Displaying publications 81 - 100 of 703 in total

Abstract:
Sort:
  1. Cha TS, Yee W, Phua PSP, Loh SH, Aziz A
    Biotechnol Lett, 2021 Apr;43(4):803-812.
    PMID: 33438120 DOI: 10.1007/s10529-021-03077-2
    OBJECTIVE: The effects of a brief (3 days) and prolonged (6 days) period of incubation in darkness and light on the biomass content, lipid content and fatty acid profile in Chlorella vulgaris UMT-M1 were determined.

    RESULTS: Three days of incubation in darkness increased saturated fatty acid (SFA) content from 34.0 to 41.4% but decreased monounsaturated fatty acid (MUFA) content from 36.7 to 29.8%. Palmitic acid (C16:0) content was increased from 23.2 to 28.9%, whereas oleic acid (C18:1) content was reduced from 35.4 to 28.8%. Total oil content was slightly decreased from 20.4 to 18.7% after 3 days of darkness, without a significant reduction in biomass compared to 3 days of incubation in light. Biomass and oil content was highest in cultures incubated for 6 days in light, however the stimulatory and inhibitory effects of darkness (or light) on SFA and MUFA content was no longer present at 6 days of incubation.

    CONCLUSIONS: Findings from this study suggests that fatty acid composition in C. vulgaris could be modulated to favor either C16:0 or C18:1 by a brief period of either darkness or light incubation, prior to harvesting.

    Matched MeSH terms: Biomass
  2. Agamuthu P, Abioye OP, Aziz AA
    J Hazard Mater, 2010 Jul 15;179(1-3):891-4.
    PMID: 20392562 DOI: 10.1016/j.jhazmat.2010.03.088
    Soil contamination by used lubricating oil from automobiles is a growing concern in many countries, especially in Asian and African continents. Phytoremediation of this polluted soil with non-edible plant like Jatropha curcas offers an environmental friendly and cost-effective method for remediating the polluted soil. In this study, phytoremediation of soil contaminated with 2.5 and 1% (w/w) waste lubricating oil using J. curcas and enhancement with organic wastes [Banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] was undertaken for a period of 180 days under room condition. 56.6% and 67.3% loss of waste lubricating oil was recorded in Jatropha remediated soil without organic amendment for 2.5% and 1% contamination, respectively. However addition of organic waste (BSG) to Jatropha remediation rapidly increases the removal of waste lubricating oil to 89.6% and 96.6% in soil contaminated with 2.5% and 1% oil, respectively. Jatropha root did not accumulate hydrocarbons from the soil, but the number of hydrocarbon utilizing bacteria was high in the rhizosphere of the Jatropha plant, thus suggesting that the mechanism of the oil degradation was via rhizodegradation. These studies have proven that J. curcas with organic amendment has a potential in reclaiming hydrocarbon-contaminated soil.
    Matched MeSH terms: Biomass
  3. Morvarid, A.R., Zeenathul, N.A., Tam, Y.J., Zuridah, H., Mohd-Azmi, M.L., Azizon, B.O.
    MyJurnal
    This study describes expression of HBs Ag in methylotrophic yeast, Pichia Pastoris under alcohol oxidase promoter. A single copy number of HBs Ag gene was transformed into pichia strain of KM 71, a Muts type, by using pA0815 pichia expression vector. The recombinant was cultivated in a shake flask either using methanol or a mixed feed of glycerol -methanol for induction. The HBs Ag gene integrity was justified using direct PCR method. The expressed products in the soluble cell extracts were analyzed by Western blot, SDS page, Bradford assay and ELISA tests. The recombinant HBs Ag was expressed successfully in Pichia pastoris strain KM71 at a high level of HBs Ag protein expression. Thus, an addition of glycerol in the ratio of glycerol per methanol 1/1 (g g-1) consistently produced 2-fold increment in both biomass accumulation and HBs Ag productivity.
    Matched MeSH terms: Biomass
  4. Anis S, Zainal ZA, Bakar MZ
    Bioresour Technol, 2013 May;136:117-25.
