Displaying publications 81 - 100 of 833 in total

Abstract:
Sort:
  1. Podin Y, Sarovich DS, Price EP, Kaestli M, Mayo M, Hii K, et al.
    Antimicrob Agents Chemother, 2014;58(1):162-6.
    PMID: 24145517 DOI: 10.1128/AAC.01842-13
    Melioidosis is a potentially fatal disease caused by the saprophytic bacterium Burkholderia pseudomallei. Resistance to gentamicin is generally a hallmark of B. pseudomallei, and gentamicin is a selective agent in media used for diagnosis of melioidosis. In this study, we determined the prevalence and mechanism of gentamicin susceptibility found in B. pseudomallei isolates from Sarawak, Malaysian Borneo. We performed multilocus sequence typing and antibiotic susceptibility testing on 44 B. pseudomallei clinical isolates from melioidosis patients in Sarawak district hospitals. Whole-genome sequencing was used to identify the mechanism of gentamicin susceptibility. A novel allelic-specific PCR was designed to differentiate gentamicin-sensitive isolates from wild-type B. pseudomallei. A reversion assay was performed to confirm the involvement of this mechanism in gentamicin susceptibility. A substantial proportion (86%) of B. pseudomallei clinical isolates in Sarawak, Malaysian Borneo, were found to be susceptible to the aminoglycoside gentamicin, a rare occurrence in other regions where B. pseudomallei is endemic. Gentamicin sensitivity was restricted to genetically related strains belonging to sequence type 881 or its single-locus variant, sequence type 997. Whole-genome sequencing identified a novel nonsynonymous mutation within amrB, encoding an essential component of the AmrAB-OprA multidrug efflux pump. We confirmed the role of this mutation in conferring aminoglycoside and macrolide sensitivity by reversion of this mutation to the wild-type sequence. Our study demonstrates that alternative B. pseudomallei selective media without gentamicin are needed for accurate melioidosis laboratory diagnosis in Sarawak. This finding may also have implications for environmental sampling of other locations to test for B. pseudomallei endemicity.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  2. Santhana Raj L, Hing HL, Baharudin O, Teh Hamidah Z, Aida Suhana R, Nor Asiha CP, et al.
    Trop Biomed, 2007 Jun;24(1):105-9.
    PMID: 17568383 MyJurnal
    Mesosomes of Staphylococcus aureus ATCC 25923 treated with antibiotics were examined morphologically under the electron microscope. The Transmission Electron Microscope Rapid Method was used to eliminate the artifacts due to sample processing. Mesosomes were seen in all the antibiotic treated bacteria and not in the control group. The main factor that contributes to the formation of mesosomes in the bacteria was the mode of action of the antibiotics. The continuous cytoplasmic membrane with infolding (mesosomes) as in the S. aureus ATCC 25923 is therefore confirmed as a definite pattern of membrane organization in gram positive bacteria assaulted by amikacin, gentamicin, ciprofloxacin, vancomycin and oxacillin antibiotics. Our preliminary results show oxacillin and vancomycin treated bacteria seemed to have deeper and more mesosomes than those treated with amikacin, gentamicin and ciprofloxacin. Further research is needed to ascertain whether the deep invagination and the number of mesosomes formed is associated with the types of antibiotic used.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  3. Raju SV, Sarkar P, Pasupuleti M, Saraswathi NT, Arasu MV, Al-Dhabi NA, et al.
