Displaying publications 81 - 100 of 143 in total

Abstract:
Sort:
  1. Anis S, Zainal ZA
    Bioresour Technol, 2013 Dec;150:328-37.
    PMID: 24185417 DOI: 10.1016/j.biortech.2013.10.010
    This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content.
    Matched MeSH terms: Calcium Carbonate/chemistry
  2. Abdolmohammadi S, Siyamak S, Ibrahim NA, Yunus WM, Rahman MZ, Azizi S, et al.
    Int J Mol Sci, 2012;13(4):4508-22.
    PMID: 22605993 DOI: 10.3390/ijms13044508
    This study investigates the effects of calcium carbonate (CaCO(3)) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposites. The nanocomposites of PCL/chitosan/CaCO(3) were prepared using a melt blending technique. Transmission electron microscopy (TEM) results indicate the average size of nanoparticles to be approximately 62 nm. Tensile measurement results show an increase in the tensile modulus with CaCO(3) nanoparticle loading. Tensile strength and elongation at break show gradual improvement with the addition of up to 1 wt% of nano-sized CaCO(3). Decreasing performance of these properties is observed for loading of more than 1 wt% of nano-sized CaCO(3). The thermal stability was best enhanced at 1 wt% of CaCO(3) nanoparticle loading. The fractured surface morphology of the PCL/chitosan blend becomes more stretched and homogeneous in PCL/chitosan/CaCO(3) nanocomposite. TEM micrograph displays good dispersion of CaCO(3) at lower nanoparticle loading within the matrix.
    Matched MeSH terms: Calcium Carbonate/chemistry*
  3. Al-Salihi KA
    Med J Malaysia, 2004 May;59 Suppl B:200-1.
    PMID: 15468887
    In the present study, natural coral of porites species was used as scaffold combined with in vitro expanded bone marrow stem cell derived osteoblasts (BMSC-DO), to develop a tissue-engineered bone graft in a rat model. Coral was molded into the shape of rat mandible seeded with 5x10(6) /ml BMSC-DO subsequently implanted subcutaneously in the back of 5 week Sprague dawely rats for 3 months. Coral alone was implanted as a control. The implants were harvest and processed for gross inspection and histological observations. The results showed that newly bone grafts were successfully formed coral seeded with cells group showed smooth highly vascularized like bone tissue. Histological sections revealed mature bone formation and lots of blood vessel, the bone formation occurred in the manner resemble intramembraneous bone formation. This study demonstrates that coral can be use as a suitable scaffold material for delivering bone marrow mesenchymal stem cells in tissue engineering.
    Matched MeSH terms: Calcium Carbonate*
  4. Fadilah A, Zuki AB, Loqman MY, Zamri-Saad M, Norimah Y, Asnah H
    Med J Malaysia, 2004 May;59 Suppl B:178-9.
    PMID: 15468876
    The study was carried out to evaluate macroscopically the ability of coral to repair a large size bone defect. A total 12 adult, male sheep were used in the study. The large bone defect (2.5cm x 0.5cm x 0.5cm) was created surgically on the left proximal femur and replaced by a block of coral (Porites sp.). Radiographs were obtained immediately after surgery and at 2, 4, 8 and 12 weeks post-implantation. Ultrasonographic examinations were carried out every 2 weeks after implantation up to 12 weeks using ultrasound machine (TOSHIBA Capasee II) connected with 7MHz frequency transducer. The sheep were euthanased at 2, 4, 8, and 12 weeks post-implantation and the bone examined grossly. Both ultrasonographs and radiographs taken at 8 and 12 weeks showed that the implants had been resorbed and left the space that much reduced in size. There was no sign of implant rejection observed in all animals. The results showed that processed coral has potential to become bone substitute for reconstructive bone surgery.
    Matched MeSH terms: Calcium Carbonate/analysis*
  5. Shamsuria O, Fadilah AS, Asiah AB, Rodiah MR, Suzina AH, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:174-5.
    PMID: 15468874
    The aim of this study was to evaluate the in vitro cytotoxicity of biomaterials; Hydroxyapatite (HA), Natural coral (NC) and Polyhydroxybutarate (PHB). Three different materials used in this study; HA (Ca10(PO4)6(OH)2), NC (CaCO3) and PHB (Polymer) were locally produced by the groups of researcher from Universiti Sains Malaysia. The materials were separately extracted in the complete culture medium (100mg/ml) for 72h and introduced to the osteoblast cells CRL-1543. The viability of osteoblast CRL-1543 cultivated with these extraction materials after 72h incubation period was compared to negative control with neutral red assay by using spectrophotometer at 540nm. The results showed the non-cytotoxicity of the materials. After 72h of incubation period, HA showed 123% viable cells, NC was 99.43% and PHB was 176.75%. In this study, cytotoxicity test dealt mainly with the substances that leached out from the biomaterial. The results obtained showed that the materials were not toxic and also promoted cells growth in the sense of biofunctionality.
