Displaying publications 81 - 100 of 108 in total

Abstract:
Sort:
  1. Gabriel S, Rasheed AK, Siddiqui R, Appaturi JN, Fen LB, Khan NA
    Parasitol Res, 2018 Jun;117(6):1801-1811.
    PMID: 29675682 DOI: 10.1007/s00436-018-5864-0
    Brain-eating amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) have gained increasing attention owing to their capacity to produce severe human and animal infections involving the brain. Early detection is a pre-requisite in successful prognosis. Here, we developed a nanoPCR assay for the rapid detection of brain-eating amoebae using various nanoparticles. Graphene oxide, copper and alumina nanoparticles used in this study were characterized using Raman spectroscopy measurements through excitation with a He-Ne laser, while powder X-ray diffraction patterns were taken on a PANanalytical, X'Pert HighScore diffractometer and the morphology of the materials was confirmed using high-resolution transmission electron microscopy (HRTEM). Using nanoparticle-assisted PCR, the results revealed that graphene oxide, copper oxide and alumina nanoparticles significantly enhanced PCR efficiency in the detection of pathogenic free-living amoebae using genus-specific probes. The optimal concentration of graphene oxide, copper oxide and alumina nanoparticles for Acanthamoeba spp. was determined at 0.4, 0.04 and 0.4 μg per mL respectively. For B. mandrillaris, the optimal concentration was determined at 0.4 μg per mL for graphene oxide, copper oxide and alumina nanoparticles, and for Naegleria, the optimal concentration was 0.04, 4.0 and 0.04 μg per mL respectively. Moreover, combinations of these nanoparticles proved to further enhance PCR efficiency. The addition of metal oxide nanoparticles leads to excellent surface effect, while thermal conductivity property of the nanoparticles enhances PCR productivity. These findings suggest that nanoPCR assay has tremendous potential in the clinical diagnosis of parasitic infections as well as for studying epidemiology and pathology and environmental monitoring of other microbes.
  2. Fuehrer HP, Treiber M, Silbermayr K, Baumann TA, Swoboda P, Joachim A, et al.
    Parasitol Res, 2013 Jun;112(6):2393-5.
    PMID: 23358737 DOI: 10.1007/s00436-013-3311-9
    Dirofilaria immitis is a parasite of domestic and wild canids and felids in tropical, subtropical and temperate regions throughout the world. The canine heartworm (D. immitis) is the causative agent of canine and feline cardiopulmonary dirofilariasis. This parasite is known to cause a zoonotic disease, namely human pulmonary dirofilariasis. D. immitis is known to be endemic in several South and Southeast Asian countries (e.g. India and Malaysia), but there has previously been no information about the presence of this pathogen in Bangladesh. We present a case of canine dirofilariasis caused by D. immitis in rural southeastern Bangladesh. A male filaroid nematode (95 mm in length and 1.94 mm in width) was identified in the heart of a dog. Species classification was performed by microscopy and molecular tools. Sequence analysis revealed a 100 % identity within the mitochondrial cytochrome c oxidase I (CO1) gene to two Chinese and one Australian D. immitis samples. Usually, dogs stay outside overnight with a high risk to get infected with D. immitis via nocturnal mosquito vectors, which may lead to high prevalences of this pathogen in the canine population and thus increase the risk of human infections with this neglected parasitic disease.
  3. Fong MY, Lau YL
    Parasitol Res, 2004 Jan;92(2):173-6.
    PMID: 14655048
    A gene encoding the larval excretory-secretory antigen TES-120 of the dog ascarid worm Toxocara canis was cloned into the methylotrophic yeast Pichia pastoris. Specificity of the recombinant TES-120 antigen produced by the yeast was investigated. Forty-five human serum samples from patients infected with different()parasitic organisms, including 8 cases of toxocariasis, were tested against the recombinant antigen in immunoblot assays. Results from the assays showed that the recombinant TES-120 antigen reacted with sera from toxocariasis patients only. This highly specific recombinant TES-120 antigen can potentially be used for the development of an inexpensive serodiagnostic assay for human toxocariasis.