    PMID: 33465517 DOI: 10.1016/j.cbpc.2021.108974
    Development of antimicrobial drugs against multidrug-resistant (MDR) bacteria is a great focus in recent years. TG12, a short peptide molecule used in this study was screened from tachykinin (Tac) protein of an established teleost Channa striatus (Cs) transcriptome. Tachykinin cDNA has 345 coding sequence, that denotes a protein contained 115 amino acids; in which a short peptide (TG12) was identified at 83-94. Tachykinin mRNA upregulated in C. striatus treated with Aeromonas hydrophila and Escherichia coli lipopolysaccharide (LPS). The mRNA up-regulation was studied using real-time PCR. The up-regulation tachykinin mRNA pattern confirmed the immune involvement of tachykinin in C. striatus during infection. Further, the identified peptide, TG12 was synthesized and its toxicity was demonstrated in hemolytic and cytotoxic assays using human erythrocytes and human dermal fibroblast cells, respectively. The toxicity study exhibited that the toxicity of TG12 was similar to negative control, phosphate buffer saline (PBS). Moreover, the antibiogram of TG12 was active against Klebsiella pneumonia ATCC 27736, a major MDR bacterial pathogen. Further, the antimicrobial activity of TG12 against pathogenic bacteria was screened using minimum inhibitory concentration (MIC) and anti-biofilm assays, altogether TG12 showed potential activity against K. pneumonia. Fluorescence assisted cell sorter flow cytometer analysis (FACS) and field emission scanning electron microscopy (FESEM) was carried on TG12 with K. pneumonia; the results showed that TG12 significantly reduced K. pneumonia viability as well as TG12 disrupt its membrane. In conclusion, TG12 of CsTac is potentially involved in the antibacterial immune mechanisms, which has a prospectus efficiency in pharma industry against MDR strains, especially K. pneumonia.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  4. Qamer S, Romli MH, Che-Hamzah F, Misni N, Joseph NMS, Al-Haj NA, et al.
    Molecules, 2021 Aug 20;26(16).
    PMID: 34443644 DOI: 10.3390/molecules26165057
    The biosynthesis of silver nanoparticles and the antibacterial activities has provided enormous data on populations, geographical areas, and experiments with bio silver nanoparticles' antibacterial operation. Several peer-reviewed publications have discussed various aspects of this subject field over the last generation. However, there is an absence of a detailed and structured framework that can represent the research domain on this topic. This paper attempts to evaluate current articles mainly on the biosynthesis of nanoparticles or antibacterial activities utilizing the scientific methodology of big data analytics. A comprehensive study was done using multiple databases-Medline, Scopus, and Web of Sciences through PRISMA (i.e., Preferred Reporting Items for Systematic Reviews and Meta-Analyses). The keywords used included 'biosynthesis silver nano particles' OR 'silver nanoparticles' OR 'biosynthesis' AND 'antibacterial behavior' OR 'anti-microbial opposition' AND 'systematic analysis,' by using MeSH (Medical Subject Headings) terms, Boolean operator's parenthesis, or truncations as required. Since their effectiveness is dependent on particle size or initial concentration, it necessitates more research. Understanding the field of silver nanoparticle biosynthesis and antibacterial activity in Gulf areas and most Asian countries also necessitates its use of human-generated data. Furthermore, the need for this work has been highlighted by the lack of predictive modeling in this field and a need to combine specific domain expertise. Studies eligible for such a review were determined by certain inclusion and exclusion criteria. This study contributes to the existence of theoretical and analytical studies in this domain. After testing as per inclusion criteria, seven in vitro studies were selected out of 28 studies. Findings reveal that silver nanoparticles have different degrees of antimicrobial activity based on numerous factors. Limitations of the study include studies with low to moderate risks of bias and antimicrobial effects of silver nanoparticles. The study also reveals the possible use of silver nanoparticles as antibacterial irrigants using various methods, including a qualitative evaluation of knowledge and a comprehensive collection and interpretation of scientific studies.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  5. Léger A, Lambraki I, Graells T, Cousins M, Henriksson PJG, Harbarth S, et al.
    BMC Infect Dis, 2021 Aug 26;21(1):873.
    PMID: 34445962 DOI: 10.1186/s12879-021-06483-z
    BACKGROUND: Antimicrobial resistance (AMR) is among the most pressing One Health issues. While interventions and policies with various targets and goals have been implemented, evidence about factors underpinning success and failure of interventions in different sectors is lacking. The objective of this study is to identify characteristics of AMR interventions that increase their capacity to impact AMR. This study focuses on AMR interventions targeting E. coli.