    Matched MeSH terms: Calcium Carbonate/toxicity*
  6. Najafpour HD, Suzina AH, Nizam A, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:121-2.
    PMID: 15468848
    There was a significant increased in Absolute Contact Length measurements of endosteal bone growth along the Nickel-Titanium (NiTi) implant coated with the natural coral powder and Hydroxyapatite (HA) compared to the non-calcium coated implants. This study demonstrated that coated implants seemed to show earlier and higher osseointergration phenomena compared to non coated ones. Furthermore, there was significantly greater bone-to-implant contact at the apical 1/3rd of the coated implants.
    Matched MeSH terms: Calcium Carbonate*
  7. Rosdan S, Al-Salihi KA, Suzina AH, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:111-2.
    PMID: 15468843
    The main objective of the study was to determine the biodegradability, resorption and osteoconductivity potency of coral implant. Coral blocks (CORAGRAF) were prepared from sea coral Porites species. The blocks were implanted in the right mandible of rabbit model. Implants were harvested at 2 and 4 weeks intervals and subjected for light and scanning electron microscopy. Dense hydroxyapatite (DHA) was implanted in the left mandible as a control. The results of this study demonstrated that CORAGRAF is a good implant material that can accelerates bone healing and be resorbed in an acceptable time. The mechanisms of the resorption seemed to be the same (crumbling process), a first step where the edge of the coral become powdery then a second step which could be phagocytosis and dissolution in extracellular fluid.
    Matched MeSH terms: Calcium Carbonate*
  8. Esfandyari Bayat A, Junin R, Derahman MN, Samad AA
    Chemosphere, 2015 Sep;134:7-15.
    PMID: 25889359 DOI: 10.1016/j.chemosphere.2015.03.052
    The impact of ionic strength (from 0.003 to 500mM) and salt type (NaCl vs MgCl2) on transport and retention of titanium dioxide (TiO2) nanoparticles (NPs) in saturated limestone porous media was systematically studied. Vertical columns were packed with limestone grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolent-visible spectrometry. Presence of NaCl and MgCl2 in the suspensions were found to have a significant influence on the electrokinetic properties of the NP aggregates and limestone grains. In NaCl and MgCl2 solutions, the deposition rates of the TiO2-NP aggregates were enhanced with the increase in ionic strength, a trend consistent with traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Furthermore, the NP aggregates retention increased in the porous media with ionic strength. The presence of salts also caused a considerable delay in the NPs breakthrough time. MgCl2 as compared to NaCl was found to be more effective agent for the deposition and retention of TiO2-NPs. The experimental results followed closely the general trends predicted by the filtration and DLVO calculations. Overall, it was found that TiO2-NP mobility in the limestone porous media depends on ionic strength and salt type.
    Matched MeSH terms: Calcium Carbonate/analysis*
  9. Aziz HA, Yusoff MS, Adlan MN, Adnan NH, Alias S
    Waste Manag, 2004;24(4):353-8.
    PMID: 15081062
    Limestone has been proven effective in removing metals from water and wastewater. A literature review indicated that limestone is capable of removing heavy metals such as Cu, Zn, Cd, Pb, Ni, Cr, Fe and Mn are through a batch process or by filtration technique. The removal capability is reported at up to 90%. However, to date most of the studies have been focused on synthetic wastewater. The present study attempts to investigate the suitability of limestone to attenuate total iron (Fe) from semi aerobic leachate at Pulau Burung Landfill Site in Penang, Malaysia. Iron was found in significant quantities at the landfill site. The study also aims to establish the Fe isotherm and breakthrough time of the proposed limestone filter for post-treatment to the migrating landfill leachate before its release to the environment. The Fe isotherms were established using a batch equilibrium test, while the breakthrough characteristics were determined using continuous flow permeating through a limestone column. The latter was used in order to simulate the continuous flow of leachate that would occur in the proposed limestone filter. The limestone media used in the experiment contain more than 90% CaCO3 with particle sizes ranging from 2 to 4 mm. Four filter columns (each 150 mm in diameter and 1000 mm depth) were installed at the landfill site. Metal loadings were kept below 0.5 kg /m3 day and the experiment was run continuously for 30 days. Initial results indicated that 90% of Fe can be removed from the leachate based on retention time of 57.8 min and surface loading of 12.2 m3/m2 day. For the batch study on the Fe isotherm, the results indicated that limestone is potentially useful as an alternative leachate treatment system at a relatively low cost.