  4. Fang F, Chang Q, Sheng Z, Zhang Y, Yin Z, Guillot J
    Parasitol Res, 2019 Dec;118(12):3237-3240.
    PMID: 31655903 DOI: 10.1007/s00436-019-06464-x
    Chrysomya bezziana is an obligate, myiasis-causing fly in humans and warm-blooded animals throughout the tropical and subtropical Old World. We report a case of cutaneous myiasis due to C. bezziana in a dog from Guangxi province in China. A total of 35 maggots were removed from the lesions. Direct sequencing of the mitochondrial cytochrome b gene showed that the specimen belonged to haplotype CB_bezz02, which was previously reported in Malaysia and the Gulf region. This paper also reviews reported cases of screwworm myiasis from humans and animals in China. Geographical records indicate that the distribution of C. bezziana is expanding, suggesting that an integrated pest management control should be taken into consideration in China.
  5. Elamathi N, Barik TK, Verma V, Velamuri PS, Bhatt RM, Sharma SK, et al.
    Parasitol Res, 2014 Oct;113(10):3859-66.
    PMID: 25098343 DOI: 10.1007/s00436-014-4054-y
    The WHO adult susceptibility test is in use for insecticide resistance monitoring. Presently, materials are being imported from the Universiti Sains Malaysia, Malaysia and sometimes it is cost prohibitive. As an alternative, we present here a method of bottle bioassay using indigenous material. Different aspects related to the assay were studied and validated in the field. Bottle assay was standardized in the laboratory by using locally sourced material and laboratory-maintained insecticide-susceptible Anopheles stephensi and Aedes aegypti strains against technical grade deltamethrin and cyfluthrin insecticides dissolved in ethanol in a range of different concentrations. The frequency of use of the deltamethrin-coated bottles and shelf-life were determined. Discriminating dose for deltamethrin and cyfluthrin was 10 μg against An. stephensi and 2 μg against Ae. aegypti females. Insecticide-coated bottles stored at 25 to 35 °C can be used for three exposures within 7 days of coating. The study carried out in the laboratory was validated on wild caught An. culicifacies in the states of Odisha and Chhattisgarh against deltamethrin-coated bottles in comparison to WHO adult susceptibility test. Results of the study indicated that deltamethrin-coated bottles were effective up to three exposures within 7 days of coating for field population and 100% mortality was recorded within 35 min as observed in laboratory studies for field collected susceptible population. Also in the WHO adult susceptibility test, 100% knock-down within 35 min and 100% mortality after 24 h holding period were observed in susceptible population, while in it was 50% knock-down in 1 h and 64% mortality after 24 h holding period for resistant population (50% mortality in bottle assay in 60 min). The bottle assay can be used as an alternative to the WHO adult susceptibility test both in the laboratory and field for monitoring insecticide resistance in mosquito vectors using locally sourced material.
  6. Ekawasti F, Kitagawa K, Domae H, Wardhana AH, Shibahara T, Uni S, et al.
    Parasitol Res, 2020 Apr;119(4):1271-1279.
    PMID: 32072327 DOI: 10.1007/s00436-020-06618-2
    To date, more than 50 Eimeria spp. have been isolated from marsupials of the family Macropodidae. Although 18 species of Eimeria have been previously detected from multiple animal species belonging to the genus Macropus of the family, limited genetic analyses of the parasites are available, and their pathogenicity remains unclear. Here, we report the isolation of Eimeria spp. from a zoo specimen of red-necked wallaby (Macropodidae; Macropus rufogriseus). Specifically, two distinct types of Eimeria oocysts were recovered, one from the feces before treatment with an anthelmintic and the second from the intestinal contents after death of the animal. The oocysts obtained from the two sources were morphologically identified as E. hestermani and E. prionotemni, respectively. We successfully determined partial gene sequences from the two isolates, including segments of the 18S rRNA genes, and for the first time have used phylogenetic analyses of these sequences to assign the species to distinct clades. In combination with further genetic data, these results are expected to help elucidate the pathogenicity and host ranges of Eimeria spp. within the respective family and genus.