    METHODS: We used the AMR-Intervene framework to extract descriptions of the social and ecological systems of interventions to determine factors contributing to their success.

    RESULTS: We identified 52 scientific publications referring to 42 unique E. coli AMR interventions. We mainly identified interventions implemented in high-income countries (36/42), at the national level (16/42), targeting primarily one sector of society (37/42) that was mainly the human sector (25/42). Interventions were primarily funded by governments (38/42). Most intervention targeted a low leverage point in the AMR system, (36/42), and aimed to change the epidemiology of AMR (14/42). Among all included publications, 55% (29/52) described at least one success factor or obstacle (29/52) and 19% (10/52) identified at least one success factor and one obstacle. Most reported success factors related to communication between the actors and stakeholders and the role of media, and stressed the importance of collaboration between disciplines and external partners. Described obstacles covered data quality, access to data and statistical analyses, and the validity of the results.

    CONCLUSIONS: Overall, we identified a lack of diversity regarding interventions. In addition, most published E. coli interventions were poorly described with limited evidence of the factors that contributed to the intervention success or failure. Design and reporting guidelines would help to improve reporting quality and provide a valuable tool for improving the science of AMR interventions.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  6. Singh S, Numan A, Somaily HH, Gorain B, Ranjan S, Rilla K, et al.
    Mater Sci Eng C Mater Biol Appl, 2021 Oct;129:112384.
    PMID: 34579903 DOI: 10.1016/j.msec.2021.112384
    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become a threat to global health because of limited treatments. MRSA infections are difficult to treat due to increasingly developing resistance in combination with protective biofilms of Staphylococcus aureus (S. aureus). Nanotechnology-based research revealed that effective MRSA treatments could be achieved through targeted nanoparticles (NPs) that withstand biological films and drug resistance. Thus, the principal aim towards improving MRSA treatment is to advance drug delivery tools, which successfully address the delivery-related problems. These potential delivery tools would also carry drugs to the desired sites of therapeutic action to overcome the adverse effects. This review focused on different types of nano-engineered carriers system for antimicrobial agents with improved therapeutic efficacy of entrapped drugs. The structural characteristics that play an essential role in the effectiveness of delivery systems have also been addressed with a description of recent scientific advances in antimicrobial treatment, emphasizing challenges in MRSA treatments. Consequently, existing gaps in the literature are highlighted, and reported contradictions are identified, allowing for the development of roadmaps for future research.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  7. Teow SY, Wong MM, Yap HY, Peh SC, Shameli K
    Molecules, 2018 06 06;23(6).
    PMID: 29882775 DOI: 10.3390/molecules23061366
    Nanoparticles (NPs) are nano-sized particles (generally 1⁻100 nm) that can be synthesized through various methods. The wide range of physicochemical characteristics of NPs permit them to have diverse biological functions. These particles are versatile and can be adopted into various applications, particularly in biomedical field. In the past five years, NPs’ roles in biomedical applications have drawn considerable attentions, and novel NPs with improved functions and reduced toxicity are continuously increasing. Extensive studies have been carried out in evaluating antibacterial potentials of NPs. The promising antibacterial effects exhibited by NPs highlight the potential of developing them into future generation of antimicrobial agents. There are various methods to synthesize NPs, and each of the method has significant implication on the biological action of NPs. Among all synthetic methods, green technology is the least toxic biological route, which is particularly suitable for biomedical applications. This mini-review provides current update on the antibacterial effects of NPs synthesized by green technology using plants. Underlying challenges in developing NPs into future antibacterials in clinics are also discussed at the present review.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  8. Angers-Loustau A, Petrillo M, Bengtsson-Palme J, Berendonk T, Blais B, Chan KG, et al.