    Matched MeSH terms: Calcium Carbonate/chemistry*
  10. Almugren KS, Sani SFA, Wandira R, Wahib N, Rozaila ZS, Khandaker MU, et al.
    Appl Radiat Isot, 2019 Sep;151:102-110.
    PMID: 31163392 DOI: 10.1016/j.apradiso.2019.04.027
    Present research concerns the TL signal stored in chalk of the variety commercially available for writing on blackboards. Samples of this have been subjected to x-ray irradiation, the key dosimetric parameters investigated including dose and energy response, sensitivity, fading and glow curve analysis. Three types of chalk have been investigated, each in five different colours. The samples were annealed at 323 K prior to irradiation. For all three chalk types and all five colours, the dose response has been found linear over the investigated dose range, 0-9 Gy. Regardless of type or colour, photoelectric energy dependency is apparent at the low energy end down to the lowest investigated accelerating potential of 30 kV. Crayola (Yellow) has shown the greatest TL sensitivity, thus selection has been made to limit further analysis to this medium alone, specifically in respect of glow curve and fading study. In addition, elemental compositional and structural change characterizations were made for the same medium, utilizing Energy Dispersive X-Ray (EDX) and Raman spectroscopy, respectively.
    Matched MeSH terms: Calcium Carbonate/chemistry*
  11. Rahman MNIA, Jeofry H, Basarian MS
    Data Brief, 2020 Oct;32:106194.
    PMID: 32904202 DOI: 10.1016/j.dib.2020.106194
    The survey data on potential aquifer was collected at two sites located in Banggi Island (i.e. Laksian Primary School [LPS] and Padang Primary School [PPS]), Malaysia on 25 and 26 April 2013. Both locations are geologically surrounded by various types of lithologies, namely, sandstone, mudstone, siltstone, shale, chert, conglomerate, lignite, tuff, limestone, terrace sand, gravel and coral. The resistivity data consisted of six-line pole-dipole short arrays and were recorded in-situ using SAS 4000 ABEM Lund Imaging System, together with a relay switching unit (Electrode Selector ES 464), six multiconductor cables, steel rod electrodes and jumpers. The data, namely electrode spacing, depth of investigation, subsurface resistivity, type of material and horizontal data coverage were used to assess the characteristics of the potential aquifer. The recorded data were then processed using RES2DINV software to obtain 2-D inversion model of the subsurface. The data were also equipped with six models of inverse resistivity section for both areas. The data obtained can be used by the government and stakeholders for groundwater exploration and extraction in order to provide water supplies for local communities, especially since access to these resources from the surrounding water treatment plants on the island is limited.
    Matched MeSH terms: Calcium Carbonate
  12. Dickinson L, Noble H, Gardner E, Puad ASA, Zakaria WNFW, Zerega NJC
    PeerJ, 2020;8:e9897.
    PMID: 33005490 DOI: 10.7717/peerj.9897
    Limestone karsts of Southeast Asia can harbor high levels of endemism, but are highly fragmented, increasingly threatened, and their biodiversity is often poorly studied. This is true of the Padawan Limestone Area of Sarawak, Malaysia, home to the endemic Artocarpus annulatus, the closest known wild relative of two important and underutilized fruit tree crops, jackfruit (A. heterophyllus) and cempedak (A. integer). Identifying and conserving crop wild relatives is critical for the conservation of crop genetic diversity and breeding. In 2016 and 2017, five A. annulatus populations were located, and leaf material, locality information, and demographic data were collected. Microsatellite markers were used to assess genetic diversity and structure among populations, and to compare levels of genetic diversity to closely related congeneric species. Results indicate no evidence of inbreeding in A. annulatus, and there is no genetic structure among the five populations. However, diversity measures trended lower in seedlings compared to mature trees, suggesting allelic diversity may be under threat in the youngest generation of plants. Also, genetic diversity is lower in A. annulatus compared to closely related congeners. The present study provides a baseline estimate of A. annulatus genetic diversity that can be used for comparison in future studies and to other species in the unique limestone karst ecosystems. Considerations for in situ and ex situ conservation approaches are discussed.