  7. Dib HH, Lu SQ, Wen SF
    Parasitol Res, 2008 Jul;103(2):239-51.
    PMID: 18425689 DOI: 10.1007/s00436-008-0968-6
    This article is a review of the latest information on the prevalence of G. lamblia in South Asia, South East Asia and Far East, characterizing the current endemic situation within these regions. Around 33 published papers from 2002-2007 were collected on G. lamblia. The included countries were Nepal, Bangladesh, India, Cambodia, Vietnam, Malaysia, Philippines, Indonesia, Thailand, Republic of Korea, and China. Only five published papers were discarded because data was extracted before 2002-2007 or they are not included within our regions, emphasizing more on G. lamblia in animals, or performed at extensive molecular level. The prevalence of G. lamblia varied markedly between studies illustrating higher levels in the urban than in the rural areas, more among poor communities, slightly higher in males than in females with age range of 2-5-year-old children, and among university students, old-aged people, HIV-positive patients, and gastric carcinoma patients. Though G. lamblia is not a life-threatening parasite, nevertheless, it is still considered as the most common water-borne diarrhea-causing disease. It is important to understand the etiology, frequency, and consequences of acute diarrhea in children. Routine surveillance such as bi-annual follow-up treatments, treating G. duodenalis cysts and other protozoa oocysts detected in ground water sources, and continuous health education are the most preventive measures.
  8. Ching XT, Lau YL, Fong MY, Nissapatorn V
    Parasitol Res, 2013 Mar;112(3):1229-36.
    PMID: 23274488 DOI: 10.1007/s00436-012-3255-5
    Toxoplasma gondii infects all warm-blooded animals including humans, causing serious public health problems and great economic loss in the food industry. Commonly used serological tests involve preparation of whole Toxoplasma lysate antigens from tachyzoites which are costly and hazardous. An alternative method for better antigen production involving the prokaryotic expression system was therefore used in this study. Recombinant dense granular protein, GRA2, was successfully cloned, expressed, and purified in Escherichia coli, BL21 (DE3) pLysS. The potential of this purified antigen for diagnosis of human infections was evaluated through western blot analysis against 100 human serum samples. Results showed that the rGRA2 protein has 100 and 61.5 % sensitivity towards acute and chronic infection, respectively, in T. gondii-infected humans, indicating that this protein is useful in differentiating present and past infections. Therefore, it is suitable to be used as a sensitive and specific molecular marker for the serodiagnosis of Toxoplasma infection in both humans and animals.
  9. Cheah SX, Tay JW, Chan LK, Jaal Z
    Parasitol Res, 2013 Sep;112(9):3275-82.
    PMID: 23835922 DOI: 10.1007/s00436-013-3506-0
    This study focuses on the larvicidal, oviposition, and ovicidal effects of a crude extract of Artemisia annua against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus. Dried cells of Artemisia annua from cell suspension cultures were extracted using hexane. The extract showed moderate larvicidal effects against mosquitoes. At 24-h post treatment, the LC50 values for Anopheles sinensis, Aedes aegypti, and Culex quinquefasciatus were recorded as 244.55, 276.14, and 374.99 ppm, respectively. The percentage mortality of larvae was directly proportional to the tested concentration. Anopheles sinensis was found to be the most susceptible species, whereas Culex quinquefasciatus was the most tolerant to the Artemisia annua extract. The results indicated that the Artemisia annua extract showed concentration-dependent oviposition deterrent activity and had a strong deterrent effect. At 500 ppm, the percentage effective repellency was more than 85% compared with the control group for all the species, with oviposition activity index values of -0.94, -0.95, and -0.78 for Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus, respectively. In the ovicidal assay, the percentage hatchability of eggs after treatment with 500 ppm of Artemisia annua extract was significantly lower than the control, with values of 48.84 ± 4.08, 38.42 ± 3.67, and 79.35 ± 2.09% for Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus, respectively. Artemisia annua was found to be more effective against Aedes aegypti and Anopheles sinensis compared with Culex quinquefasciatus. This study indicated that crude extract of A. annua could be a potential alternative for use in vector management programs.