    PMID: 23567671 DOI: 10.1016/j.biortech.2013.02.049
    A new effective RF tar thermocatalytic treatment process with low energy intensive has been proposed to remove tar from biomass gasification. Toluene and naphthalene as biomass tar model compounds were removed via both thermal and catalytic treatment over a wide temperature range from 850 °C to 1200 °C and 450 °C to 900 °C, respectively at residence time of 0-0.7 s. Thermal characteristics of the new technique are also described in this paper. This study clearly clarified that toluene was much easier to be removed than naphthalene. Soot was found as the final product of thermal treatment of the tar model and completely removed during catalytic treatment. Radical reactions generated by RF non-thermal effect improve the tar removal. The study showed that Y-zeolite has better catalytic activity compared to dolomite on toluene and naphthalene removal due to its acidic nature and large surface area, even at lower reaction temperature of about 550 °C.
    Matched MeSH terms: Biomass*
  5. Hai A, Bharath G, Daud M, Rambabu K, Ali I, Hasan SW, et al.
    Chemosphere, 2021 Nov;283:131162.
    PMID: 34157626 DOI: 10.1016/j.chemosphere.2021.131162
    Pyrolysis of agricultural biomass is a promising technique for producing renewable energy and effectively managing solid waste. In this study, groundnut shell (GNS) was processed at 500 °C in an inert gas atmosphere with a gas flow rate and a heating rate of 10 mL/min and 10 °C/min, respectively, in a custom-designed fluidized bed pyrolytic-reactor. Under optimal operating conditions, the GNS-derived pyrolytic-oil yield was 62.8 wt.%, with the corresponding biochar (19.5 wt.%) and biogas yields (17.7 wt.%). The GC-MS analysis of the GNS-based bio-oil confirmed the presence of (trifluoromethyl)pyridin-2-amine (18.814%), 2-Fluoroformyl-3,3,4,4-tetrafluoro-1,2-oxazetidine (16.23%), 5,7-dimethyl-1H-Indazole (11.613%), N-methyl-N-nitropropan-2-amine (6.5%) and butyl piperidino sulfone (5.668%) as major components, which are used as building blocks in the biofuel, pharmaceutical, and food industries. Furthermore, a 2 × 5 × 1 artificial neural network (ANN) architecture was developed to predict the decomposition behavior of GNS at heating rates of 5, 10, and 20 °C/min, while the thermodynamic and kinetic parameters were estimated using a non-isothermal model-free method. The Popescu method predicted activation energy (Ea) of GNS biomass ranging from 111 kJ/mol to 260 kJ/mol, with changes in enthalpy (ΔH), Gibbs-free energy (ΔG), and entropy (ΔS) ranging from 106 to 254 kJ/mol, 162-241 kJ/mol, and -0.0937 to 0.0598 kJ/mol/K, respectively. The extraction of high-quality precursors from GNS pyrolysis was demonstrated in this study, as well as the usefulness of the ANN technique for thermogravimetric analysis of biomass.
    Matched MeSH terms: Biomass
  6. Rambabu K, Avornyo A, Gomathi T, Thanigaivelan A, Show PL, Banat F
    Bioresour Technol, 2023 Jan;367:128257.
    PMID: 36343781 DOI: 10.1016/j.biortech.2022.128257
    Phycoremediation is gaining attention not only as a pollutant mitigation approach but also as one of the most cost-effective paths to achieve carbon neutrality. When compared to conventional treatment methods, phycoremediation is highly effective in removing noxious substances from wastewater and is inexpensive, eco-friendly, abundantly available, and has many other advantages. The process results in valuable bioproducts and bioenergy sources combined with pollutants capture, sequestration, and utilization. In this review, microalgae-based phycoremediation of various wastewaters for carbon neutrality and circular economy is analyzed scientometrically. Different mechanisms for pollutants removal and resource recovery from wastewaters are explained. Further, critical parameters that influence the engineering design and phycoremediation performance are described. A comprehensive knowledge map highlighting the microalgae potential to treat a variety of industrial effluents is also presented. Finally, challenges and future prospects for industrial implementation of phycoremediation towards carbon neutrality coupled with circular economy are discussed.
