Displaying publications 81 - 100 of 330 in total

Abstract:
Sort:
  1. Naomi R, Ratanavaraporn J, Fauzi MB
    Materials (Basel), 2020 Jul 10;13(14).
    PMID: 32664418 DOI: 10.3390/ma13143097
    The use of hybridisation strategy in biomaterials technology provides a powerful synergistic effect as a functional matrix. Silk fibroin (SF) has been widely used for drug delivery, and collagen (Col) resembles the extracellular matrix (ECM). This systematic review was performed to scrutinise the outcome of hybrid Col and SF for cutaneous wound healing. This paper reviewed the progress of related research based on in vitro and in vivo studies and the influence of the physicochemical properties of the hybrid in wound healing. The results indicated the positive outcome of hybridising Col and SF for cutaneous wound healing. The hybridisation of these biomaterials exhibits an excellent moisturising property, perfectly interconnected structure, excellent water absorption and retention capacity, an acceptable range of biodegradability, and synergistic effects in cell viability. The in vitro and in vivo studies clearly showed a promising outcome in the acceleration of cutaneous wound healing using an SF and Col hybrid scaffold. The review of this study can be used to design an appropriate hybrid scaffold for cutaneous wound healing. Therefore, this systematic review recapitulated that the hybridisation of Col and SF promoted rapid cutaneous healing through immediate wound closure and reepithelisation, with no sign of adverse events. This paper concludes on the need for further investigations of the hybrid SF and Col in the future to ensure that the hybrid biomaterials are well-suited for human skin.
    Matched MeSH terms: Biocompatible Materials
  2. Chang HC, Sun T, Sultana N, Lim MM, Khan TH, Ismail AF
    Mater Sci Eng C Mater Biol Appl, 2016 Apr 1;61:396-410.
    PMID: 26838866 DOI: 10.1016/j.msec.2015.12.074
    In the current study, electrospinning technique was used to fabricate composite membranes by blending of a synthetic polymer, polylactic acid (PLA) and a natural polymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV. Conductive membranes were prepared by dipping PLA/PHBV electrospun membranes into poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (
    Matched MeSH terms: Biocompatible Materials/pharmacology; Biocompatible Materials/chemistry
  3. Asri RIM, Harun WSW, Samykano M, Lah NAC, Ghani SAC, Tarlochan F, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Aug 01;77:1261-1274.
    PMID: 28532004 DOI: 10.1016/j.msec.2017.04.102
    Corrosion prevention in biomaterials has become crucial particularly to overcome inflammation and allergic reactions caused by the biomaterials' implants towards the human body. When these metal implants contacted with fluidic environments such as bloodstream and tissue of the body, most of them became mutually highly antagonistic and subsequently promotes corrosion. Biocompatible implants are typically made up of metallic, ceramic, composite and polymers. The present paper specifically focuses on biocompatible metals which favorably used as implants such as 316L stainless steel, cobalt-chromium-molybdenum, pure titanium and titanium-based alloys. This article also takes a close look at the effect of corrosion towards the implant and human body and the mechanism to improve it. Due to this corrosion delinquent, several surface modification techniques have been used to improve the corrosion behavior of biocompatible metals such as deposition of the coating, development of passivation oxide layer and ion beam surface modification. Apart from that, surface texturing methods such as plasma spraying, chemical etching, blasting, electropolishing, and laser treatment which used to improve corrosion behavior are also discussed in detail. Introduction of surface modifications to biocompatible metals is considered as a "best solution" so far to enhanced corrosion resistance performance; besides achieving superior biocompatibility and promoting osseointegration of biocompatible metals and alloys.
    Matched MeSH terms: Biocompatible Materials*
  4. Naomi R, Ardhani R, Hafiyyah OA, Fauzi MB
    Polymers (Basel), 2020 Sep 13;12(9).