  10. Chang CH, Few LL, Lim BH, Yvonne-Tee GB, Chew AL, See Too WC
    Parasitol Res, 2023 Jul;122(7):1651-1661.
    PMID: 37202563 DOI: 10.1007/s00436-023-07869-5
    The de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica is largely dependent on the CDP-choline and CDP-ethanolamine pathways. Although the first enzymes of these pathways, EhCK1 and EhCK2, have been previously characterized, their enzymatic activity was found to be low and undetectable, respectively. This study aimed to identify the unusual characteristics of these enzymes in this deadly parasite. The discovery that EhCKs prefer Mn2+ over the typical Mg2+ as a metal ion cofactor is intriguing for CK/EK family of enzymes. In the presence of Mn2+, the activity of EhCK1 increased by approximately 108-fold compared to that in Mg2+. Specifically, in Mg2+, EhCK1 exhibited a Vmax and K0.5 of 3.5 ± 0.1 U/mg and 13.9 ± 0.2 mM, respectively. However, in Mn2+, it displayed a Vmax of 149.1 ± 2.5 U/mg and a K0.5 of 9.5 ± 0.1 mM. Moreover, when Mg2+ was present at a constant concentration of 12 mM, the K0.5 value for Mn2+ was ~ 2.4-fold lower than that in Mn2+ alone, without affecting its Vmax. Although the enzyme efficiency of EhCK1 was significantly improved by about 25-fold in Mn2+, it is worth noting that its Km for choline and ATP were higher than in equimolar of Mg2+ in a previous study. In contrast, EhCK2 showed specific activity towards ethanolamine in Mn2+, exhibiting Michaelis-Menten kinetic with ethanolamine (Km = 312 ± 27 µM) and cooperativity with ATP (K0.5 = 2.1 ± 0.2 mM). Additionally, we investigated the effect of metal ions on the substrate recognition of human choline and ethanolamine kinase isoforms. Human choline kinase α2 was found to absolutely require Mg2+, while choline kinase β differentially recognized choline and ethanolamine in Mg2+ and Mn2+, respectively. Finally, mutagenesis studies revealed that EhCK1 Tyr129 was critical for Mn2+ binding, while Lys233 was essential for substrate catalysis but not metal ion binding. Overall, these findings provide insight into the unique characteristics of the EhCKs and highlight the potential for new approaches to treating amoebiasis. Amoebiasis is a challenging disease for clinicians to diagnose and treat, as many patients are asymptomatic. However, by studying the enzymes involved in the CDP-choline and CDP-ethanolamine pathways, which are crucial for de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica, there is great potential to discover new therapeutic approaches to combat this disease.
  11. Chandramathi S, Suresh KG, Mahmood AA, Kuppusamy UR
    Parasitol Res, 2010 May;106(6):1459-63.
    PMID: 20358228 DOI: 10.1007/s00436-010-1825-y
    The fact whether Blastocystis hominis can invade has always been in question. Apart from a few sporadic studies such as that done on gnotobiotic guinea pigs which showed surface invasion and mucosal inflammation of the host's intestine caused by B. hominis infection, no real documentation of invasion has been proven. Studies have shown that hyaluronidase is secreted during the penetration into the host's skin and gut by nematode parasites. Hyaluronidase activity in protozoa namely Entamoeba histolytica has also been described previously. This study attempts to determine hyaluronidase in urine samples of B. hominis-infected rats. The presence of hyaluronidase in urine provides an indirect evidence of invasion by B. hominis into colonic epithelium causing the degradation of extracellular matrix proteins namely hyaluronic acid (HA). HA is depolymerized by hyaluronidase which may be used by organisms to invade one another. In this study, the levels of urinary hyaluronidase of Sprague-Dawley rats infected with B. hominis were monitored for 30 days. Hyaluronidase levels in the infected rats were significantly higher on days 28 and 30 compared to the day before inoculation (P < 0.01 and P < 0.05, respectively). During this stage, parasitic burden in infected stools was also at a high level. Proinflammatory cytokines, interleukin-6 and interleukin-8, were also significantly higher (P < 0.05) in the serum of infected rats. The study demonstrates that since no other pathogen was present and that amoeboid forms of the parasites have been shown to exist previously, the elevated levels of hyaluronidase in this preliminary finding suggests that the organism is capable of having invasion or penetration activity in the hosts' intestine.
