Displaying publications 81 - 86 of 86 in total

Abstract:
Sort:
  1. Sundararajan V, Sarkar FH, Ramasamy TS
    Cell Oncol (Dordr), 2018 06;41(3):223-252.
    PMID: 29667069 DOI: 10.1007/s13402-018-0378-4
    BACKGROUND: Recent advances in cancer biology have highlighted the relevance of exosomes and nanovesicles as carriers of genetic and biological messages between cancer cells and their immediate and/or distant environments. It has been found that these molecular cues may play significant roles in cancer progression and metastasis. Cancer cells secrete exosomes containing diverse molecules that can be transferred to recipient cells and/or vice versa to induce a plethora of biological processes, including angiogenesis, metastasis formation, therapeutic resistance, epithelial-mesenchymal transition and epigenetic/stemness (re)programming. While exosomes interact with cells within the tumour microenvironment to promote tumour growth, these vesicles can also facilitate the process of distant metastasis by mediating the formation of pre-metastatic niches. Next to their tumour promoting effects, exosomes have been found to serve as potential tools for cancer diagnosis and therapy. The ease of isolating exosomes and their content from different body fluids has led to the identification of diagnostic and prognostic biomarker signatures, as well as to predictive biomarker signatures for therapeutic responses. Exosomes can also be used as cargos to deliver therapeutic anti-cancer drugs, and they can be engineered to serve as vaccines for immunotherapy. Additionally, it has been found that inhibition of exosome secretion, and thus the transfer of oncogenic molecules, holds promise for inhibiting tumour growth. Here we provide recent information on the diverse roles of exosomes in various cellular and systemic processes governing cancer progression, and discuss novel strategies to halt this progression using exosome-based targeted therapies and methods to inhibit exosome secretion and the transfer of pro-tumorigenic molecules.

    CONCLUSIONS: This review highlights the important role of exosomes in cancer progression and its implications for (non-invasive) diagnostics and the development of novel therapeutic strategies, as well as its current and future applications in clinical trials.