    PMID: 32933133 DOI: 10.3390/polym12092081
    Collagen (Col) is a naturally available material and is widely used in the tissue engineering and medical field owing to its high biocompatibility and malleability. Promising results on the use of Col were observed in the periodontal application and many attempts have been carried out to inculcate Col for gingival recession (GR). Col is found to be an excellent provisional bioscaffold for the current treatment in GR. Therefore, the aim of this paper is to scrutinize an overview of the reported Col effect focusing on in vitro, in vivo, and clinical trials in GR application. A comprehensive literature search was performed using EBSCOhost, Science Direct, Springer Link, and Medline & Ovid databases to identify the potential articles on particular topics. The search query was accomplished based on the Boolean operators involving keywords such as (1) collagen OR scaffold OR hybrid scaffold OR biomaterial AND (2) gingiva recession OR tissue regeneration OR dental tissue OR healing mechanism OR gingiva. Only articles published from 2015 onwards were selected for further analysis. This review includes the physicochemical properties of Col scaffold and the outcome for GR. The comprehensive literature search retrieved a total of 3077 articles using the appropriate keywords. However, on the basis of the inclusion and exclusion criteria, only 15 articles were chosen for further review. The results from these articles indicated that Col promoted gingival tissue regeneration for GR healing. Therefore, this systematic review recapitulated that Col enhances regeneration of gingival tissue either through a slow or rapid process with no sign of cytotoxicity or adverse effect.
    Matched MeSH terms: Biocompatible Materials
  5. Lo S, Fauzi MB
    Pharmaceutics, 2021 Feb 28;13(3).
    PMID: 33670973 DOI: 10.3390/pharmaceutics13030316
    Tissue engineering technology is a promising alternative approach for improvement in health management. Biomaterials play a major role, acting as a provisional bioscaffold for tissue repair and regeneration. Collagen a widely studied natural component largely present in the extracellular matrix (ECM) of the human body. It provides mechanical stability with suitable elasticity and strength to various tissues, including skin, bone, tendon, cornea and others. Even though exogenous collagen is commonly used in bioscaffolds, largely in the medical and pharmaceutical fields, nano collagen is a relatively new material involved in nanotechnology with a plethora of unexplored potential. Nano collagen is a form of collagen reduced to a nanoparticulate size, which has its advantages over the common three-dimensional (3D) collagen design, primarily due to its nano-size contributing to a higher surface area-to-volume ratio, aiding in withstanding large loads with minimal tension. It can be produced through different approaches including the electrospinning technique to produce nano collagen fibres resembling natural ECM. Nano collagen can be applied in various medical fields involving bioscaffold insertion or fillers for wound healing improvement; skin, bone, vascular grafting, nerve tissue and articular cartilage regeneration as well as aiding in drug delivery and incorporation for cosmetic purposes.
    Matched MeSH terms: Biocompatible Materials
  6. Li G, Li P, Chen Q, Thu HE, Hussain Z
    Curr Drug Deliv, 2019;16(2):94-110.
    PMID: 30360738 DOI: 10.2174/1567201815666181024142354
    BACKGROUND: Owing to their great promise in the spinal surgeries, bone graft substitutes have been widely investigated for their safety and clinical potential. By the current advances in the spinal surgery, an understanding of the precise biological mechanism of each bone graft substitute is mandatory for upholding the induction of solid spinal fusion.

    OBJECTIVE: The aim of the present review is to critically discuss various surgical implications and level of evidence of most commonly employed bone graft substitutes for spinal fusion.

    METHOD: Data was collected via electronic search using "PubMed", "SciFinder", "ScienceDirect", "Google Scholar", "Web of Science" and a library search for articles published in peer-reviewed journals, conferences, and e-books.

    RESULTS: Despite having exceptional inherent osteogenic, osteoinductive, and osteoconductive features, clinical acceptability of autografts (patient's own bone) is limited due to several perioperative and postoperative complications i.e., donor-site morbidities and limited graft supply. Alternatively, allografts (bone harvested from cadaver) have shown great promise in achieving acceptable bone fusion rate while alleviating the donor-site morbidities associated with implantation of autografts. As an adjuvant to allograft, demineralized bone matrix (DBM) has shown remarkable efficacy of bone fusion, when employed as graft extender or graft enhancer. Recent advances in recombinant technologies have made it possible to implant growth and differentiation factors (bone morphogenetic proteins) for spinal fusion.