    Matched MeSH terms: Biomass
  7. Jayakumar M, Hamda AS, Abo LD, Daba BJ, Venkatesa Prabhu S, Rangaraju M, et al.
    Chemosphere, 2023 Dec;345:140515.
    PMID: 37871877 DOI: 10.1016/j.chemosphere.2023.140515
    Biochar is an ample source of organic carbon prepared by the thermal breakdown of biomass. Lignocellulosic biomass is a promising precursor for biochar production, and has several applications in various industries. In addition, biochar can be applied for environmental revitalization by reducing the negative impacts through intrinsic mechanisms. In addition to its environmentally friendly nature, biochar has several recyclable and inexpensive benefits. Nourishing and detoxification of the environment can be undertaken using biochar by different investigators on account of its excellent contaminant removal capacity. Studies have shown that biochar can be improved by activation to remove toxic pollutants. In general, biochar is produced by closed-loop systems; however, decentralized methods have been proven to be more efficient for increasing resource efficiency in view of circular bio-economy and lignocellulosic waste management. In the last decade, several studies have been conducted to reveal the unexplored potential and to understand the knowledge gaps in different biochar-based applications. However, there is still a crucial need for research to acquire sufficient data regarding biochar modification and management, the utilization of lignocellulosic biomass, and achieving a sustainable paradigm. The present review has been articulated to provide a summary of information on different aspects of biochar, such as production, characterization, modification for improvisation, issues, and remediation have been addressed.
    Matched MeSH terms: Biomass
  8. Nicodemus Ujih, M.B., Mohammad Isa Mohamadin, Millaa Armila Asli, Bebe Norlita Mohamed
    Scientific Research Journal, 2017;14(1):15-27.
    MyJurnal
    Heavy metal ions contamination has become more serious which is caused
    by the releasing of toxic waterfrom industrial area and landfill that are very
    harmful to all living organism especially human and can even cause death
    if contaminated in small amount of heavy metal concentration. Currently,
    peoples are using classic method namely electrochemical treatment,
    chemical oxidation/reduction, chemical precipitation and reverse osmosis
    to eliminate the metal ions from toxic water. Unfortunately, these methods
    are costly and not environmentally friendly as compared to bioadsorption
    method, where agricultural waste is used as biosorbent to remove heavy
    metals. Two types of agricultural waste used in this research namely oil
    palm mesocarp fiber (Elaesis guineensis sp.) (OPMF) and mangrove bark
    (Rhizophora apiculate sp.) (MB) biomass. Through chemical treatment,
    the removal efficiency was found to improve. The removal efficiency is
    examined based on four specification namely dosage, of biosorbent to
    adsorb fourtypes of metalsion explicitly nickel, lead, copper, and chromium.
    The research has found that the removal efficiency of MB was lower than
    OPMF; whereas, the multiple metals ions removal efficiency decreased in
    the order of Pb2+ > Cu2+ > Ni2+ > Cr2+.
    Matched MeSH terms: Biomass
  9. Shehzad M, Asghar A, Ramzan N, Aslam U, Bello MM
    Waste Manag Res, 2020 Nov;38(11):1284-1294.
    PMID: 32347191 DOI: 10.1177/0734242X20916843
    Biomass is considered as the largest renewable energy source in the world. However, some of its inherent properties such as hygroscopicity, lower energy content, low mass density and bio-degradation on storage hinder its extensive application in energy generation processes. Torrefaction, a thermochemical process carried out at 200-300°C in a non-oxidative environment, can address these inherent problems of the biomass. In this work, torrefaction of bagasse was performed in a bench-scale tubular reactor at 250°C and 275°C with residence times of 30, 60 and 90 mins. The effects of torrefaction conditions on the elemental composition, mass yield, energy yield, oxygen/carbon (O/C) and hydrogen/carbon (H/C) ratios, higher heating values and structural composition were investigated and compared with the commercially available 'Thar 6' and 'Tunnel C' coal. Based on the targeted mass and energy yields of 80% and 90% respectively, the optimal process conditions turned out to be 250°C and 30 mins. Torrefaction of the bagasse conducted at 275°C and 90 min raised the carbon content in bagasse to 58.14% and resulted in a high heating value of 23.84 MJ/kg. The structural and thermal analysis of the torrefied bagasse indicates that the moisture, non-structural carbohydrates and hemicellulose were reduced, which induced the hydrophobicity in the bagasse and enhanced its energy value. These findings showed that torrefaction can be a sustainable pre-treatment process to improve the fuel and structural properties of biomass as a feedstock for energy generation processes.