  12. Chandramathi S, Suresh K, Kuppusamy UR
    Parasitol Res, 2010 Mar;106(4):941-5.
    PMID: 20165878 DOI: 10.1007/s00436-010-1764-7
    Blastocystis hominis is one of the most common intestinal protozoan parasites in humans, and reports have shown that blastocystosis is coupled with intestinal disorders. In the past, researchers have developed an in vitro model using B. hominis culture filtrates to investigate its ability in triggering inflammatory cytokine responses and transcription factors in human colonic epithelial cells. Studies have also correlated the inflammation by parasitic infection with cancer. The present study provides evidence of the parasite facilitating cancer cell growth through observing the cytopathic effect, cellular immunomodulation, and apoptotic responses of B. hominis, especially in malignancy. Here we investigated the effect of solubilized antigen from B. hominis on cell viability, using peripheral blood mononuclear cells (PBMCs) and human colorectal carcinoma cells (HCT116). The gene expressions of cytokines namely interleukin 6 (IL-6), IL-8, tumor necrosis factor alpha, interferon gamma, nuclear factor kappa light-chain enhancer of activated B cells (a gene transcription factor), and proapoptotic genes namely protein 53 and cathepsin B were also studied. Results exhibited favor the fact that antigen from B. hominis, at a certain concentration, could facilitate the growth of HCT116 while having the ability to downregulate immune cell responses (PBMCs). Therefore, there is a vital need to screen colorectal cancer patients for B. hominis infection as it possesses the ability to enhance the tumor growth.
  13. Chan KH, Chandramathi S, Suresh K, Chua KH, Kuppusamy UR
    Parasitol Res, 2012 Jun;110(6):2475-80.
    PMID: 22278727 DOI: 10.1007/s00436-011-2788-3
    The pathogenesis of Blastocystis hominis in human hosts has always been a matter of debate as it is present in both symptomatic and asymptomatic individuals. A recent report showed that B. hominis isolated from an asymptomatic individual could facilitate the proliferation and growth of existing cancer cells while having the potential to downregulate the host immune response. The present study investigated the differences between the effects of symptomatic and asymptomatic derived solubilized antigen of B. hominis (Blasto-Ag) on the cell viability and proliferation of colorectal cancer cells. Besides that, the gene expression of cytokine and nuclear transcriptional factors in response to the symptomatic and asymptomatic B. hominis antigen in HCT116 was also compared. In the current study, an increase in cell proliferation was observed in HCT116 cells which led to the speculation that B. hominis infection could facilitate the growth of colorectal cancer cells. In addition, a more significant upregulation of Th2 cytokines observed in HCT116 may lead to the postulation that symptomatic Blasto-Ag may have the potential in weakening the cellular immune response, allowing the progression of existing tumor cells. The upregulation of nuclear factor kappa light chain enhancer of activated B cells (NF-κB) was observed in HCT116 exposed to symptomatic Blasto-Ag, while asymptomatic Blasto-Ag exhibited an insignificant effect on NF-κB gene expression in HCT116. HCT116 cells exposed to symptomatic and asymptomatic Blasto-Ag caused a significant upregulation of CTSB which lead to the postulation that the Blasto-Ag may enhance the invasive and metastasis properties of colorectal cancer. In conclusion, antigen isolated from a symptomatic individual is more pathogenic as compared to asymptomatic isolates as it caused a more extensive inflammatory reaction as well as more enhanced proliferation of cancer cells.
  14. Borkhanuddin MH, Cech G, Mazelan S, Shaharom-Harrison F, Molnár K, Székely C
    Parasitol Res, 2014 Jan;113(1):29-37.