    CONCLUSION: Selection of a particular bone grafting biotherapy can be rationalized based on the level of spine fusion, clinical experience and preference of orthopaedic surgeon, and prevalence of donor-site morbidities.

    Matched MeSH terms: Biocompatible Materials*
  7. Kazemi Shariat Panahi H, Dehhaghi M, Amiri H, Guillemin GJ, Gupta VK, Rajaei A, et al.
    Biotechnol Adv, 2023 Sep;66:108172.
    PMID: 37169103 DOI: 10.1016/j.biotechadv.2023.108172
    Chitin, as the main component of the exoskeleton of Arthropoda, is a highly available natural polymer that can be processed into various value-added products. Its most important derivative, i.e., chitosan, comprising β-1,4-linked 2-amino-2-deoxy-β-d-glucose (deacetylated d-glucosamine) and N-acetyl-d-glucosamine units, can be prepared via alkaline deacetylation process. Chitosan has been used as a biodegradable, biocompatible, non-antigenic, and nontoxic polymer in some in-vitro applications, but the recently found potentials of chitosan for in-vivo applications based on its biological activities, especially antimicrobial, antioxidant, and anticancer activities, have upgraded the chitosan roles in biomaterials. Chitosan approval, generally recognized as a safe compound by the United States Food and Drug Administration, has attracted much attention toward its possible applications in diverse fields, especially biomedicine and agriculture. Despite some favorable characteristics, the chitosan's structure should be customized for advanced applications, especially due to its drawbacks, such as low drug-load capacity, low solubility, high viscosity, lack of elastic properties, and pH sensitivity. In this context, derivatization with relatively inexpensive and highly available mono- and di-saccharides to soluble branched chitosan has been considered a "game changer". This review critically scrutinizes the emerging technologies based on the synthesis and application of lactose- and galactose-modified chitosan as two important chitosan derivatives. Some characteristics of chitosan derivatives and biological activities have been detailed first to understand the value of these natural polymers. Second, the saccharide modification of chitosan has been discussed briefly. Finally, the applications of lactose- and galactose-modified chitosan have been scrutinized and compared to native chitosan to provide an insight into the current state-of-the research for stimulating new ideas with the potential of filling research gaps.
    Matched MeSH terms: Biocompatible Materials/chemistry
  8. Bapat RA, Bedia SV, Bedia AS, Yang HJ, Dharmadhikari S, Abdulla AM, et al.
    Environ Res, 2023 Dec 01;238(Pt 1):116971.
    PMID: 37717805 DOI: 10.1016/j.envres.2023.116971
    Curcumin is a natural herb and polyphenol that is obtained from the medicinal plant Curcuma longa. It's anti-bacterial, anti-inflammatory, anti-cancer, anti-mutagenic, antioxidant and antifungal properties can be leveraged to treat a myriad of oral and systemic diseases. However, natural curcumin has weak solubility, limited bioavailability and undergoes rapid degradation, which severely limits its therapeutic potential. To overcome these drawbacks, nanocurcumin (nCur) formulations have been developed for improved biomaterial delivery and enhanced treatment outcomes. This novel biomaterial holds tremendous promise for the treatment of various oral diseases, the majority of which are caused by dental biofilm. These include dental caries, periodontal disease, root canal infection and peri-implant diseases, as well as other non-biofilm mediated oral diseases such as oral cancer and oral lichen planus. A number of in-vitro studies have demonstrated the antibacterial efficacy of nCur in various formulations against common oral pathogens such as S. mutans, P. gingivalis and E. faecalis, which are strongly associated with dental caries, periodontitis and root canal infection, respectively. In addition, some clinical studies were suggestive of the notion that nCur can indeed enhance the clinical outcomes of oral diseases such as periodontitis and oral lichen planus, but the level of evidence was very low due to the small number of studies and the methodological limitations of the available studies. The versatility of nCur to treat a diverse range of oral diseases augurs well for its future in dentistry, as reflected by rapid pace in which studies pertaining to this topic are published in the scientific literature. In order to keep abreast of the latest development of nCur in dentistry, this narrative review was undertaken. The aim of this narrative review is to provide a contemporaneous update of the chemistry, properties, mechanism of action, and scientific evidence behind the usage of nCur in dentistry.