    Matched MeSH terms: Biomass
  10. Morais RA, Siqueira AC, Smallhorn-West PF, Bellwood DR
    PLoS Biol, 2021 Nov;19(11):e3001435.
    PMID: 34727097 DOI: 10.1371/journal.pbio.3001435
    Spatial subsidies increase local productivity and boost consumer abundance beyond the limits imposed by local resources. In marine ecosystems, deeper water and open ocean subsidies promote animal aggregations and enhance biomass that is critical for human harvesting. However, the scale of this phenomenon in tropical marine systems remains unknown. Here, we integrate a detailed assessment of biomass production in 3 key locations, spanning a major biodiversity and abundance gradient, with an ocean-scale dataset of fish counts to predict the extent and magnitude of plankton subsidies to fishes on coral reefs. We show that planktivorous fish-mediated spatial subsidies are widespread across the Indian and Pacific oceans and drive local spikes in biomass production that can lead to extreme productivity, up to 30 kg ha-1 day-1. Plankton subsidies form the basis of productivity "sweet spots" where planktivores provide more than 50% of the total fish production, more than all other trophic groups combined. These sweet spots operate at regional, site, and smaller local scales. By harvesting oceanic productivity, planktivores bypass spatial constraints imposed by local primary productivity, creating "oases" of tropical fish biomass that are accessible to humans.
    Matched MeSH terms: Biomass*
  11. Salema AA, Afzal MT, Bennamoun L
    Bioresour Technol, 2017 Jun;233:353-362.
    PMID: 28285228 DOI: 10.1016/j.biortech.2017.02.113
    Pyrolysis of corn stalk biomass briquettes was carried out in a developed microwave (MW) reactor supplied with 2.45GHz frequency using 3kW power generator. MW power and biomass loading were the key parameters investigated in this study. Highest bio-oil, biochar, and gas yield of 19.6%, 41.1%, and 54.0% was achieved at different process condition. In terms of quality, biochar exhibited good heating value (32MJ/kg) than bio-oil (2.47MJ/kg). Bio-oil was also characterised chemically using FTIR and GC-MS method. This work may open new dimension towards development of large-scale MW pyrolysis technology.
    Matched MeSH terms: Biomass
  12. Selby-Pham SNB, Siow LF, Bennett LE
    Food Funct, 2020 Jan 29;11(1):907-920.
    PMID: 31942898 DOI: 10.1039/c9fo01149h
    After oil extraction, palm fruit biomass contains abundant water-soluble phytochemicals (PCs) with proven bioactivity in regulating oxidative stress and inflammation (OSI). For optimal bioefficacy following oral consumption, the pharmacokinetic plasma peak (Tmax) should be bio-matched with the onset of OSI, which can be predicted from the Phytochemical Absorption Prediction (PCAP) model and methodology. Predicted absorption and potential for regulation of OSI by measures of total phenolic content, antioxidant capacity and hydrogen peroxide production capacity, were applied to characterise eight extracts from mesocarp fibre and kernel shells of oil-depleted palm fruits. Results indicated post-consumption absorption Tmax ranges of 0.5-12 h and 2-6 h for intake in liquid and solid forms, respectively, and generally high antioxidant activity of the extracts. The research supports that PC extracts of palm fruit biomass have broad potential uses for human health as dietary antioxidants in foods, supplements or functional beverages.
    Matched MeSH terms: Biomass
  13. Zakaria NI, Ismail MR, Awang Y, Megat Wahab PE, Berahim Z
    Biomed Res Int, 2020;2020:2706937.
