Displaying publications 81 - 100 of 705 in total

Abstract:
Sort:
  1. Madadi M, Elsayed M, Sun F, Wang J, Karimi K, Song G, et al.
    Bioresour Technol, 2023 Mar;371:128591.
    PMID: 36627085 DOI: 10.1016/j.biortech.2023.128591
    A new cutting-edge lignocellulose fractionation technology for the co-production of glucose, native-like lignin, and furfural was introduced using mannitol (MT)-assisted p-toluenesulfonic acid/pentanol pretreatment, as an eco-friendly process. The addition of optimized 5% MT in pretreatment enhanced the delignification rate by 29% and enlarged the surface area and biomass porosity by 1.07-1.80 folds. This increased the glucose yield by 45% (from 65.34 to 94.54%) after enzymatic hydrolysis relative to those without MT. The extracted lignin in the organic phase of pretreatment exhibited β-O-4 bonds (61.54/100 Ar) properties of native cellulosic enzyme lignin. Lignin characterization and molecular docking analyses revealed that the hydroxyl tails of MT were incorporated with lignin and formed etherified lignin, which preserved high lignin integrity. The solubilized hemicellulose (96%) in the liquid phase of pretreatment was converted into furfural with a yield of 83.99%. The MT-assisted pretreatment could contribute to a waste-free biorefinery pathway toward a circular bioeconomy.
    Matched MeSH terms: Biomass
  2. Yiin CL, Quitain AT, Yusup S, Uemura Y, Sasaki M, Kida T
    Bioresour Technol, 2018 Aug;261:361-369.
    PMID: 29680702 DOI: 10.1016/j.biortech.2018.04.039
    Natural hydro-low-transition-temperature mixtures (NH-LTTMs) tend to be the most favorable next-generation green solvents for biomass pretreatment, as they are cheap and environmental friendly. The amount of water bound into the NH-LTTMs greatly affected their thermal stability, whereby the highest thermal stability was observed with the water content of 7.6 wt%. It is worth noting that, the highest molar transition energy of NH-LTTMs (47.57 kcal mol-1), which indicated the highest solubility, was optimized with the molar ratio of hydrogen bond donor (HBD)-hydrogen bond acceptor (HBA)-water (2:4:3) at a temperature of 60 °C. Hydrogen bonding networks of the NH-LTTMs, which led to the dissolution of biomass, were confirmed by the alteration in the peaks of the involved bonds and resonance signal to lower field through FTIR and 1H NMR spectra, respectively. The components evidenced in high-resolution mass spectra of extracted lignin showed its high potential to be valorized into useful fuels and chemicals.
    Matched MeSH terms: Biomass
  3. Tong KTX, Tan IS, Foo HCY, Show PL, Lam MK, Wong MK
    Bioengineered, 2023 Dec;14(1):246-289.
    PMID: 37482680 DOI: 10.1080/21655979.2023.2236842
    The imminent need for transition to a circular biorefinery using microbial fuel cells (MFC), based on the valorization of renewable resources, will ameliorate the carbon footprint induced by industrialization. MFC catalyzed by bioelectrochemical process drew significant attention initially for its exceptional potential for integrated production of biochemicals and bioenergy. Nonetheless, the associated costly bioproduct production and slow microbial kinetics have constrained its commercialization. This review encompasses the potential and development of macroalgal biomass as a substrate in the MFC system for L-lactic acid (L-LA) and bioelectricity generation. Besides, an insight into the state-of-the-art technological advancement in the MFC system is also deliberated in detail. Investigations in recent years have shown that MFC developed with different anolyte enhances power density from several µW/m2 up to 8160 mW/m2. Further, this review provides a plausible picture of macroalgal-based L-LA and bioelectricity circular biorefinery in the MFC system for future research directions.
    Matched MeSH terms: Biomass
  4. Noman E, Al-Gheethi A, Saphira Radin Mohamed RM, Al-Sahari M, Hossain MS, Vo DN, et al.
    Chemosphere, 2022 Mar;291(Pt 1):132862.