    Matched MeSH terms: Biocompatible Materials
  9. Maki MAA, Cheah SC, Bayazeid O, Kumar PV
    Sci Rep, 2020 10 15;10(1):17468.
    PMID: 33060727 DOI: 10.1038/s41598-020-74467-1
    Galectin-3 (Gal-3) is a carbohydrate-binding protein, that promotes angiogenesis through mediating angiogenic growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). There is strong evidence confirming FGF involvement in tumor growth and progression by disrupting cell proliferation and angiogenesis. In this study, we investigated the effect of β-cyclodextrin:everolimus:FGF-7 inclusion complex (Complex) on Caco-2 cell migration, cell motility and colony formation. In addition, we examined the inhibitory effect of the Complex on the circulating proteins; Gal-3 and FGF-7. Swiss Target Prediction concluded that Gal-3 and FGF are possible targets for β-CD. Results of the chemotaxis cell migration assay on Caco-2 cell line revealed that the Complex has higher reduction in cell migration (78.3%) compared to everolimus (EV) alone (58.4%) which is possibly due to the synergistic effect of these molecules when used as a combined treatment. Moreover, the Complex significantly decreased the cell motility in cell scratch assay, less than 10% recovery compared to the control which has ~ 45% recovery. The Complex inhibited colony formation by ~ 75% compared to the control. Moreover, the Complex has the ability to inhibit Gal-3 with minimum inhibitory concentration of 33.46 and 41 for β-CD and EV, respectively. Additionally, β-CD and β-CD:EV were able to bind to FGF-7 and decreased the level of FGF-7 more than 80% in cell supernatant. This confirms Swiss Target Prediction result that predicted β-CD could target FGF. These findings advance the understanding of the biological effects of the Complex which reduced cell migration, cell motility and colony formation and it is possibly due to inhibiting circulating proteins such as; Gal-3 and FGF-7.
    Matched MeSH terms: Biocompatible Materials
  10. Huang X, Shan L, Cheng K, Weng W
    ACS Biomater Sci Eng, 2017 Dec 11;3(12):3254-3260.
    PMID: 33445368 DOI: 10.1021/acsbiomaterials.7b00551
    The topography at the micro/nanoscale level for biomaterial surfaces has been thought to play vital roles in their interactions with cells. However, discovering the interdisciplinary mechanisms underlying how cells respond to micro-nanostructured topography features still remains a challenge. In this work, ∼37 μm 3D printing used titanium microspheres and their further hierarchical micro-nanostructured spheres through hydrothermal treatment were adopted to construct typical model surface topographies to study the preosteoblastic cell responses (adhesion, proliferation, and differentiation). We here demonstrated that not only the hierarchical micro-nanostructured surface topography but also their distribution density played critical role on cell cytocompatibility. The microstructured topography feature surface with middle-density distributed titanium microspheres showed significantly enhanced cell responses, which might be attributed to the better cellular interaction due to the cell aggregates. However, the hierarchical micro-nanostructured topography surface, regardless of the distribution density of titanium microspheres, improved the cell-surface interactions because of the enhanced initial protein adsorption, thereby reducing the cell aggregates and consequently their responses. This work, therefore, provides new insights into the fundamental understanding of cell-material interactions and will have a profound impact on further designing micro-nanostructured topography surfaces to control cell responses.
    Matched MeSH terms: Biocompatible Materials
  11. Awang MA, Firdaus MA, Busra MB, Chowdhury SR, Fadilah NR, Wan Hamirul WK, et al.
    Biomed Mater Eng, 2014;24(4):1715-24.