    Matched MeSH terms: Calcium Carbonate
  13. Amirmoshiri M, Zhang L, Puerto MC, Tewari RD, Bahrim RZBK, Farajzadeh R, et al.
    Langmuir, 2020 Sep 01.
    PMID: 32870010 DOI: 10.1021/acs.langmuir.0c01521
    We investigate the dynamic adsorption of anionic surfactant C14 - 16 alpha olefin sulfonate on Berea sandstone cores with different surface wettability and redox states under high temperature that represents reservoir conditions. Surfactant adsorption levels are determined by analyzing the effluent history data with a dynamic adsorption model assuming Langmuir isotherm. A variety of analyses, including surface chemistry, ionic composition, and chromatography, is performed. It is found that the surfactant breakthrough in the neutral-wet core is delayed more compared to that in the water-wet core because the deposited crude oil components on the rock surface increase the surfactant adsorption via hydrophobic interactions. As the surfactant adsorption is satisfied, the crude oil components are solubilized by surfactant micelles and some of the adsorbed surfactants are released from the rock surface. The released surfactant dissolves in the flowing surfactant solution, thereby resulting in an overshoot of the produced surfactant concentration with respect to the injection value. Furthermore, under water-wet conditions, changing the surface redox potential from an oxidized to a reduced state decreases the surfactant adsorption level by 40%. We find that the decrease in surfactant adsorption is caused not only by removing the iron oxide but also by changing the calcium concentration after the core restoration process (calcite dissolution and ion exchange as a result of using EDTA). Findings from this study suggest that laboratory surfactant adsorption tests need to be conducted by considering the wettability and redox state of the rock surface while recognizing how core restoration methods could significantly alter the ionic composition during surfactant flooding.
    Matched MeSH terms: Calcium Carbonate
  14. Omoregie AI, Ong DEL, Nissom PM
    Lett Appl Microbiol, 2019 Feb;68(2):173-181.
    PMID: 30537001 DOI: 10.1111/lam.13103
    Biocalcification through the use of ureolytic bacteria and biochemical activities has evolved in recent decades into a fervent resourceful effective technology suitable for soil stabilization, crack repair and bioremediation. Extensive studies have been carried out on numerous ureolytic bacterial species isolated from soils and sewage samples. However, very limited attention has been given to limestone caves with natural calcite formations as a possible source for isolation of ureolytic bacteria. In this study, bacterial isolates were recovered from limestone cave samples to determine their suitability for biocalcification. Twenty-seven morphologically distinct bacterial isolates were identified by partial 16S rRNA gene sequencing and their various genetic diversity was characterized according to their phylogenetic affiliations. Based on the molecular identification, Sporosarcina was the most abundant genus among all the ureolytic isolates, while the rest belonged to Pseudogracilibacillus and Bacillus genera. Analytical analysis on urease measurement showed that urease activities for the isolates ranged from 1·130 to 21·513 mol urea hydrolysed per minute, with isolate NB33 achieving the highest value and TSB4 achieving the lowest value. The estimated CaCO3 precipitates for the isolates ranged from 4·04 to 17·26 mg ml-1 , with isolate NB30 achieving the highest value and TSB20 achieving the lowest value. The findings in this study demonstrated that the ureolytic bacteria from limestone caves are promising bio-calcifying agents. SIGNIFICANCE AND IMPACT OF THE STUDY: Ureolytic bacteria continues to play an important role as microbial tools used in geotechnical engineering for soil biocalcification. Microbial strains with the ability to produce urease enzyme and induce calcium carbonate mineral are often isolated from soil, water and sludge samples. However, screening for these essential microbes from extreme regions such as caves are rarely investigated. In this study, native bacteria which were isolated from limestone cave samples are identified and characterized. The findings suggested that these ureolytic bacterial isolates have the potential to serve as suitable alternative microbial agents for soil strengthening and stabilization.
    Matched MeSH terms: Calcium Carbonate
  15. Iqbal DM, Wong LS, Kong SY
    Materials (Basel), 2021 Apr 23;14(9).