    PMID: 34774612 DOI: 10.1016/j.chemosphere.2021.132862
    In this article, the nickel (Ni2+) ions removal from the wastewater is reviewed. Adsorption is widely used to remove Ni2+ ions from waters and wastewaters. The usage of biomass is becoming more common for Ni2+ ions removal, while the commercial activated carbon from different agriculture wastes is preferred as an adsorbent for Ni2+ ion removal. The present review aimed to organise the available information regarding sustainable approaches for Ni2+ ions removal from water and wastewaters. These include adsorption by nanoparticles, bacterial biomass, and activated carbon from agriculture wastes, since they are the most common used for the Ni2+ ions removal. The bacterial and agricultural waste adsorbents exhibited high efficiency with a renewable source of biomass for Ni2+ ion removal. The biosorption capacity of the Ni2+ ions by the bacterial biomass range from 5.7 to 556 mg/g, while ranging from 5.8 to 150 mg/g by the activated carbon from different organic materials. The biosorption capacity of the nanocomposite adsorbents might reach to 400 mg/g. It appeared that the elimination of nickel ions need a selective biomass adsorbent such as the tolerant bacterial cells biomass which acts as a store for Ni2+ ion accumulations as a results for the active and passive transportation of the Ni2+ ions through the bacterial cell membrane.
    Matched MeSH terms: Biomass
  5. Sharmeen Nellisa Soffian, Nurul Alia Risma Rismayuddin, Munirah Mokhtar, Mohd Hafiz Arzmi
    MyJurnal
    Introduction:Candida spp. are most common opportunistic pathogenic yeast that inhabit human oral cavity, epider-mis, gastrointestinal tract, and vagina leading to candidiasis. The transition of this yeast from commensal to potent pathogen is facilitated by numbers of virulence factors including biofilm formation. While most reports on candidi-asis are associated with formation Candida albicans biofilms, however, non-albicans Candida species prevalence is of growing concern. Recently, the use of probiotics as antifungal and antibiofilm has gained an increasing attention. As such, we aim to evaluate the inhibitory effect of monomicrobial and polymicrobial of Streptococcus salivariuson six strains of NAC namely Candida dubliniensis, Candida glabrata, Candida krusei, Candida lusitanaei, Candida parapsilosis and Candida tropicalis. Methods: Antifungal activity of S. salivarius on NAC species was performed using well diffusion method on Mueller Hinton Agar (MHA) and the diameter of inhibition zone were assessed. For formation of monomicrobial biofilm, standardized cell suspensions of NAC species (1 x 105 cells/ml) and probiotic Streptococcus salivarius (1 x 106 cells/ml) were grown in RPMI or nutrient broth media at 37°C for 72 h. Meanwhile to study polymicrobial biofilm of both NAC and S. salivarius, similar protocol was employed by inoculating both microorganisms with a similar cell density as in monomicrobial. Finally, biofilm formation was assessed through quantification of total biomass by crystal violet (CV) assay and the absorbance of adherent biofilm was measured in triplicate at 620nm. Results: Antifungal susceptibility testing of S. salivarius on all six NAC species discerned no zone of inhibition. Furthermore, our results showed variability of monomicrobial and polymicrobial biofilm biomass between NAC species and growth medium. All six polymicrobial NB-grown and RPMI-grown exhibited decreased of the biofilm formation. C. parapsilosis co-cultured with S. salivarius in NB medium had shown lowest biofilm bio-mass by 75.51+_1.34% while in RPMI medium, C. lusitanaei demonstrated with most reduced biofilm biomass by 67.03+_5.19. Conclusion: Our study elucidated the antagonistic relationship between Streptococcus salivarius and non-albicans Candida by supressing the growth of polymicrobial biofilm and pseudohyphae/hyphae of NAC species.
    Matched MeSH terms: Biomass
  6. Idris J, Shirai Y, Andou Y, Mohd Ali AA, Othman MR, Ibrahim I, et al.
    Waste Manag Res, 2016 Feb;34(2):176-80.
    PMID: 26612557 DOI: 10.1177/0734242X15616472
    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry.
    Matched MeSH terms: Biomass*
  7. Mohd Nasir N, Mohd Yunos FH, Wan Jusoh HH, Mohammad A, Lam SS, Jusoh A
    J Environ Manage, 2019 Nov 01;249:109373.