    Matched MeSH terms: Cell Transformation, Neoplastic
  2. Zaini ZM, McParland H, Møller H, Husband K, Odell EW
    Sci Rep, 2018 10 26;8(1):15874.
    PMID: 30367100 DOI: 10.1038/s41598-018-34165-5
    The value of image cytometry DNA ploidy analysis and dysplasia grading to predict malignant transformation has been determined in oral lesions considered to be at 'high' risk on the basis of clinical information and biopsy result. 10-year follow up data for 259 sequential patients with oral lesions clinically at 'high' risk of malignant transformation were matched to cancer registry and local pathology database records of malignant outcomes, ploidy result and histological dysplasia grade. In multivariate analysis (n = 228 patients), 24 developed carcinoma and of these, 14 prior biopsy samples were aneuploid. Aneuploidy was a significant predictor (hazard ratio 7.92; 95% CI 3.45, 18.17) compared with diploidy (p 
    Matched MeSH terms: Cell Transformation, Neoplastic
  3. Khan S, Zakariah M, Rolfo C, Robrecht L, Palaniappan S
    Oncotarget, 2017 May 09;8(19):30830-30843.
    PMID: 27027344 DOI: 10.18632/oncotarget.8306
    Although the idea of bacteria causing different types of cancer has exploded about century ago, the potential mechanisms of carcinogenesis is still not well established. Many reports showed the involvement of M. hominis in the development of prostate cancer, however, mechanistic approach for growth and development of prostate cancer has been poorly understood. In the current study, we predicted M. hominis proteins targeting in the mitochondria and cytoplasm of host cells and their implication in prostate cancer. A total of 77 and 320 proteins from M. hominis proteome were predicted to target in the mitochondria and cytoplasm of host cells respectively. In particular, various targeted proteins may interfere with normal growth behaviour of host cells, thereby altering the decision of programmed cell death. Furthermore, we investigated possible mechanisms of the mitochondrial and cytoplasmic targeted proteins of M. hominis in etiology of prostate cancer by screening the whole proteome.
    Matched MeSH terms: Cell Transformation, Neoplastic
  4. Karimian H, Fadaeinasab M, Zorofchian Moghadamtousi S, Hajrezaei M, Razavi M, Safi SZ, et al.
    PLoS One, 2015;10(5):e0127434.
    PMID: 25996383 DOI: 10.1371/journal.pone.0127434
    Ferulago angulata leaf hexane extract (FALHE) was found to be a potent inducer of MCF7 cell apoptosis. The aims of the present study were to investigate the in vivo chemopreventive effect of FALHE in rats, to identify the contributing anticancer compound in FALHE and to determine its potential mechanism of action against MCF7 cells. Thirty rats harboring LA7-induced breast tumors were divided into five groups: tumor control, low-dose FALHE, high-dose FALHE, treatment control (tamoxifen) and normal control. Breast tissues were then subjected to histopathological and immunohistochemical analyses. A bioassay-guided investigation on FALHE was performed to identify the cytotoxic compound and its mechanism of action through flow cytometry, real-time qPCR and western blotting analyses. An in vivo study showed that FALHE suppressed the expression of the tumor markers PCNA and Ki67. The tumor size was reduced from 2031 ± 281 mm3 to 432 ± 201 mm3 after FALHE treatment. FALHE administration induced apoptosis in breast tumor cells, and this was confirmed by high expression levels of Bax, p53 and caspase 3. Cell cycle arrest was suggested by the expression of p21 and p27. The in vitro experimental results resulted in the isolation of polycerasoidin as a bioactive ingredient of FALHE with an IC50 value of 3.16 ± 0.31 μg/ml against MCF7 cells. Polycerasoidin induced mitochondrial-dependent apoptosis in breast cancer cells via caspase activation and changes in the mRNA and protein expression of Bax and Bcl-2. In addition, flow cytometric analysis demonstrated that the treated MCF7 cells were arrested at the G1 phase, and this was associated with the up-regulation of p21 and p27 at both the mRNA and protein levels. The results of the present study reinforce further investigations scrutinizing the promising potential of the F. angulata chemical constituents as breast cancer chemopreventive agents.
    Matched MeSH terms: Cell Transformation, Neoplastic/drug effects
  5. Mohidin TB, Ng CC
    J Biosci, 2015 Mar;40(1):41-51.
    PMID: 25740140
    Epstein-Barr virus (EBV)-encoded BARF1 (BamH1-A Rightward Frame-1) is expressed in EBV-positive malignancies such as nasopharyngeal carcinoma, EBV-associated gastric cancer, B-cell lymphoma and nasal NK/T-cell lymphoma, and has been shown to have an important role in oncogenesis. However, the mechanism by which BARF1 elicits its biological effects is unclear. We investigated the effects of BARF1 silencing on cell proliferation and apoptosis in EBV-positive malignant cells. We observed that BARF1 silencing significantly inhibits cell proliferation and induces apoptosis-mediated cell death by collapsing the mitochondrial membrane potential in AG876 and Hone-Akata cells. BARF1 knockdown up-regulates the expression of pro-apoptotic proteins and downregulates the expression of anti-apoptotic proteins. In BARF1-down-regulated cells, the Bcl-2/BAX ratio is decreased. The caspase inhibitor z-VAD-fmk was found to rescue siBARF1-induced apoptosis in these cells. Immunoblot analysis showed significant increased levels of cleaved caspase 3 and caspase 9. We observed a significant increase in cytochrome c level as well as the formation of apoptosome complex in BARF1-silenced cells. In conclusion, siRNA-mediated BARF1 down-regulation induces caspase-dependent apoptosis via the mitochondrial pathway through modulation of Bcl-2/BAX ratio in AG876 and Hone-Akata cells. Targeting BARF1 using siRNA has the potential to be developed as a novel therapeutic strategy in the treatment of EBV-associated malignancies.
    Matched MeSH terms: Cell Transformation, Neoplastic/genetics
  6. Al-Astani Tengku Din TA, Shamsuddin SH, Idris FM, Ariffin Wan Mansor WN, Abdul Jalal MI, Jaafar H
    Asian Pac J Cancer Prev, 2014;15(9):3939-44.
    PMID: 24935577
    BACKGROUND: To elucidate the role of rapamycin and PF4 on apoptosis regulation via Bax (pro-apoptosis), Bcl-2 (anti-apoptosis) and survivin activation on the growth in the 1-methyl-1-nitrosourea -induced invasive breast carcinoma model.

    MATERIALS AND METHODS: Thirty five female Sprague Dawley rats at age 21-day old were divided into 4 groups; Group 1 (control, n=10), Group 2 (PF4, n=5), Group 3 (rapamycin, n=10) and Group 4 (rapamycin+PF4, n=10). MNU was administered intraperitionally, dosed at 70 mg/kg body weight. The rats were treated when the tumors reached the size of 14.5 ± 0.5 mm and subsequently sacrificed after 5 days. Rapamycin and PF4 were administered as focal intralesional injections at the dose of 20 μg/lesion. The tumor tissue was then subjected to histopathological examinations for morphological appraisal and immunohistochemical assessment of the pro-apoptotic marker, Bax and anti-apoptotic markers, Bcl-2 and survivin.

    RESULTS: The histopathological pattern of the untreated control cohort showed that the severity of the malignancy augments with mammary tumor growth. Tumors developing in untreated groups were more aggressive whilst those in treated groups demonstrated a transformation to a less aggressive subtype. Combined treatment resulted in a significant reduction of tumor size without phenotypic changes. Bax, the pro-apoptotic marker, was significantly expressed at higher levels in the rapamycin-treated and rapamycin+PF4-treated groups compared to controls (p<0.05). Consequently, survivin was also significantly downregulated in the rapamycin-treated and rapamycin+PF4-treated group and this was significantly different when compared to controls (p).

    CONCLUSIONS: In our rat model, it could be clearly shown that rapamycin specifically affects Bax and survivin signaling pathways in activation of apoptosis. We conclude that rapamycin plays a critical role in the induction of apoptosis in MNU-induced mammary carcinoma.

    Matched MeSH terms: Cell Transformation, Neoplastic
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links