    PMID: 24096611 DOI: 10.1007/s00436-013-3622-x
    The authors studied the myxosporean infection of wild gobiid fishes (Perciformes: Gobioidei) in the Merang Estuary of Terengganu, Malaysia, and described Myxobolus ophiocarae sp. n. in Ophiocara porocephala. Several myxosporean plasmodia were found intralamellarly within the gill filaments. The spores differed from those of other Myxobolus species previously recorded on gobiid fishes. They were round in valvular view and lens-shaped in sutural view, and had two equal-sized, pyriform polar capsules with polar filaments having six to seven turns. The spores measured 10.34 × 8.79 × 4.53 μm. The 18S rDNA sequence of M. ophiocarae sp. n., based on a contiguous sequence of 1,789 base pairs, differed from any other Myxobolus spp. in GenBank. Phylogenetic analysis of the 18S rDNA gene revealed that this species showed the closest similarity to Myxobolus nagaraensis, Myxobolus lentisuturalis, and Myxobolus cultus.
  15. Borkhanuddin MH, Cech G, Molnár K, Shaharom-Harrison F, Khoa TND, Samshuri MA, et al.
    Parasitol Res, 2020 Jan;119(1):85-96.
    PMID: 31768684 DOI: 10.1007/s00436-019-06541-1
    Examination of 35 barramundi (Lates calcarifer) from aquaculture cages in Setiu Wetland, Malaysia, revealed a single fish infected with three Henneguya spp. (Cnidaria: Myxosporea). Characterization of the infections using tissue tropism, myxospore morphology and morphometry and 18S rDNA sequencing supported description of three new species: Henneguya setiuensis n. sp., Henneguya voronini n. sp. and H. calcarifer n. sp. Myxospores of all three species had typical Henneguya morphology, with two polar capsules in the plane of the suture, an oval spore body, smooth valve cell surfaces, and two caudal appendages. Spores were morphometrically similar, and many dimensions overlapped, but H. voronini n. sp. had shorter caudal appendages compared with H. calcarifer n. sp. and H. setiuensis n. sp. Gross tissue tropism distinguished the muscle parasite H. calcarifer n. sp. from gill parasites H. setiuensis n. sp. and H. voronini n. sp.; and these latter two species were further separable by fine-scale location of developing plasmodia, which were intra-lamellar for H. setiuensis n. sp. and basal to the filaments for H. voronini n. sp. small subunit ribosomal DNA sequences distinguished all three species: the two gill species H. setiuensis n. sp. and H voronini n. sp. were only 88% similar (over 1708 bp), whereas the muscle species H. calcarifer n. sp. was most similar to H. voronini n. sp. (98% over 1696 bp). None of the three novel species was more than 90% similar to any known myxosporean sequence in GenBank. Low infection prevalence of these myxosporeans and lack of obvious tissue pathology from developing plasmodia suggested none of these parasites are currently a problem for barramundi culture in Setiu Wetland; however additional surveys of fish, particularly at different times of the year, would be informative for better risk assessment.
  16. Azuma H, Okamoto M, Oku Y, Kamiya M
    Parasitol Res, 1995;81(2):103-8.
    PMID: 7731915
    The intraspecific variation of four laboratory-reared isolates of Taenia taeniaformis the SRN and KRN isolates from Norway rats, Rattus norvegicus, captured in Japan and Malaysia, respectively; the BMM isolated from a house mouse, Mus musculus, captured in Belgium; and the ACR isolate from a gray red-backed vole, Clethrionomys rufocanus bedfordiae, captured in Japan was examined by various criteria. Eggs of each of the four isolates were orally inoculated into several species of intermediate host. They were most infective to the rodent species from which the original metacestode of each isolate had been isolated in the field, and only the ACR isolate was infective to the gray red-backed vole. Although little difference was found between the SRN, KRN, and BMM isolates by the other criteria, including the morphology of rostellar hooks, the protein composition of the metacestode, and restriction endonuclease analysis of DNA, the ACR isolate was clearly different from the others. It was considered that the ACR isolate was independent as a strain distinct from the other three isolates.