    PMID: 31415924 DOI: 10.1016/j.jenvman.2019.109373
    Microalgae have been increasingly used to generate biofuel, thus a sustainable technique should be implemented to harvest the biomass to ensure its existence in the environment. Aspergillus niger was used as bio-flocculant to harvest microalgae from aquaculture wastewater via flocculation technique over a range of pH and mixing rate. The bio-flocculant showed ability to adapt at a wide range of pH from 3.0 to 9.0 and at a mixing rate of 100-150 rpm, producing a harvesting efficiency of higher than 90%. The treated water possessed low concentration of chlorophyll-a (0.3-0.6 mg L-1) and cell density (2 × 106-3 × 106 cell mL-1). These indicate that Aspergillus niger is a promising bio-flocculant to be used in harvesting microalgae, thus promoting the use of flocculation as a green technology in aquaculture wastewater treatment.
    Matched MeSH terms: Biomass
  8. Bahaman AH, Abdul Wahab R, Hamid AAA, Halim KBA, Kaya Y, Edbeib MF
    J Biomol Struct Dyn, 2020 Sep;38(14):4246-4258.
    PMID: 31608812 DOI: 10.1080/07391102.2019.1679667
    Fungi of the Trichoderma species are valued industrial enzymes in support of the 'zero-waste' technology to convert agro-industrial biomass into valuable products, i.e. nanocellulose (NC). In this study, an in silico approach using substrate docking and molecular dynamic (MD) simulation was used to predict the order of which the multilayers of cellulosic polymers, i.e. lignin, hemicellulose and cellulose in oil palm leaves (OPL) are degraded by fungal enzymes, endocellulase and exocellulase. The study aimed to establish the catalytic tendencies of the enzymes to optimally degrade the cellulosic components of OPL for high yield production of NC. Energy minimized endocellulase and exocellulase models revealed satisfactory scores of PROCHECK (90.0% and 91.2%), Verify3D (97.23% and 98.85%) and ERRAT (95.24% and 91.00%) assessments. Active site prediction by blind docking, COACH meta-server and multiple sequence alignment indicated the catalytic triads for endocellulase and exocellulase were Ser116-His205-Glu249 and Ser382-Arg124-Asp385, respectively. Binding energy of endocellulase docked with hemicellulose (-6.0   kcal mol-1) was the most favourable followed by lignin (-5.6   kcal mol-1) and cellulose (-4.4   kcal mol-1). Exocellulase, contrarily, bonded favorably with lignin (-8.7   kcal mol-1), closely followed by cellulose (-8.5   kcal mol-1) and hemicellulose (-8.4   kcal mol-1). MDs simulations showed that interactions of complexes, endocellulase-hemicellulose and the exocellulase-cellulose being the most stable. Thus, the findings of the study successfully identified the specific actions of sugar-acting enzymes for NC production. Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Biomass
  9. Awaluddin SA, Thiruvenkadam S, Izhar S, Hiroyuki Y, Danquah MK, Harun R
    Biomed Res Int, 2016;2016:5816974.
    PMID: 27366748 DOI: 10.1155/2016/5816974
    Subcritical water extraction (SWE) technology has been used for the extraction of active compounds from different biomass materials with low process cost, mild operating conditions, short process times, and environmental sustainability. With the limited application of the technology to microalgal biomass, this work investigates parametrically the potential of subcritical water for high-yield extraction of biochemicals such as carbohydrates and proteins from microalgal biomass. The SWE process was optimized using central composite design (CCD) under varying process conditions of temperature (180-374°C), extraction time (1-20 min), biomass particulate size (38-250 μm), and microalgal biomass loading (5-40 wt.%). Chlorella vulgaris used in this study shows high volatile matter (83.5 wt.%) and carbon content (47.11 wt.%), giving advantage as a feedstock for biofuel production. The results showed maximum total carbohydrate content and protein yields of 14.2 g/100 g and 31.2 g/100 g, respectively, achieved under the process conditions of 277°C, 5% of microalgal biomass loading, and 5 min extraction time. Statistical analysis revealed that, of all the parameters investigated, temperature is the most critical during SWE of microalgal biomass for protein and carbohydrate production.
    Matched MeSH terms: Biomass
  10. Thiruvenkadam S, Izhar S, Hiroyuki Y, Harun R
    Biomed Res Int, 2018;2018:1931634.