    F1000Res, 2018;7.
    PMID: 30026930 DOI: 10.12688/f1000research.14509.2
    Next-Generation Sequencing (NGS) technologies are expected to play a crucial role in the surveillance of infectious diseases, with their unprecedented capabilities for the characterisation of genetic information underlying the virulence and antimicrobial resistance (AMR) properties of microorganisms.  In the implementation of any novel technology for regulatory purposes, important considerations such as harmonisation, validation and quality assurance need to be addressed.  NGS technologies pose unique challenges in these regards, in part due to their reliance on bioinformatics for the processing and proper interpretation of the data produced.  Well-designed benchmark resources are thus needed to evaluate, validate and ensure continued quality control over the bioinformatics component of the process.  This concept was explored as part of a workshop on "Next-generation sequencing technologies and antimicrobial resistance" held October 4-5 2017.   Challenges involved in the development of such a benchmark resource, with a specific focus on identifying the molecular determinants of AMR, were identified. For each of the challenges, sets of unsolved questions that will need to be tackled for them to be properly addressed were compiled. These take into consideration the requirement for monitoring of AMR bacteria in humans, animals, food and the environment, which is aligned with the principles of a "One Health" approach.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  9. Mat Rahim N, Lee H, Strych U, AbuBakar S
    Hum Vaccin Immunother, 2021 10 03;17(10):3784-3794.
    PMID: 34106809 DOI: 10.1080/21645515.2021.1927412
    In 2017, the World Health Organization (WHO) named A. baumannii as one of the three antibiotic-resistant bacterial species on its list of global priority pathogens in dire need of novel and effective treatment. With only polymyxin and tigecycline antibiotics left as last-resort treatments, the need for novel alternative approaches to the control of this bacterium becomes imperative. Vaccines against numerous bacteria have had impressive records in reducing the burden of the respective diseases and addressing antimicrobial resistance; as in the case of Haemophilus influenzae type b . A similar approach could be appropriate for A. baumannii. Toward this end, several potentially protective antigens against A. baumannii were identified and evaluated as vaccine antigen candidates. A licensed vaccine for the bacteria, however, is still not in sight. Here we explore and discuss challenges in vaccine development against A. baumannii and the promising approaches for improving the vaccine development process.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  10. Heffernan AJ, Sime FB, Lim SMS, Naicker S, Andrews KT, Ellwood D, et al.
    Drugs R D, 2021 Jun;21(2):203-215.
    PMID: 33797739 DOI: 10.1007/s40268-021-00344-5
    BACKGROUND: Even though nebulised administration of amikacin can achieve high epithelial lining fluid concentrations, this has not translated into improved patient outcomes in clinical trials. One possible reason is that the cellular and chemical composition of the epithelial lining fluid may inhibit amikacin-mediated bacterial killing.

    OBJECTIVE: The objective of this study was to identify whether the epithelial lining fluid components inhibit amikacin-mediated bacterial killing.

    METHODS: Two amikacin-susceptible (minimum inhibitory concentrations of 2 and 8 mg/L) Pseudomonas aeruginosa isolates were exposed in vitro to amikacin concentrations up to 976 mg/L in the presence of an acidic pH, mucin and/or surfactant as a means of simulating the epithelial lining fluid, the site of bacterial infection in pneumonia. Pharmacodynamic modelling was used to describe associations between amikacin concentrations, bacterial killing and emergence of resistance.

    RESULTS: In the presence of broth alone, there was rapid and extensive (> 6 - log10) bacterial killing, with emergence of resistance identified in amikacin concentrations < 976 mg/L. In contrast, the rate and extent of bacterial killing was reduced (≤ 5 - log10) when exposed to an acidic pH and mucin. Surfactant did not appreciably impact the bacterial killing or resistance emergence when compared with broth alone for either isolate. The combination of mucin and an acidic pH further reduced the rate of bacterial killing, with the maximal bacterial killing occurring 24 h following initial exposure compared with approximately 4-8 h for either mucin or an acidic pH alone.