    PMID: 32090071 DOI: 10.1155/2020/2706937
    Chilli (Capsicum annum L.) plant is a high economic value vegetable in Malaysia, cultivated in soilless culture containers. In soilless culture, the adoption of small container sizes to optimize the volume of the growing substrate could potentially reduce the production cost, but will lead to a reduction of plant growth and yield. By understanding the physiological mechanism of the growth reduction, several potential measures could be adopted to improve yield under restricted root conditions. The mechanism of growth reduction of plants subjected to root restriction remains unclear. This study was conducted to determine the physiological mechanism of growth reduction of root-restricted chilli plants grown in polyvinyl-chloride (PVC) column of two different volumes, 2392 cm3(root-restricted) and 9570 cm3(control) in soilless culture. Root restriction affected plant growth, physiological process, and yield of chilli plants. Root restriction reduced the photosynthesis rate and photochemical activity of PSII, and increased relative chlorophyll content. Limited root growth in root restriction caused an accumulation of high levels of sucrose in the stem and suggested a transition of the stem as a major sink organ for photoassimilate. Growth reduction in root restriction was not related to limited carbohydrate production, but due to the low sink demand from the roots. Reduction of the total yield per plant about, 23% in root restriction was concomitant, with a slightly increased harvest index which reflected an increased photoassimilate partitioning to the fruit production and suggested more efficient fruits production in the given small plant size of root restriction.
    Matched MeSH terms: Biomass
  14. Goh CS, Tan KT, Lee KT, Bhatia S
    Bioresour Technol, 2010 Jul;101(13):4834-41.
    PMID: 19762229 DOI: 10.1016/j.biortech.2009.08.080
    The present study reveals the perspective and challenges of bio-ethanol production from lignocellulosic materials in Malaysia. Malaysia has a large quantity of lignocellulosic biomass from agriculture waste, forest residues and municipal solid waste. In this work, the current status in Malaysia was laconically elucidated, including an estimation of biomass availability with a total amount of 47,402 dry kton/year. Total capacity and domestic demand of second-generation bio-ethanol production in Malaysia were computed to be 26,161 ton/day and 6677 ton/day, respectively. Hence, it was proven that the country's energy demand can be fulfilled with bio-ethanol if lignocellulosic biomass were fully converted into bio-ethanol and 19% of the total CO(2) emissions in Malaysia could be avoided. Apart from that, an integrated national supply network was proposed together with the collection, storage and transportation of raw materials and products. Finally, challenges and obstacles in legal context and policies implementation were elaborated, as well as infrastructures shortage and technology availabilities.
    Matched MeSH terms: Biomass
  15. Yahaya YA, Mat Don M, Bhatia S
    J Hazard Mater, 2009 Jan 15;161(1):189-95.
    PMID: 18513859 DOI: 10.1016/j.jhazmat.2008.03.104
    The ability of white-rot fungus, Pycnoporus sanguineus to adsorb copper (II) ions from aqueous solution is investigated in a batch system. The live fungus cells were immobilized into Ca-alginate gel to study the influence of pH, initial metal ions concentration, biomass loading and temperature on the biosorption capacity. The optimum uptake of Cu (II) ions was observed at pH 5 with a value of 2.76mg/g. Biosorption equilibrium data were best described by Langmuir isotherm model followed by Redlich-Peterson and Freundlich models, respectively. The biosorption kinetics followed the pseudo-second order and intraparticle diffusion equations. The thermodynamic parameters enthalpy change (10.16kJ/mol) and entropy change (33.78J/molK) were determined from the biosorption equilibrium data. The FTIR analysis showed that OH, NH, CH, CO, COOH and CN groups were involved in the biosorption of Cu (II) ions onto immobilized cells of P. sanguineus. The immobilized cells of P. sanguineus were capable of removing Cu (II) ions from aqueous solution.
    Matched MeSH terms: Biomass
  16. Chew TL, Bhatia S
    Bioresour Technol, 2008 Nov;99(17):7911-22.
    PMID: 18434141 DOI: 10.1016/j.biortech.2008.03.009
    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.