    PMID: 30533428 DOI: 10.1155/2018/1931634
    Subcritical water extraction (SCW) was used to extract oil from Chlorella pyrenoidosa. The operational factors such as reaction temperature, reaction time, and biomass loading influence the oil yield during the extraction process. In this study, response surface methodology was employed to identify the desired extraction conditions for maximum oil yield. Experiments were carried out in batch reactors as per central composite design with three independent factors including reaction temperature (170, 220, 270, 320, and 370°C), reaction time (1, 5, 10, 15, and 20 min), and biomass loading (1, 3, 5, 10, and 15%). A maximum oil yield of 12.89 wt.% was obtained at 320°C and 15 min, with 3% biomass loading. Sequential model tests showed the good fit of experimental data to the second-order quadratic model. This study opens the great potential of SCW to extract algal oil for use in algal biofuel production.
    Matched MeSH terms: Biomass
  11. Atnaw SM, Kueh SC, Sulaiman SA
    ScientificWorldJournal, 2014;2014:497830.
    PMID: 24526899 DOI: 10.1155/2014/497830
    One of the most challenging issues concerning the gasification of oil palm fronds (OPF) is the presence of tar and particulates formed during the process considering its high volatile matter content. In this study, a tar sampling train custom built based on standard tar sampling protocols was used to quantify the gravimetric concentration of tar (g/Nm3) in syngas produced from downdraft gasification of OPF. The amount of char, ash, and solid tar produced from the gasification process was measured in order to account for the mass and carbon conversion efficiency. Elemental analysis of the char and solid tar samples was done using ultimate analysis machine, while the relative concentration of the different compounds in the liquid tar was determined making use of a liquid gas chromatography (GC) unit. Average tar concentration of 4.928 g/Nm3 and 1.923 g/Nm3 was obtained for raw gas and cleaned gas samples, respectively. Tar concentration in the raw gas sample was found to be higher compared to results for other biomass materials, which could be attributed to the higher volatile matter percentage of OPF. Average cleaning efficiency of 61% which is comparable to that of sand bed filter and venturi scrubber cleaning systems reported in the literature was obtained for the cleaning system proposed in the current study.
    Matched MeSH terms: Biomass
  12. Anis S, Zainal ZA
    Bioresour Technol, 2014 Jan;151:183-90.
    PMID: 24231266 DOI: 10.1016/j.biortech.2013.10.065
    Kinetic model parameters for toluene conversion under microwave thermocatalytic treatment were evaluated. The kinetic rate constants were determined using integral method based on experimental data and coupled with Arrhenius equation for obtaining the activation energies and pre-exponential factors. The model provides a good agreement with the experimental data. The kinetic model was also validated with standard error of 3% on average. The extrapolation of the model showed a reasonable trend to predict toluene conversion and product yield both in thermal and catalytic treatments. Under microwave irradiation, activation energy of toluene conversion was lower in the range of 3-27 kJ mol(-1) compared to those of conventional heating reported in the literatures. The overall reaction rate was six times higher compared to conventional heating. As a whole, the kinetic model works better for tar model removal in the absence of gas reforming within a level of reliability demonstrated in this study.
    Matched MeSH terms: Biomass*
  13. Senthilkumar S
    Med J Malaysia, 2004 May;59 Suppl B:218-9.
    PMID: 15468896
    Matched MeSH terms: Biomass
  14. Nor-Anuar A, Ujang Z, van Loosdrecht MC, de Kreuk MK, Olsson G
    Water Sci Technol, 2012;65(2):309-16.
    PMID: 22233910 DOI: 10.2166/wst.2012.837
    Aerobic granular sludge has a number of advantages over conventional activated sludge flocs, such as cohesive and strong matrix, fast settling characteristic, high biomass retention and ability to withstand high organic loadings, all aspects leading towards a compact reactor system. Still there are very few studies on the strength of aerobic granules. A procedure that has been used previously for anaerobic granular sludge strength analysis was adapted and used in this study. A new coefficient was introduced, called a stability coefficient (S), to quantify the strength of the aerobic granules. Indicators were also developed based on the strength analysis results, in order to categorize aerobic granules into three levels of strength, i.e. very strong (very stable), strong (stable) and not strong (not stable). The results indicated that aerobic granules grown on acetate were stronger (high density: >150 g T SSL(-1) and low S value: 5%) than granules developed on sewage as influent. A lower value of S indicates a higher stability of the granules.
    Matched MeSH terms: Biomass
  15. Adam AA, Ojur Dennis J, Al-Hadeethi Y, Mkawi EM, Abubakar Abdulkadir B, Usman F, et al.
    Polymers (Basel), 2020 Dec 01;12(12).