    PMID: 24948455 DOI: 10.3233/BME-140983
    Earlier studies in our laboratory demonstrated that collagen extracted from ovine tendon is biocompatible towards human dermal fibroblast. To be able to use this collagen as a scaffold in skin tissue engineering, a mechanically stronger scaffold is required that can withstand manipulation before transplantation. This study was conducted to improve the mechanical strength of this collagen sponge using chemical crosslinkers, and evaluate their effect on physical, chemical and biocompatible properties. Collagen sponge was crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and glutaraldehyde (GA). Tensile test, FTIR study and mercury porosimetry were used to evaluate mechanical properties, chemical property and porosity, respectively. MTT assay was performed to evaluate the cytotoxic effect of crosslinked collagen sponge on human dermal fibroblasts. The FTIR study confirmed the successful crosslinking of collagen sponge. Crosslinking with EDC and GA significantly increased the mechanical strength of collagen sponge, with GA being more superior. Crosslinking of collagen sponge significantly reduced the porosity and the effect was predominant in GA-crosslinked collagen sponge. The GA-crosslinked collagen showed significantly lower, 60% cell viability towards human dermal fibroblasts compared to that of EDC-crosslinked collagen, 80% and non-crosslinked collagen, 100%. Although the mechanical strength was better when using GA but the more toxic effect on dermal fibroblast makes EDC a more suitable crosslinker for future skin tissue engineering.
    Matched MeSH terms: Biocompatible Materials/toxicity*; Biocompatible Materials/chemistry
  12. Au LF, Othman F, Mustaffa R, Vidyadaran S, Rahmat A, Besar I, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:16-7.
    PMID: 19024962
    Biofilms are adherent, multi-layered colonies of bacteria that are typically more resistant to the host immune response and routine antibiotic therapy. HA biomaterial comprises of a single-phased hydroxyapatite scaffold with interconnected pore structure. The device is designed as osteoconductive space filler to be gently packed into bony voids or gaps following tooth extraction or any surgical procedure. Gentamycin-coated biomaterial (locally made hydroxyapatite) was evaluated to reduce or eradicate the biofilm on the implant materials. The results indicated that the HA coated with gentamycin was biocompatible to human osteoblast cell line and the biofilm has been reduced after being treated with different concentrations of gentamycin-coated hydroxyapatite (HA).
    Matched MeSH terms: Biocompatible Materials
  13. Murni NS, Dambatta MS, Yeap SK, Froemming GRA, Hermawan H
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:560-566.
    PMID: 25686984 DOI: 10.1016/j.msec.2015.01.056
    The recent proposal of using Zn-based alloys for biodegradable implants was not supported with sufficient toxicity data. This work, for the first time, presents a thorough cytotoxicity evaluation of Zn-3Mg alloy for biodegradable bone implants. Normal human osteoblast cells were exposed to the alloy's extract and three main cell-material interaction parameters: cell health, functionality and inflammatory response, were evaluated. Results showed that at the concentration of 0.75mg/ml alloy extract, cell viability was reduced by ~50% through an induction of apoptosis at day 1; however, cells were able to recover at days 3 and 7. Cytoskeletal changes were observed but without any significant DNA damage. The downregulation of alkaline phosphatase protein levels did not significantly affect the mineralization process of the cells. Significant differences of cyclooxygenase-2 and prostaglandin E2 inflammatory biomarkers were noticed, but not interleukin 1-beta, indicating that the cells underwent a healing process after exposure to the alloy. Detailed analysis on the cell-material interaction is further discussed in this paper.
    Matched MeSH terms: Biocompatible Materials/pharmacology*
  14. Subhi H, Reza F, Husein A, Nurul AA
    J Conserv Dent, 2018 4 10;21(1):21-25.
    PMID: 29628642 DOI: 10.4103/JCD.JCD_86_17
    Aim: The aim of this study was to evaluate the cytotoxicity effects of experimental gypsum-based biomaterial prepared with various concentrations of chitosan (Gyp-CHT).

    Materials and Methods: The study was performed using cell viability assay for mitochondrial dehydrogenase activity in stem cells from human exfoliated deciduous teeth (SHED), after 1, 2, and 3 days of exposure to the biomaterial extracts of varying concentrations. Differences in mean cell viability values were assessed by one-way analysis of variance, followed by Dunnett T3 post hoc test for multiple comparisons (P < 0.05).

    Results: The cell viability to Gyp-CHT in low extract concentrations was statistically similar to that of the control and different from that of high extract concentrations. Gyp-5% CHT showed the highest percentage of cell viability with 110.92%, 108.56%, and 109.11%. The cell viability showed a tendency toward increment with low extract concentration and no constant effect of CHT on cell viability toward higher or lower.