    PMID: 33922871 DOI: 10.3390/ma14092175
    The rapid development of the construction sector has led to massive use of raw construction materials, which are at risk of exhaustion. The problem is aggravated by the high demand for cement as binding powder and the mass production of clay bricks for construction purposes. This scenario has led to high energy consumption and carbon emissions in their production. In this regard, bio-cementation is considered a green solution to building construction, because this technology is environmentally friendly and capable of reducing carbon emissions, thus slowing the global warming rate. Most of the previously published articles have focused on microbiologically induced calcium carbonate precipitation (MICP), with the mechanism of bio-cementation related to the occurrence of urea hydrolysis as a result of the urease enzymatic activity by the microbes that yielded ammonium and carbonate ions. These ions would then react with calcium ions under favorable conditions to precipitate calcium carbonate. MICP was investigated for crack repair and the surface treatment of various types of construction materials. Research on MICP for the production of binders in construction materials has become a recent trend in construction engineering. With the development of cutting edge MICP research, it is beneficial for this article to review the recent trend of MICP in construction engineering, so that a comprehensive understanding on microbial utilization for bio-cementation can be achieved.
    Matched MeSH terms: Calcium Carbonate
  16. Liu M, Li H, Bai L, Zheng K, Zhao Z, Chen Z, et al.
    J Hazard Mater, 2021 07 05;413:125291.
    PMID: 33588337 DOI: 10.1016/j.jhazmat.2021.125291
    Real-time and visual monitoring of pollutants in the air is of great importance since they are usually cannot be seen, smelled, or touched. Lanthanide nano-cluster is a kind of luminescent sensor for various species. However, controlling synthesis of lanthanide nano-cluster remains experimentally challenging. In this work, four series of lanthanide-barium (Ln-Ba) nano-clusters of Dy2Ba (1), Tb2Ba2 (2), Ln4Ba3 (Ln = Tb, 3a; Eu, 3b), Tb4Ba4 (4) were assembled through precisely controlling the pH of the reactant solutions. The work features the first example that the number of cluster's nuclei changes regularly with the pH. Moreover, investigation reveals that nano-cluster 3a is a highly selective and sensitive sensor towards acetylacetone (acac) and aniline. Interestingly, easy-to-use sensing devices of test paper, agarose gel, and five kinds of film on CaCO3, polyfoam, coin, mask, and wall that based on 3a were fabricated by facile methods. The seven sensing devices showed remarkable ability to sense aniline and acac vapors with visibility to the naked eyes. This is the first work on multiple real-time and visual sensing devices based on the lanthanide nano-cluster.
    Matched MeSH terms: Calcium Carbonate
  17. Shah Rizal Kasim, Yeong, Meng Yee, Hazizan Md. Akil, Zainal Arifin Ahmad, Hazman Seli
    MyJurnal
    Many attempts have been focused in the past on preparing of synthetic E-tricalcium (E-TCP), which being employed as bone substitute due to its biocompatibility and resorbability. Low temperature synthesize such as sol-gel method become popular due to the high product purity and homogenous composition. Sol-gel method is less economical towards commercialization because the cost of raw materials and the yield of the product that can be achieved. This paper describes the synthesis of ETCP via mixing of CaCO3 and H3PO4 followed by calcinations process at 750qC – 1050qC. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), fourier transformation infra-red (FTIR) were used for characterization and evaluation of the phase composition, morphology, particle size and thermal behavior of the product. E-TCP phase start to occur after calcinations at 750qC.
    Matched MeSH terms: Calcium Carbonate
  18. Altay V, Karahan F, Öztürk M, Hakeem KR, Ilhan E, Erayman M
    J Plant Res, 2016 Nov;129(6):1021-1032.
    PMID: 27655558
    This paper covers studies on the molecular and ecological aspects of G. glabra var. glandulifera, G. flavescens ssp. flavescens and G. echinata collected from Hatay (Turkey); with the aim to better understand their genetic variation and ecological requirements for possible conservation programs. The material including total genomic DNA was extracted by the CTAB, and for PCR reaction, a total of 14 SSR primers developed for Medicago truncatula were used. PCR amplifications were performed in a Multigen(®) Thermal Cycler. Soil samples were analysed for their texture, pH, total soluble salts, calcium carbonate, total N content, total phosphorus and organic matter content. In order to see the association between genetic, ecological and geographical data, a similarity matrix was generated. Genetic similarity distances between genotypes were correlated with those of Eucledian distances obtained from ecological and geographical data. Analysis of molecular variance (AMOVA) was performed using GenAlEx 6.5 software to determine variation among and within genetic variations. The genetic analysis showed that the highest expected heterozygosity values were obtained from G. glabra while the lowest were obtained from G. echinata. In general heterozygosity values were low, especially for G. echinata. Therefore, variation appears to be lower within each species than among three species. The physical and chemical analysis of soil and plant samples indicates that mineral accumulation in plants is substantially affected by the soil characteristics. There is a need for identification of better strategies for the improvement of varieties, especially for small farmers managing marginal soils. More studies should be conducted in order to safeguard these taxa, especially G. glabra var. glandulifera which is collected intensively due to its economic value, the same is true for endemic taxon G. flavescens ssp. flavescens.