    Matched MeSH terms: Biomass*
  17. Yus Azila Y, Mashitah MD, Bhatia S
    Bioresour Technol, 2008 Dec;99(18):8549-52.
    PMID: 18599293 DOI: 10.1016/j.biortech.2008.03.056
    A central composite design (CCD) was employed to optimize the biosorption of Pb(II) ions onto immobilized cells of Pycnoporus sanguineus. The independent variables were initial Pb(II) concentration, pH and biomass loading. The combined effects of these variables were analyzed by response surface methodology (RSM) using quadratic model for predicting the optimum point. Under these conditions the model predicted a maximum of 97.7% of Pb(II) ions removal at pH 4, 200mg/L of initial Pb(II) concentration with 10g/L of biosorbent. The experimental values are in good agreement with predicted values within +0.10 to +0.81% error.
    Matched MeSH terms: Biomass
  18. Zulfadhly Z, Mashitah MD, Bhatia S
    Environ Pollut, 2001;112(3):463-70.
    PMID: 11291452
    The ability of Pycnoporus sanguineus to adsorb heavy metals from aqueous solution was investigated in fixed-bed column studies. The experiments were conducted to study the effect of important design parameters such as column bed height, flow rate and initial concentration of solution. The breakthrough profiles were obtained in these studies. A mathematical model based on external mass transfer and pore diffusion was used for the prediction of mass transfer coefficient and effective diffusivity of metals in macro-fungi bed. Experimental breakthrough profiles were compared with the simulated breakthrough profiles obtained from the mathematical model. Bed Depth Service Time (BDST) model was used to analyse the experimental data and evaluated the performance of biosorption column. The BDST model parameters needed for the design of biosorption columns were evaluated for lead, copper and cadmium removal in the column. The columns were regenerated by eluting the metal ions using 0.1 M hydrochloric acid solution after the adsorption studies. The columns were subjected to repeated cycles of adsorption of same metal ions and desorption to evaluate the removal efficiency after adsorption-desorption.
    Matched MeSH terms: Biomass
  19. Mashitah, Zulfadhly Z, Bhatia S
    PMID: 10595446
    Non-living biomass of Pycnoporus sanguineus has an ability to take up lead,copper and cadmium ions from an aqueous solution. The role played by various functional groups in the cell wall and the mechanism uptake of lead, copper and cadmium by Pycnoporus sanguineus were investigated. Modification of the functional groups such as lipids, carboxylic and amino was done through chemical pretreatment in order to study their role in biosorption of metal ions. Results showed that the chemical modification of these functional groups has modified the ability of biomass to remove lead, copper and cadmium ions from the solution. Scanning electron microscopy was also used to study the morphological structure of the biomass before and after adsorption. The electron micrograph indicated that the structure of biomass changed due to the adsorption of the metals onto the cell walls. Furthermore, the X-ray energy dispersion analysis (EDAX) showed that the calcium ion present in the cell wall of biomass was released and replaced by lead ions. This implied that an ion exchange is one of the principal mechanisms for metal biosorption.
    Matched MeSH terms: Biomass
  20. Mashitah, Zulfadhly Z, Bhatia S
    Artif Cells Blood Substit Immobil Biotechnol, 1999 Sep-Nov;27(5-6):429-33.
    PMID: 10595444
    The equilibrium sorption capacity of a macro-fungi, Pycnoporus sanguineus biomass was studied using a single-metal system comprising copper ions. The rate and extent for the removal of copper were subjected to environmental parameters such as pH, biomass loading, temperature, and contact time. Results showed that the uptake of copper increased as the pH increased. However, as the biomass loading increased, the amount of metal uptake decreased. Instead, temperature does not have a significant effect on the metal uptake, especially between 30 to 40 degrees C. A maximum adsorption of copper ions was also observed within 15 minutes of reaction time for the entire sample tested. Furthermore, pre-treatment with sodium bicarbonate and boiling water significantly improved the sorption capacity of copper by Pycnoporus sanguineus.
    Matched MeSH terms: Biomass
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links