    Conclusions: Gyp-CHT biomaterial has no cytotoxic effects on the cultured SHED.

    Matched MeSH terms: Biocompatible Materials
  15. Rajab NF, Yaakob TA, Ong BY, Hamid M, Ali AM, Annuar BO, et al.
    Med J Malaysia, 2004 May;59 Suppl B:170-1.
    PMID: 15468872
    Hydroxyapatite is the main component of the bone which is a potential biomaterial substance that can be applied in orthopaedics. In this study, the biocompatibility of this biomaterial was assessed using an in vitro technique. The cytotoxicity and genotoxicity effect of HA2 and HA3 against L929 fibroblast cell was evaluated using the MTT Assay and Alkaline Comet Assay respectively. Both HA2 and HA3 compound showed low cytotoxicity effect as determined using MTT Assay. Cells viability following 72 hours incubation at maximum concentration of both HA2 and HA3 (200 mg/ml) were 75.3 +/- 8.8% and 86.7 +/- 13.1% respectively. However, the cytotoxicity effect of ZnSO4.7H2O as a positive control showed an IC50 values of 46 mg/ml (160 microM). On the other hand, both HA2 and HA3 compound showed a slight genotoxicity effect as determined using the Alkaline Comet Assay following incubation at the concentration 200 mg/ml for 72 hours. This assay has been widely used in genetic toxicology to detect DNA strand breaks and alkali-labile site. The percentage of the cells with DNA damage for both substance was 27.7 +/- 1.3% and 15.6 +/- 1.0% for HA2 and HA3 respectively. Incubation of the cells for 24 hours with 38 microg/ml (IC25) of positive control showed an increase in percentage of cells with DNA damage (67.5 +/- 0.7%). In conclusion, our study indicated that both hydroxyapatite compounds showed a good biocompatibility in fibroblast cells.
    Matched MeSH terms: Biocompatible Materials/toxicity*
  16. Ikumapayi OM, Akinlabi ET
    Data Brief, 2019 Feb;22:537-545.
    PMID: 30627604 DOI: 10.1016/j.dib.2018.12.067
    Coconut Shell (CS) as agricultural lignocellulosic biomaterial and agro-waste is predominantly available in India, Malaysia, Nigeria, Thailand, Sri Lanka, and Indonesia. It has proven to have effective durability characteristic, good abstractive resistance, high toughness, and good adsorption properties, and is most suitable for long standing use in many applications such as reinforcement, source of energy, fillers as well as activated carbon and its performance, efficiency and effectiveness depend wholly on whether is in form of nano-, micro-, and macro- particles. In this data, effects of milling time on morphological characteristics was experimented using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and X-Ray Fluorescence (XRF) analyses. The SEM images were taken at magnifications of 1.00kx, 2.00kx and 5.00kx which gives respective 50 µm, 20 µm and 10 µm in different milling time of 0, 20, 40 and 60 mins. Digital Vibratory Disc Milling Machine (VDMM) rated 380 V/50 Hz at 940 rpm was employed for the grinding and the morphology of the milled nanoparticles were characterised. It was revealed from the data collected that 0 min (i.e. 75 µm sieved) has the highest mean area value of 16.105 µm2 and area standard deviation of 200.738 µm2 with least value of a number of particle size distribution of 809 µm. In contrast, 60 mins milled has the lowest values for mean area and area standard deviation of 8.945 µm2 and 115.851 µm2 respectively with the highest number of particle size distribution of 2032 µm. It was observed that milling time increases the number of particle sizes distributions and reduces the area of particle size.
    Matched MeSH terms: Biocompatible Materials
  17. Gobinathan S, Zainol SS, Azizi SF, Iman NM, Muniandy R, Hasmad HN, et al.
    J Biomater Sci Polym Ed, 2018 12;29(17):2051-2067.