    Matched MeSH terms: Calcium Carbonate
  19. Shahid Hassan
    MyJurnal
    Background: Competence-based curriculum has become the need of medical education to meet the objectives of institutions aiming to produce skilled physicians. To achieve the optimal competence and performance of graduates a number of traditional evaluation exercises have been practiced. Some of these e.g. OSCE although meet the acceptable standard of reliability and validity is the assessment done in a controlled environment. This leaves the room for performance-based assessment in real clinical situation such as mini clinical evaluation exercise (Mini-CEX). To practice and meet the challenges of Mini-CEX it is vital to undertake faculty development program with a comprehensively chalked down Mini-CEX protocol and its objectives to achieve the intended outcome. Objective: To undertake faculty development on Mini-CEX for its feasibility and acceptability as a method of formative assessment to evaluate the clinical competence of trainees in postgraduate program of Otolaryngology and Head-Neck Surgery. Method: 25 trainees from the four classes of master of surgery program of 2009 in Otolaryngology and Head-Neck Surgery (ORL-HNS) undertook Mini-CEX encounters and assessed by 9 supervisors in a 12-week period of study. Faculty development program was carried out through prior lectures deliberating on background, concept and procedure of Mini-CEX followed by demonstrations using video clip of Mini-CEX encounter recorded in own clinical environment. Students were also exposed to similar settings to take up the Mini-CEX encounter without any hesitation. Trainees were assessed in outpatient clinical setting. Program was evaluated for its feasibility and acceptability with respect to patient’s factors, clinical attributes, supervisor and trainee’s performance and their reported level of satisfaction.
    Result: Faculty development and trainees orientation in Min-CEX was achieved as feasible and acceptable. Higher rating of satisfaction was reported by majority assessors and trainees as they found Mini-CEX acceptable for formative assessment. Among clinical skills highest rating was received in physical examination and lowest rating in therapeutic skills. Conclusion: A motivated faculty and organized approach towards a comprehensive knowledge on Mini-CEX for its background communication, demonstration of procedure and method to complete the rating forms is the useful guide to adopt Mini-CEX. The faculty and trainees in department of ORL-HNS found Mini-CEX as feasible and acceptable assessment tool to monitor educational activity of postgraduate program through performance-based evaluation in a real clinical situation.
    Matched MeSH terms: Calcium Carbonate
  20. Lai FC
    Sains Malaysiana, 2015;44:1599-1607.
    Cement industries globally produced about 2.282 billion ton/year and 25 billion tons of concrete are produced yearly
    all over the world, necessary measures are to be taken to reduce energy use along with the prevention of environmental
    degradation, depletion of the limited resources and contribute 7% to global warming effects due to the release of carbon
    dioxide to the atmosphere. Cement additives quality improver polymer (CAQIP) was developed from synthesized polymer,
    waste materials derived from petro-chemical and palm oil waste for production of sustainable cement. Industrial scale
    trial in a local cement plants by dosing 0.009%-0.690% CAQIP significant improved productivity, 8.3-27.5% efficiency in
    saving, 24.73-86.36% clinkering energy and 7.7-21.57% grinding energy in the production of Ordinary Portland Cement
    and sustainable cement. Strength quality improved 7.31-34.8% (2 day) and 3.85-57.58% (28 day). Carbon dioxide and
    others toxic gases emission was reduced 21.90-90.0% by replacing clinker with waste material such as fly ash (25-
    35%), out-spec clinker (50-100%) and limestone waste (5-25%). The developed CAQIP significant improved productivity,
    quality strength, reduced CO2
    emission, grinding & clinkering energy and enhanced production of sustainable cement
    and concrete in Malaysia.
    Matched MeSH terms: Calcium Carbonate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links