    CONCLUSIONS: Our findings indicate that simulating the epithelial lining fluid antagonises amikacin-mediated killing of P. aeruginosa, even at the high concentrations achieved following nebulised administration.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  11. Rasidin RSM, Suhaili Z, Mohamed AFS, Hod R, Neela V, Amin-Nordin S
    Trop Biomed, 2020 Jun 01;37(2):471-481.
    PMID: 33612816
    Nosocomial infection caused by Acinetobacter baumannii is common among immunocompromised patients. Treatment strategy is limited due to rapid resistance development and lack of novel antibiotic. Colistin has been the last line therapy with good in vitro activity against infections caused by multi-drug resistance A. baumannii. However, pharmacological updates are required to support dosing optimisation. This study aimed to determine the time-kill kinetic and resistance development after antibiotic exposure as well as post-antibiotic effect of colistin at different static concentrations in in vitro A. baumannii system. The static in vitro time-kill and post-antibiotic effect experiments were conducted against two clinical isolates as well as one reference isolate ATCC 19606. Time-kill and postantibiotic effect were studied at colistin concentrations ranging from 0.25MIC to 16.0MIC and 0.5MIC to 4.0MIC, respectively. Post-exposure resistance development was examined in time-kill study. Killing activity and post-antibiotic effect were in a concentration-dependent manner. However, delayed killing activity indicates colistin tolerance. Development of resistance after exposure was not detected except for the ATCC 19606 strain. Dosing suggestion based on the observations include administration of supplemental dose 3 MIU at 12 hours after loading dose, administration of maintenance dose 9 MIU in two divided doses and application of extended interval in renal adjustment dose. However, the information is applicable for non-colistin-heteroresistance A. baumannii with colistin MIC < 1.0 mg/L. As for heteroresistance and strain with colistin MIC > 1.0 mg/L, combination therapy would be the more appropriate treatment strategy.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  12. Alhajj M, Aziz MSA, Huyop F, Salim AA, Sharma S, Ghoshal SK
    Biomater Adv, 2022 Nov;142:213136.
    PMID: 36206587 DOI: 10.1016/j.bioadv.2022.213136
    This paper reports the characterization and antibacterial performance evaluation of some spherical and stable crystalline silver (Ag)/copper (Cu) nanocomposites (Ag-CuNCs) prepared in deionized water (DIW) using pulse laser ablation in liquid (PLAL) method. The influence of various laser fluences (LFs) on the structural, morphological, optical and antibacterial properties of these NCs were determined. The UV-Vis absorbance of these NCs at 403 nm and 595 nm was gradually increased accompanied by a blue shift. XRD patterns disclosed the nucleation of highly crystalline Ag-CuNCs with their face centered cubic lattice structure. TEM images showed the existence of spherical NCs with size range of 3-20 nm and lattice fringe spacing of approximately 0.145 nm. EDX profiles of Ag-CuNCs indicated their high purity. The antibacterial effectiveness of the Ag-CuNCs was evaluated by the inhibition zone diameter (IZD) and optical density (OD600) tests against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The proposed NCs revealed the IZD values in the range of 22-26 mm and 20-25 mm when tested against E. coli and S. aureus bacteria, respectively. The Ag-CuNCs prepared at LF of 14.15 J/cm2 revealed the best bactericidal activity. It is established that by controlling the laser fluence the bactericidal effectiveness of the Ag-CuNCs can be tuned.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  13. Al-Mijalli SH, Mrabti NN, Ouassou H, Sheikh RA, Assaggaf H, Bakrim S, et al.
    Molecules, 2022 Oct 28;27(21).