    PMID: 29983100 DOI: 10.1080/09205063.2018.1485814
    Amniotic membrane has the potential to be used as scaffold in various tissue engineering applications. However, increasing its biostability at the same time maintaining its biocompatibility is important to enhance its usage as a scaffold. This studied characteristics genipin-crosslinked amniotic membrane as a bioscaffold. Redundant human amniotic membranes (HAM) divided into native (nAM), decellularized (dAM) and genipin-crosslinked (clAM) groups. The dAM and clAM group were decellularized using thermolysin (TL) and sodium hydroxide (NaOH) solution. Next, clAM group was crosslinked with 0.5% and 1.0% (w/v) genipin. The HAM was then studied for in vitro degradation, percentage of swelling, optical clarity, ultrastructure and mechanical strength. Meanwhile, fibroblasts isolated from nasal turbinates were then seeded onto nAM, dAM and clAM for biocompatibility studies. clAM had the slowest degradation rate and were still morphologically intact after 30 days of incubation in 0.01% collagenase type 1 solution. The dAM had a significantly highest percentage of swelling than other groups (p 
    Matched MeSH terms: Biocompatible Materials/chemistry*
  18. Isa, Z.M., Hobkirk, J.A.
    Ann Dent, 2000;7(1):-.
    MyJurnal
    Currently many dental implant systems with varied and numerous components are available commercially, and with new implant systems and designs emerging, it is essential that the user understands that any system selected should be based on sound scientific principles and capable of osseoil!tegration. This has been defined in many different ways, with biomaterial, biological and biomechanical factors being the main considerations. The final restoration is based on both biological tissue and mechanical components. As the success of osseointegration is based on the clinical outcome, clinicians must ensure that the stresses that the superstructure, implant, and surrounding bone are subjected to are within the tolerable limits of the various components, even though the degree of tolerance has not yet been fully defined.
    Matched MeSH terms: Biocompatible Materials
  19. Heboyan A, Vardanyan A, Karobari MI, Marya A, Avagyan T, Tebyaniyan H, et al.
    Molecules, 2023 Feb 08;28(4).
    PMID: 36838607 DOI: 10.3390/molecules28041619
    The cementation of indirect restoration is one of the most important steps in prosthetic and restorative dentistry. Cementation aims to bond the prosthetic restoration to the prepared enamel or enamel and dentine. Successful cementation protocols prevent biofilm formation at the margin between tooth and restoration and minimize mechanical and biological complications. With the advancements in dental cements, they have been modified to be versatile in terms of handling, curing, and bond strengths. This review presents updates on dental cements, focusing on the composition, properties, advantages, limitations, and indications of the various cements available. Currently, dental restorations are made from various biomaterials, and depending on each clinical case, an appropriate luting material will be selected. There is no luting material that can be universally used. Therefore, it is important to distinguish the physical, mechanical, and biological properties of luting materials in order to identify the best options for each case. Nowadays, the most commonly used dental cements are glass-ionomer and resin cement. The type, shade, thickness of resin cement and the shade of the ceramic, all together, have a tangible influence on the final restoration color. Surface treatments of the restoration increase the microtensile bond strength. Hence, the proper surface treatment protocol of both the substrate and restoration surfaces is needed before cementation. Additionally, the manufacturer's instructions for the thin cement-layer thickness are important for the long-term success of the restoration.
    Matched MeSH terms: Biocompatible Materials*
  20. Mehrali M, Shirazi FS, Mehrali M, Metselaar HS, Kadri NA, Osman NA
    J Biomed Mater Res A, 2013 Oct;101(10):3046-57.
    PMID: 23754641 DOI: 10.1002/jbm.a.34588
    Functionally graded material (FGM) is a heterogeneous composite material including a number of constituents that exhibit a compositional gradient from one surface of the material to the other subsequently, resulting in a material with continuously varying properties in the thickness direction. FGMs are gaining attention for biomedical applications, especially for implants, owing to their reported superior composition. Dental implants can be functionally graded to create an optimized mechanical behavior and achieve the intended biocompatibility and osseointegration improvement. This review presents a comprehensive summary of biomaterials and manufacturing techniques researchers employ throughout the world. Generally, FGM and FGM porous biomaterials are more difficult to fabricate than uniform or homogenous biomaterials. Therefore, our discussion is intended to give the readers about successful and obstacles fabrication of FGM and porous FGM in dental implants that will bring state-of-the-art technology to the bedside and develop quality of life and present standards of care.
    Matched MeSH terms: Biocompatible Materials/pharmacology*; Biocompatible Materials/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links