Displaying publications 81 - 100 of 135 in total

Abstract:
Sort:
  1. Ainoon O, Yu YH, Amir Muhriz AL, Boo NY, Cheong SK, Hamidah NH
    Hum Mutat, 2003 Jan;21(1):101.
    PMID: 12497642 DOI: 10.1002/humu.9103
    We performed DNA analysis using cord blood samples on 86 male Malay neonates diagnosed as G6PD deficiency in the National University of Malaysia Hospital by a combination of rapid PCR-based techniques, single-stranded conformation polymorphism analysis (SSCP) and DNA sequencing. We found 37.2% were 871G>A (G6PD Viangchan), 26.7% were nt 563 C>T (G6PD Mediterranean) and 15.1% were 487G>A (G6PD Mahidol) followed by 4.7% 1376G>T (G6PD Canton), 3.5% 383T>C (G6PD Vanua Lava), 3.5% 592C>T (G6PD Coimbra), 2.3% 1388G>A (G6PD Kaiping), 2.3% 1360C>T (G6PD Union), 2.3% 1003G>A (G6PD Chatham), 1.2% 131C>G (G6PD Orissa) and 1.2% 1361G>A (G6PD Andalus). Seventy-one (82.6%) of the 86 G6PD-deficient neonates had neonatal jaundice. Fifty seven (80%) of the 71 neonates with jaundice required phototherapy with only one neonate progressing to severe hyperbilirubinemia (serum bilirubin >340 micromol/l) requiring exchange transfusion. There was no significant difference in the incidence of neonatal jaundice, mean serum bilirubin level, mean age for peak serum bilirubin, percentage of babies requiring phototherapy and mean number of days of phototherapy between the three common variants. In conclusion, the molecular defects of Malay G6PD deficiency is heterogeneous and G6PD Viangchan, Mahidol and Mediterranean account for at least 80% of the cases. Our findings support the observation that G6PD Viangchan and Mahidol are common Southeast Asian variants. Their presence in the Malays suggests a common ancestral origin with the Cambodians, Laotians and Thais. Our findings together with other preliminary data on the presence of the Mediterranean variant in this region provide evidence of strong Arab influence in the Malay Archipelago.
    Matched MeSH terms: DNA Mutational Analysis
  2. Yoke-Kqueen C, Ab Mutalib NS, Sidik SM, Learn-Han L, Geok-Chin T
    Oncol Rep, 2012 Mar;27(3):753-63.
    PMID: 22159872 DOI: 10.3892/or.2011.1581
    Non-melanoma skin cancer (NMSC) is classified among the ten most frequent cancers in Malaysia. A common polymorphism at codon 72 of the p53 tumor suppressor gene and its influence on cancer risk has been studied for different types of cancer with mixed and inconsistent results with limited published data on the Malaysian population so far. In the present study, the frequency of p53 codon 72 polymorphism in 60 patients with NMSC was investigated from archival formalin-fixed paraffin-embedded (FFPE) tissue obtained from Hospital Universiti Kebangsaan Malaysia (HUKM). Additionally, random amplified polymorhic DNA -polymorphic chain reaction (RAPD-PCR) was employed for preliminary biomarker development. NMSC FFPE samples (70%) possess Arg/Arg, 20% with Pro/Pro and 10% with Arg/Pro. In total, there was no significant difference in the p53 codon 72 genotypes between histological types of NMSC, gender, race, tumor location and age group. However, there was an apparent age-associated increase in the Arg/Arg genotype but did not reach statistical significance (P=0.235). NMSC types and demographic characteristics did not influence genotype distribution. On the other hand, BCC and SCC distributions are influenced by age group, race and tumor location.
    Matched MeSH terms: DNA Mutational Analysis
  3. Thirthagiri E, Lee SY, Kang P, Lee DS, Toh GT, Selamat S, et al.
    Breast Cancer Res, 2008;10(4):R59.