    PMID: 33271876 DOI: 10.3390/polym12122884
    Supercapacitors are energy storage devices with high power density, rapid charge/discharge rate, and excellent cycle stability. Carbon-based supercapacitors are increasingly attracting attention because of their large surface area and high porosity. Carbon-based materials research has been recently centered on biomass-based materials due to the rising need to maintain a sustainable environment. Cellulose and lignin constitute the major components of lignocellulose biomass. Since they are renewable, sustainable, and readily accessible, lignin and cellulose-based supercapacitors are economically viable and environmentally friendly. This review aims to systematically analyze published research findings on electrospun lignin, cellulose, and lignin/cellulose nanofibers for use as supercapacitor electrode materials. A rigorous scientific approach was employed to screen the eligibility of relevant articles to be included in this study. The research questions and the inclusion criteria were clearly defined. The included articles were used to draw up the research framework and develop coherent taxonomy of literature. Taxonomy of research literature generated from the included articles was classified into review papers, electrospun lignin, cellulose, and lignin/cellulose nanofibers for use as supercapacitor electrode materials. Furthermore, challenges, recommendations, and research directions for future studies were equally discussed extensively. Before this study, no review on electrospun lignin/cellulose nanofiber-based supercapacitors has been reported. Thus, this systematic review will provide a reference for other researchers interested in developing biomass-based supercapacitors as an alternative to conventional supercapacitors based on petroleum products.
    Matched MeSH terms: Biomass
  16. Chia SR, Chew KW, Show PL, Xia A, Ho SH, Lim JW
    Bioresour Technol, 2019 Oct;289:121727.
    PMID: 31279318 DOI: 10.1016/j.biortech.2019.121727
    In this present study, microalgal phycobiliproteins were isolated and purified via potential biphasic processing technique for pharmaceutical as well as food applications. The algal pre-treatment techniques were studied to enhance the yield of microalgal phycobiliproteins from the biomass. The proposed methods were optimised to obtain the best recovery yield of phycobiliproteins that can be isolated from the biomass. The phycobiliproteins were further purified using liquid biphasic system. The results showed that microalgal phycobiliproteins of high purity and yield was achieved using sonication treatment (20% power, 50% duty cycle and 7 min of irradiation time) with the biphasic system, where the purification fold of 6.17 and recovery yield of 94.89% was achieved. This work will provide insights towards the effective downstream processing of biomolecules from microalgae.
    Matched MeSH terms: Biomass
  17. Nguyen TTN, Pham HV, Lasko K, Bui MT, Laffly D, Jourdan A, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113106.
    PMID: 31541826 DOI: 10.1016/j.envpol.2019.113106
    Satellite observations for regional air quality assessment rely on comprehensive spatial coverage, and daily monitoring with reliable, cloud-free data quality. We investigated spatiotemporal variation and data quality of two global satellite Aerosol Optical Depth (AOD) products derived from MODIS and VIIRS imagery. AOD is considered an essential atmospheric parameter strongly related to ground Particulate Matter (PM) in Southeast Asia (SEA). We analyze seasonal variation, urban/rural area influence, and biomass burning effects on atmospheric pollution. Validation indicated a strong relationship between AERONET ground AOD and both MODIS AOD (R2 = 0.81) and VIIRS AOD (R2 = 0.68). The monthly variation of satellite AOD and AERONET AOD reflects two seasonal trends of air quality separately for mainland countries including Myanmar, Laos, Cambodia, Thailand, Vietnam, and Taiwan, Hong Kong, and for maritime countries consisting of Indonesia, Philippines, Malaysia, Brunei, Singapore, and Timor Leste. The mainland SEA has a pattern of monthly AOD variation in which AODs peak in March/April, decreasing during wet season from May-September, and increasing to the second peak in October. However, in maritime SEA, AOD concentration peaks in October. The three countries with the highest annual satellite AODs are Singapore, Hong Kong, and Vietnam. High urban population proportions in Singapore (40.7%) and Hong Kong (21.6%) were associated with high AOD concentrations as expected. AOD values in SEA urban areas were a factor of 1.4 higher than in rural areas, with respective averages of 0.477 and 0.336. The AOD values varied proportionately to the frequency of biomass burning in which both active fires and AOD peak in March/April and September/October. Peak AOD in September/October in some countries could be related to pollutant transport of Indonesia forest fires. This study analyzed satellite aerosol product quality in relation to AERONET in SEA countries and highlighted framework of air quality assessment over a large, complicated region.
