971.
    PMID: 35148325 DOI: 10.1371/journal.pntd.0009971
    INTRODUCTION: Parasitic infections, especially intestinal protozoan parasites (IPPs) remain a significant public health issue in Africa, where many conditions favour the transmission and children are the primary victims. This systematic review and meta-analysis was carried out with the objective of assessing the prevalence of IPPs among school children in Africa.

    METHODS: Relevant studies published between January 2000 and December 2020 were identified by systematic online search on PubMed, Web of Science, Embase and Scopus databases without language restriction. Pooled prevalence was estimated using a random-effects model. Heterogeneity of studies were assessed using Cochrane Q test and I2 test, while publication bias was evaluated using Egger's test.

    RESULTS: Of the 1,645 articles identified through our searches, 46 cross-sectional studies matched our inclusion criteria, reported data from 29,968 school children of Africa. The pooled prevalence of intestinal protozoan parasites amongst African school children was 25.8% (95% CI: 21.2%-30.3%) with E. histolytica/ dispar (13.3%; 95% CI: 10.9%-15.9%) and Giardia spp. (12%; 95% CI: 9.8%-14.3%) were the most predominant pathogenic parasites amongst the study participants. While E. coli was the most common non-pathogenic protozoa (17.1%; 95% CI: 10.9%-23.2%).

    CONCLUSIONS: This study revealed a relatively high prevalence of IPPs in school children, especially in northern and western Africa. Thus, poverty reduction, improvement of sanitation and hygiene and attention to preventive control measures will be the key to reducing protozoan parasite transmission.

  20. Marzo RR, Ahmad A, Islam MS, Essar MY, Heidler P, King I, et al.
    PLoS Negl Trop Dis, 2022 01;16(1):e0010103.
    PMID: 35089917 DOI: 10.1371/journal.pntd.0010103
    BACKGROUND: Mass vaccination campaigns have significantly reduced the COVID-19 burden. However, vaccine hesitancy has posed significant global concerns. The purpose of this study was to determine the characteristics that influence perceptions of COVID-19 vaccine efficacy, acceptability, hesitancy and decision making to take vaccine among general adult populations in a variety of socioeconomic and cultural contexts.

    METHODS: Using a snowball sampling approach, we conducted an online cross-sectional study in 20 countries across four continents from February to May 2021.

    RESULTS: A total of 10,477 participants were included in the analyses with a mean age of 36±14.3 years. The findings revealed the prevalence of perceptions towards COVID-19 vaccine's effectiveness (78.8%), acceptance (81.8%), hesitancy (47.2%), and drivers of vaccination decision-making (convenience [73.3%], health providers' advice [81.8%], and costs [57.0%]). The county-wise distribution included effectiveness (67.8-95.9%; 67.8% in Egypt to 95.9% in Malaysia), acceptance (64.7-96.0%; 64.7% in Australia to 96.0% in Malaysia), hesitancy (31.5-86.0%; 31.5% in Egypt to 86.0% in Vietnam), convenience (49.7-95.7%; 49.7% in Austria to 95.7% in Malaysia), advice (66.1-97.3%; 66.1% in Austria to 97.3% in Malaysia), and costs (16.0-91.3%; 16.0% in Vietnam to 91.3% in Malaysia). In multivariable regression analysis, several socio-demographic characteristics were identified as associated factors of outcome variables including, i) vaccine effectiveness: younger age, male, urban residence, higher education, and higher income; ii) acceptance: younger age, male, urban residence, higher education, married, and higher income; and iii) hesitancy: male, higher education, employed, unmarried, and lower income. Likewise, the factors associated with vaccination decision-making including i) convenience: younger age, urban residence, higher education, married, and lower income; ii) advice: younger age, urban residence, higher education, unemployed/student, married, and medium income; and iii) costs: younger age, higher education, unemployed/student, and lower income.

    CONCLUSIONS: Most participants believed that vaccination would effectively control and prevent COVID-19, and they would take vaccinations upon availability. Determinant factors found in this study are critical and should be considered as essential elements in developing COVID-19 vaccination campaigns to boost vaccination uptake in the populations.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links