    PMID: 18627636 DOI: 10.1186/bcr2118
    The cost of genetic testing and the limited knowledge about the BRCA1 and BRCA2 genes in different ethnic groups has limited its availability in medium- and low-resource countries, including Malaysia. In addition, the applicability of many risk-assessment tools, such as the Manchester Scoring System and BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) which were developed based on mutation rates observed primarily in Caucasian populations using data from multiplex families, and in populations where the rate of breast cancer is higher, has not been widely tested in Asia or in Asians living elsewhere. Here, we report the results of genetic testing for mutations in the BRCA1 or BRCA2 genes in a series of families with breast cancer in the multi-ethnic population (Malay, Chinese and Indian) of Malaysia.
    Matched MeSH terms: DNA Mutational Analysis
  4. Choong SS, Latiff ZA, Mohamed M, Lim LL, Chen KS, Vengidasan L, et al.
    Clin Genet, 2012 Dec;82(6):564-8.
    PMID: 22233476 DOI: 10.1111/j.1399-0004.2012.01841.x
    Li-Fraumeni syndrome (LFS) is a highly penetrant, autosomal dominant disorder where affected individuals carry a 50% risk of developing cancer before 30 years of age. It is most commonly associated with mutations in the tumour suppressor gene, TP53. Adrenocortical carcinoma (ACC) is a very rare paediatric cancer, and up to 80% of affected children are found to carry germline TP53 mutations. Hence, we propose using childhood ACC incidence as selection criteria for referral for TP53 mutation testing, independent of familial cancer history. Under the auspices of the Malaysian Society of Paediatric Haematology-Oncology, four eligible children diagnosed with ACC over a 30-month study period were referred for mutation testing. Three had a germline TP53 mutation. Subsequent TP53 testing in relatives showed two inherited mutations and one de novo mutation. These findings strongly support paediatric ACC as a useful sentinel cancer for initiating a germline TP53/LFS detection programme, particularly in countries where the lack of structured oncogenetic practice precludes the identification of families with LFS features.
    Matched MeSH terms: DNA Mutational Analysis
  5. Tey S, Ahmad-Annuar A, Drew AP, Shahrizaila N, Nicholson GA, Kennerson ML
    Clin Genet, 2016 Aug;90(2):127-33.
    PMID: 26662454 DOI: 10.1111/cge.12712
    The cytoplasmic dynein-dynactin genes are attractive candidates for neurodegenerative disorders given their functional role in retrograde transport along neurons. The cytoplasmic dynein heavy chain (DYNC1H1) gene has been implicated in various neurodegenerative disorders, and dynactin 1 (DCTN1) genes have been implicated in a wide spectrum of disorders including motor neuron disease, Parkinson's disease, spinobulbar muscular atrophy and hereditary spastic paraplegia. However, the involvement of other dynactin genes with inherited peripheral neuropathies (IPN) namely, hereditary sensory neuropathy, hereditary motor neuropathy and Charcot-Marie-Tooth disease is under reported. We screened eight genes; DCTN1-6 and ACTR1A and ACTR1B in 136 IPN patients using whole-exome sequencing and high-resolution melt (HRM) analysis. Eight non-synonymous variants (including one novel variant) and three synonymous variants were identified. Four variants have been reported previously in other studies, however segregation analysis within family members excluded them from causing IPN in these families. No variants of disease significance were identified in this study suggesting the dynactin genes are unlikely to be a common cause of IPNs. However, with the ease of querying gene variants from exome data, these genes remain worthwhile candidates to assess unsolved IPN families for variants that may affect the function of the proteins.
    Matched MeSH terms: DNA Mutational Analysis
  6. Low DE, Tang MM, Surana U, Lee JY, Pramano ZAD, Leong KF
    Int J Dermatol, 2019 Oct;58(10):e190-e193.
    PMID: 31192449 DOI: 10.1111/ijd.14518
    Matched MeSH terms: DNA Mutational Analysis
  7. Yee PTI, Mohamed RAH, Ong SK, Tan KO, Poh CL
    Virus Res, 2017 06 15;238:243-252.