    PMID: 36364152 DOI: 10.3390/molecules27217329
    The purposes of this investigatory study were to determine the chemical composition of the essential oils (EOs) of Origanum compactum from two Moroccan regions (Boulemane and Taounate), as well as the evaluation of their biological effects. Determining EOs' chemical composition was performed by a gas chromatography-mass spectrophotometer (GC-MS). The antioxidant activity of EOs was evaluated using free radical scavenging ability (DPPH method), fluorescence recovery after photobleaching (FRAP), and lipid peroxidation inhibition assays. The anti-inflammatory effect was assessed in vitro using the 5-lipoxygenase (5-LOX) inhibition test and in vivo using the carrageenan-induced paw edema model. Finally, the antibacterial effect was evaluated against several strains using the disk-diffusion assay and the micro-dilution method. The chemical constituent of O. compactum EO (OCEO) from the Boulemane zone is dominated by carvacrol (45.80%), thymol (18.86%), and α-pinene (13.43%). However, OCEO from the Taounate zone is rich in 3-carene (19.56%), thymol (12.98%), and o-cymene (11.16%). OCEO from Taounate showed higher antioxidant activity than EO from Boulemane. Nevertheless, EO from Boulemane considerably inhibited 5-LOX (IC50 = 0.68 ± 0.02 µg/mL) compared to EO from Taounate (IC50 = 1.33 ± 0.01 µg/mL). A similar result was obtained for tyrosinase inhibition with Boulemane EO and Taounate EO, which gave IC50s of 27.51 ± 0.03 μg/mL and 41.83 ± 0.01 μg/mL, respectively. The in vivo anti-inflammatory test showed promising effects; both EOs inhibit and reduce inflammation in mice. For antibacterial activity, both EOs were found to be significantly active against all strains tested in the disk-diffusion test, but O. compactum EO from the Boulemane region showed the highest activity. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for O. compactum EO from the Boulemane region ranged from 0.06 to 0.25% (v/v) and from 0.15 to 0.21% (v/v) for O. compactum from the Taounate region. The MBC/MIC index revealed that both EOs exhibited remarkable bactericidal effects.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  14. Wiart C, Akaho E, Hannah M, Yassim M, Hamimah H, Au TS, et al.
    Am J Chin Med, 2005;33(4):683-5.
    PMID: 16173541
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  15. Ali SG, Jalal M, Ahmad H, Umar K, Ahmad A, Alshammari MB, et al.
    Molecules, 2022 Dec 08;27(24).
    PMID: 36557818 DOI: 10.3390/molecules27248685
    Antimicrobial resistance has posed a serious health concern worldwide, which is mainly due to the excessive use of antibiotics. In this study, gold nanoparticles synthesized from the plant Tinospora cordifolia were used against multidrug-resistant Pseudomonas aeruginosa. The active components involved in the reduction and stabilization of gold nanoparticles were revealed by gas chromatography-mass spectrophotometry(GC-MS) of the stem extract of Tinospora cordifolia. Gold nanoparticles (TG-AuNPs) were effective against P. aeruginosa at different concentrations (50,100, and 150 µg/mL). TG-AuNPs effectively reduced the pyocyanin level by 63.1% in PAO1 and by 68.7% in clinical isolates at 150 µg/mL; similarly, swarming and swimming motilities decreased by 53.1% and 53.8% for PAO1 and 66.6% and 52.8% in clinical isolates, respectively. Biofilm production was also reduced, and at a maximum concentration of 150 µg/mL of TG-AuNPs a 59.09% reduction inPAO1 and 64.7% reduction in clinical isolates were observed. Lower concentrations of TG-AuNPs (100 and 50 µg/mL) also reduced the pyocyanin, biofilm, swarming, and swimming. Phenotypically, the downregulation of exopolysaccharide secretion from P. aeruginosa due to TG-AuNPs was observed on Congo red agar plates.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  16. Alghirani MM, Chung ELT, Kassim NA, Ong YL, Jesse FFA, Sazili AQ, et al.