  17. Azlan UK, Cheong FW, Lau YL, Fong MY
    Parasitol Res, 2022 Dec;121(12):3443-3454.
    PMID: 36152079 DOI: 10.1007/s00436-022-07665-7
    Plasmodium knowlesi utilizes the Duffy binding protein alpha (PkDBPα) to facilitate its invasion into human erythrocytes. PkDBPα region II (PkDBPαII) from Peninsular Malaysia and Malaysian Borneo has been shown to occur as distinct haplotypes, and the predominant haplotypes from these geographical areas demonstrated differences in binding activity to human erythrocytes in erythrocyte binding assays. This study aimed to determine the effects of genetic polymorphisms in PkDBPαII to immune responses in animal models. The recombinant PkDBPαII (~ 45 kDa) of Peninsular Malaysia (PkDBPαII-H) and Malaysian Borneo (PkDBPαII-S) were expressed in a bacterial expression system, purified, and used in mice and rabbit immunization. The profile of cytokines IL-1ra, IL-2, IL-6, IL-10, TNF-α, and IFN-γ in immunized mice spleen was determined via ELISA. The titer and IgG subtype distribution of raised antibodies was characterized. Immunized rabbit sera were purified and used to perform an in vitro merozoite invasion inhibition assay. The PkDBPαII-immunized mice sera of both groups showed high antibody titer and a similar IgG subtype distribution pattern: IgG2b > IgG1 > IgG2a > IgG3. The PkDBPαII-H group was shown to have higher IL-1ra (P = 0.141) and IL-6 (P = 0.049) concentrations, with IL-6 levels significantly higher than that of the PkDBPαII-S group (P ≤ 0.05). Merozoite invasion inhibition assay using purified anti-PkDBPαII antibodies showed a significantly higher inhibition rate in the PkDBPαII-H group than the PkDBPαII-S group (P ≤ 0.05). Besides, anti-PkDBPαII-H antibodies were able to exhibit inhibition activity at a lower concentration than anti-PkDBPαII-S antibodies. PkDBPαII was shown to be immunogenic, and the PkDBPαII haplotype from Peninsular Malaysia exhibited higher responses in cytokines IL-1ra and IL-6, antibody IgM level, and merozoite invasion inhibition assay than the Malaysian Borneo haplotype. This suggests that polymorphisms in the PkDBPαII affect the level of immune responses in the host.
  18. Attah AO, Sanggari A, Li LI, Nik Him NAII, Ismail AH, Meor Termizi FH
    Parasitol Res, 2023 Jan;122(1):1-10.
    PMID: 36434314 DOI: 10.1007/s00436-022-07731-0
    There has been increasing interest in the study of Blastocystis in the last two decades. Many studies have been carried out in human and animal hosts including environmental sources, but there is little or no information on the occurrence of Blastocystis in water sources worldwide. Therefore, this study aimed at assessing the occurrence of Blastocystis in water sources across the world from 2005 to 2022, noting the method of detection and the distribution of the subtypes from various water sources. A literature search was performed on internet-based databases including Google search, PubMed, Scopus, and Web of Science. Upon application of the criteria for inclusion, 25 articles revealing the occurrence of Blastocystis in water sources in 15 countries were included in the review. Blastocystis occurrence varies across water sources ranging from 0% in a drinking water source in Venezuela to 100% in rivers; well water, stored water, and fishpond in Nepal and Malaysia; and fountain water, irrigation water, and rainwater in Italy, Spain, and Thailand. The occurrence of the parasite was significantly associated with the coliform count, temperature, conductivity, dissolved oxygen, turbidity, total dissolved solids, and chemical oxygen demand. A total of 11 Blastocystis subtypes were identified in water sources worldwide, namely, ST1-ST8, ST10, ST23, and ST26 in which ST1 and ST3 were the most prevalent subtypes. Considering the importance of Blastocystis as a waterborne parasite, the subtype distribution and morphological distinction in water sources need to be carried out using molecular and electron microscopic techniques. Existing studies have covered only about 10% of the world's countries.