    Matched MeSH terms: Biomass
  18. Morais RA, Siqueira AC, Smallhorn-West PF, Bellwood DR
    PLoS Biol, 2021 Nov;19(11):e3001435.
    PMID: 34727097 DOI: 10.1371/journal.pbio.3001435
    Spatial subsidies increase local productivity and boost consumer abundance beyond the limits imposed by local resources. In marine ecosystems, deeper water and open ocean subsidies promote animal aggregations and enhance biomass that is critical for human harvesting. However, the scale of this phenomenon in tropical marine systems remains unknown. Here, we integrate a detailed assessment of biomass production in 3 key locations, spanning a major biodiversity and abundance gradient, with an ocean-scale dataset of fish counts to predict the extent and magnitude of plankton subsidies to fishes on coral reefs. We show that planktivorous fish-mediated spatial subsidies are widespread across the Indian and Pacific oceans and drive local spikes in biomass production that can lead to extreme productivity, up to 30 kg ha-1 day-1. Plankton subsidies form the basis of productivity "sweet spots" where planktivores provide more than 50% of the total fish production, more than all other trophic groups combined. These sweet spots operate at regional, site, and smaller local scales. By harvesting oceanic productivity, planktivores bypass spatial constraints imposed by local primary productivity, creating "oases" of tropical fish biomass that are accessible to humans.
    Matched MeSH terms: Biomass*
  19. Rohaizu R, Wanrosli WD
    Ultrason Sonochem, 2017 01;34:631-639.
    PMID: 27773290 DOI: 10.1016/j.ultsonch.2016.06.040
    Highly stable and dispersible nanocrystalline cellulose (NCC) was successfully isolated from oil palm empty fruit bunch microcrystalline cellulose (OPEFB-MCC), with yields of 93% via a sono-assisted TEMPO-oxidation and a subsequent sonication process. The sono-assisted treatment has a remarkable effect, resulting in an increase of more than 100% in the carboxylate content and a significant increase of approximately 39% in yield compared with the non-assisted process. TEM images reveal the OPEFB-NCC to have rod-like crystalline morphology with an average length and width of 122 and 6nm, respectively. FTIR and solid-state 13C-NMR analyses suggest that oxidation of cellulose chain hydroxyl groups occurs at C6. XRD analysis shows that OPEFB-NCC consists primarily of a crystalline cellulose I structure. Both XRD and 13C-NMR indicate that the OPEFB-NCC has a lower crystallinity than the OPEFB-MCC starting material. Thermogravimetric analysis illustrates that OPEFB-NCC is less thermally stable than OPEFB-MCC but has a char content of 46% compared with 7% for the latter, which signifies that the carboxylate functionality acts as a flame retardant.
    Matched MeSH terms: Biomass*
  20. Wong YP, Saw HY, Janaun J, Krishnaiah K, Prabhakar A
    Appl Biochem Biotechnol, 2011 May;164(2):170-82.
    PMID: 21080102 DOI: 10.1007/s12010-010-9124-8
    Solid-state fermentation (SSF) was employed to enhance the nutritive values of palm kernel cake (PKC) for poultry feeding. Aspergillus flavus was isolated from local PKC and utilized to increase the mannose content of PKC via the degradation of β-mannan in PKC; evaluation was done for batch SSF in Erlenmeyer flasks and in a novel laterally aerated moving bed (LAMB) bioreactor. The optimum condition for batch SSF in flasks was 110% initial moisture content, initial pH 6.0, 30 °C, 855 μm particle size, and 120 h of fermentation, yielding 90.91 mg mannose g⁻¹ dry PKC (5.9-fold increase). Batch SSF in the LAMB at the optimum condition yielded 79.61 mg mannose g⁻¹ dry PKC (5.5-fold increase) within just 96 h due to better heat and mass transfer when humidified air flowed radially across the PKC bed. In spite of a compromise of 12% reduction in mannose content when compared with the flasks, the LAMB facilitated good heat and mass transfer, and improved the mannose content of PKC in a shorter fermentation period. These attributes are useful for batch production of fermented PKC feed in an industrial scale.
    Matched MeSH terms: Biomass
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links