    Trop Anim Health Prod, 2022 Nov 18;54(6):386.
    PMID: 36399259 DOI: 10.1007/s11250-022-03384-4
    The primary goal of this research was to elucidate the novel influence of Brachiaria decumbens supplementation on broiler chicken growth performance, nutritional digestibility, cecal microbiota, intestinal histomorphology, carcass characteristics, and meat quality. A total of 300 male day-old Ross 308 broiler chickens were randomly subjected to six different treatment groups having five replicates per treatment with 10 birds in each replicate. In treatment 1, broiler chickens were fed commercial diets with no added additives; in treatment 2, broiler chickens were offered commercial diets containing 100 mg/kg of the antibiotic oxytetracycline. However, in treatments 3, 4, 5, and 6, broiler chickens received similar commercial diets supplemented with 25 mg/kg, 50 mg/kg, 75 mg/kg, and 100 mg/kg of B. decumbens ground leaf powder, respectively, without antibiotics. Throughout the 42-day trial, the body weight gain and total feed intake for each replicate were recorded every week to determine the growth performance. Then, on 21th and 42nd day, ten broilers from each treatment (two in each replicate) were randomly selected and slaughtered to assess the digestibility of nutrients, histomorphology of the small intestine, the population of the cecal microbiota, carcass characteristics, as well as quality of both breast and drumstick muscle. There were differences (p 
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  17. Abdallah EM, Modwi A, Al-Mijalli SH, Mohammed AE, Idriss H, Omar AS, et al.
    Molecules, 2022 Nov 28;27(23).
    PMID: 36500402 DOI: 10.3390/molecules27238309
    In this work, ZnO, CrZnO, RuZnO, and BaZnO nanomaterials were synthesized and characterized in order to study their antibacterial activity. The agar well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays were used to determine the antibacterial activity of the fabricated nanomaterials against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC35218, Klebsiella pneumoniae ATCC 7000603, and Pseudomonas aeruginosa ATCC 278533. The well-diffusion test revealed significant antibacterial activity against all investigated bacteria when compared to vancomycin at a concentration of 1 mg/mL. The most susceptible bacteria to BaZnO, RuZnO, and CrZnO were Staphylococcus aureus (15.5 ± 0.5 mm), Pseudomonas aeruginosa (19.2 ± 0.5 mm), and Pseudomonas aeruginosa (19.7 ± 0.5), respectively. The MIC values indicated that they were in the range of 0.02 to 0.2 mg/mL. The MBC values showed that the tested bacteria's growth could be inhibited at concentrations ranging from 0.2 to 2.0 mg/mL. According to the MBC/MIC ratio, BaZnO, RuZnO, and CrZnO exhibit bacteriostatic effects and may target bacterial protein synthesis based on the results of the tolerance test. This study shows the efficacy of the above-mentioned nanoparticles on bacterial growth. Further biotechnological and toxicological studies on the nanoparticles fabricated here are recommended to benefit from these findings.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  18. Mohd Rani F, Lean SS, A Rahman NI, Ismail S, Alattraqchi AG, Amonov M, et al.
    J Glob Antimicrob Resist, 2022 Dec;31:104-109.
    PMID: 36049733 DOI: 10.1016/j.jgar.2022.08.019
    OBJECTIVES: To analyse the genome sequences of four archival Acinetobacter nosocomialis clinical isolates (designated AC13, AC15, AC21 and AC25) obtained from Terengganu, Malaysia in 2011 to determine their genetic relatedness and basis of antimicrobial resistance.

    METHODS: Antimicrobial susceptibility profiles of the A. nosocomialis isolates were determined by disk diffusion. Genome sequencing was performed using the Illumina NextSeq platform.