  19. Ariffin NM, Islahudin F, Kumolosasi E, Makmor-Bakry M
    Parasitol Res, 2019 Mar;118(3):1011-1018.
    PMID: 30706164 DOI: 10.1007/s00436-019-06210-3
    Eliminating the Plasmodium vivax malaria parasite infection remains challenging. One of the main problems is its capacity to form hypnozoites that potentially lead to recurrent infections. At present, primaquine is the only drug used for the management of hypnozoites. However, the effects of primaquine may differ from one individual to another. The aim of this work is to determine new measures to reduce P. vivax recurrence, through primaquine metabolism and host genetics. A genetic study of MAO-A, CYP2D6, CYP1A2 and CYP2C19 and their roles in primaquine metabolism was undertaken of healthy volunteers (n = 53). The elimination rate constant (Ke) and the metabolite-to-parent drug concentration ratio (Cm/Cp) were obtained to assess primaquine metabolism. Allelic and genotypic analysis showed that polymorphisms MAO-A (rs6323, 891G>T), CYP2D6 (rs1065852, 100C>T) and CYP2C19 (rs4244285, 19154G>A) significantly influenced primaquine metabolism. CYP1A2 (rs762551, -163C>A) did not influence primaquine metabolism. In haplotypic analysis, significant differences in Ke (p = 0.00) and Cm/Cp (p = 0.05) were observed between individuals with polymorphisms, GG-MAO-A (891G>T), CT-CYP2D6 (100C>T) and GG-CYP2C19 (19154G>A), and individuals with polymorphisms, TT-MAO-A (891G>T), TT-CYP2D6 (100C>T) and AA-CYP2C19 (19154G>A), as well as polymorphisms, GG-MAO-A (891G>T), TT-CYP2D6 (100C>T) and GA-CYP2C19 (19154G>A). Thus, individuals with CYP2D6 polymorphisms had slower primaquine metabolism activity. The potential significance of genetic roles in primaquine metabolism and exploration of these might help to further optimise the management of P. vivax infection.
  20. Anwar A, Abdalla SAO, Aslam Z, Shah MR, Siddiqui R, Khan NA
    Parasitol Res, 2019 Jul;118(7):2295-2304.
    PMID: 31093751 DOI: 10.1007/s00436-019-06329-3
    Acanthamoeba castellanii belonging to the T4 genotype is an opportunistic pathogen which is associated with blinding eye keratitis and rare but fatal central nervous system infection. A. castellanii pose serious challenges in antimicrobial chemotherapy due to its ability to convert into resistant, hardy shell-protected cyst form that leads to infection recurrence. The fatty acid composition of A. castellanii trophozoites is known to be most abundant in oleic acid which chemically is an unsaturated cis-9-Octadecanoic acid and naturally found in animal and vegetable fats and oils. This study was designed to evaluate antiacanthamoebic effects of oleic acid against trophozoites, cysts as well as parasite-mediated host cell cytotoxicity. Moreover, oleic acid-conjugated silver nanoparticles (AgNPs) were also synthesized and tested against A. castellanii. Oleic acid-AgNPs were synthesized by chemical reduction method and characterized by ultraviolet-visible spectrophotometry, atomic force microscopy, dynamic light scattering analysis, and Fourier transform infrared spectroscopy. Viability, growth inhibition, encystation, and excystation assays were performed with 10 and 5 μM concentration of oleic acid alone and oleic acid-conjugated AgNPs. Bioassays revealed that oleic acid alone and oleic acid-conjugated AgNPs exhibited significant antiamoebic properties, whereas nanoparticle conjugation further enhanced the efficacy of oleic acid. Phenotype differentiation assays also showed significant inhibition of encystation and excystation at 5 μM. Furthermore, oleic acid and oleic acid-conjugated AgNPs also inhibited amoebae-mediated host cell cytotoxicity as determined by lactate dehydrogenase release. These findings for the first time suggest that oleic acid-conjugated AgNPs exhibit antiacanthamoebic activity that hold potential for therapeutic applications against A. castellanii.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links