    RESULTS: The four A. nosocomialis isolates were cefotaxime resistant whereas three isolates (namely, AC13, AC15 and AC25) were tetracycline resistant. The carriage of the blaADC-255-encoded cephalosporinase gene is likely responsible for cefotaxime resistance in all four isolates. Phylogenetic analysis indicated that the three tetracycline-resistant isolates were closely related, with an average nucleotide identity of 99.9%, suggestive of nosocomial spread, whereas AC21 had an average nucleotide identity of 97.9% when compared to these three isolates. The tetracycline-resistant isolates harboured two plasmids: a 13476 bp Rep3-family plasmid of the GR17 group designated pAC13-1, which encodes the tetA(39) tetracycline-resistance gene, and pAC13-2, a 4872 bp cryptic PriCT-1-family plasmid of a new Acinetobacter plasmid group, GR60. The tetA(39) gene was in a 2 001 bp fragment flanked by XerC/XerD recombination sites characteristic of a mobile pdif module. Both plasmids also harboured mobilisation/transfer-related genes.

    CONCLUSIONS: Genome sequencing of A. nosocomialis isolates led to the discovery of two novel plasmids, one of which encodes the tetA(39) tetracycline-resistant gene in a mobile pdif module. The high degree of genetic relatedness among the three tetracycline-resistant A. nosocomialis isolates is indicative of nosocomial transmission.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  19. Khanum R, Chung PY, Clarke SC, Chin BY
    Can J Microbiol, 2023 Feb 01;69(2):117-122.
    PMID: 36265186 DOI: 10.1139/cjm-2022-0135
    Lactoferrin is an innate glycoprotein with broad antibacterial and antibiofilm properties. The autonomous antibiofilm activity of lactoferrin against Gram-positive bacteria is postulated to involve the cell wall and biofilm components. Thus, the prevention of biomass formation and eradication of preformed biofilms by lactoferrin was investigated using a methicillin-resistant Staphylococcus epidermidis (MRSE) strain. Additionally, the ability of lactoferrin to modulate the expression of the biofilm-associated protein gene (bap) was studied. The bap gene regulates the production of biofilm-associated proteins responsible for bacterial adhesion and aggregation. In the in vitro biofilm assays, lactoferrin prevented biofilm formation and eradicated established biofilms for up to 24 and 72 h, respectively. Extensive eradication of MRSE biofilm biomass was accompanied by the significant upregulation of bap gene expression. These data suggest the interaction of lactoferrin with the biofilm components and cell wall of MRSE, including the biofilm-associated protein.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  20. Ahmed S, Ahmed MZ, Rafique S, Almasoudi SE, Shah M, Jalil NAC, et al.
    Biomed Res Int, 2023;2023:5250040.
    PMID: 36726844 DOI: 10.1155/2023/5250040
    Antimicrobial resistance (AMR) is a ubiquitous public health menace. AMR emergence causes complications in treating infections contributing to an upsurge in the mortality rate. The epidemic of AMR in sync with a high utilization rate of antimicrobial drugs signifies an alarming situation for the fleet recovery of both animals and humans. The emergence of resistant species calls for new treatments and therapeutics. Current records propose that health drug dependency, veterinary medicine, agricultural application, and vaccination reluctance are the primary etymology of AMR gene emergence and spread. Recently, several encouraging avenues have been presented to contest resistance, such as antivirulent therapy, passive immunization, antimicrobial peptides, vaccines, phage therapy, and botanical and liposomal nanoparticles. Most of these therapies are used as cutting-edge methodologies to downplay antibacterial drugs to subdue the resistance pressure, which is a featured motive of discussion in this review article. AMR can fade away through the potential use of current cutting-edge therapeutics, advancement in antimicrobial susceptibility testing, new diagnostic testing, prompt clinical response, and probing of new pharmacodynamic properties of antimicrobials. It also needs to promote future research on contemporary methods to maintain host homeostasis after infections caused by AMR. Referable to the microbial ability to break resistance, there is a great ultimatum for using not only appropriate and advanced antimicrobial drugs but also other neoteric diverse cutting-edge therapeutics.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links