    PMID: 28705680 DOI: 10.1016/j.virusres.2017.07.010
    One of the leading causes of the hand, foot and mouth disease (HFMD) is Enterovirus 71 (EV-A71), displaying symptoms such as fever and ulcers in children but some strains can produce cardiopulmonary oedema which leads to death. There is no FDA-approved vaccine for prevention of severe HFMD. The molecular determinants of virulence for EV-A71 are unclear. It could be a single or a combination of amino acids that determines virulence in different EV-A71 genotype/sub-genotypes. Several EV-A71 strains bearing single nucleotide (nt) mutations were constructed and the contribution of each mutation to virulence was evaluated. The nt(s) that contributed to significant reduction in virulence in vitro were selected and each mutation was introduced separately into the genome to construct the multiply mutated EV-A71 strain (MMS) which carried six substitutions of nt(s) at the 5'-NTR (U700C), VP1-145 (E to G), VP1-98E, VP1-244K and G64R in the vaccine seed strain that had a partial deletion within the 5'-NTR region (nt. 475-485) of Δ11bp. In comparison to the wild type strain, the MMS showed low virulence as it produced very low RNA copy number, plaque count, VP1 and had 105-fold higher TCID50, indicative of a promising LAV candidate that should be further evaluated in vivo.
    Matched MeSH terms: DNA Mutational Analysis
  8. Iwai K, Hirono A, Matsuoka H, Kawamoto F, Horie T, Lin K, et al.
    Hum Genet, 2001 Jun;108(6):445-9.
    PMID: 11499668
    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a heterogeneous enzyme abnormality with high frequency in tropical areas. We performed population screening and molecular studies of G6PD variants to clarify their distribution and features in Southeast Asia. A total of 4317 participants (2019 males, 2298 females) from 16 ethnic groups in Myanmar, Lao in Laos, and Amboinese in Indonesia were screened with a single-step screening method. The prevalence of G6PD-deficient males ranged from 0% (the Akha) to 10.8% (the Shan). These G6PD-deficient individuals and 12 G6PD-deficient patients who had been diagnosed at hospitals in Indonesia and Malaysia were subjected to molecular analysis by a combination of polymerase-chain-reaction-based single-strand conformation polymorphism analysis and direct sequencing. Ten different missense mutations were identified in 63 G6PD-deficient individuals (50 hemizygotes, 11 heterozygotes, and 2 homozygotes) from 14 ethnic groups. One missense mutation (1291 G-->A) found in an Indonesian Chinese, viz., G6PD Surabaya, was previously unknown. The 487 G-->A (G6PD Mahidol) mutation was widely seen in Myanmar, 383 T-->C (G6PD Vanua Lava) was specifically found among Amboinese, 871 G-->A (G6PD Viangchan) was observed mainly in Lao, and 592 C-->T (G6PD Coimbra) was found in Malaysian aborigines (Orang Asli). The other five mutations, 95 A-->G (G6PD Gaohe), 1003 G-->A (G6PD Chatham), 1360 C-->T (G6PD Union), 1376 G-->T (G6PD Canton), and 1388 G-->A (G6PD Kaiping) were identified mostly in accordance with distributions reported previously.
    Matched MeSH terms: DNA Mutational Analysis
  9. Mahil SK, Twelves S, Farkas K, Setta-Kaffetzi N, Burden AD, Gach JE, et al.
    J Invest Dermatol, 2016 11;136(11):2251-2259.
    PMID: 27388993 DOI: 10.1016/j.jid.2016.06.618
    Prominent skin involvement is a defining characteristic of autoinflammatory disorders caused by abnormal IL-1 signaling. However, the pathways and cell types that drive cutaneous autoinflammatory features remain poorly understood. We sought to address this issue by investigating the pathogenesis of pustular psoriasis, a model of autoinflammatory disorders with predominant cutaneous manifestations. We specifically characterized the impact of mutations affecting AP1S3, a disease gene previously identified by our group and validated here in a newly ascertained patient resource. We first showed that AP1S3 expression is distinctively elevated in keratinocytes. Because AP1S3 encodes a protein implicated in autophagosome formation, we next investigated the effects of gene silencing on this pathway. We found that AP1S3 knockout disrupts keratinocyte autophagy, causing abnormal accumulation of p62, an adaptor protein mediating NF-κB activation. We showed that as a consequence, AP1S3-deficient cells up-regulate IL-1 signaling and overexpress IL-36α, a cytokine that is emerging as an important mediator of skin inflammation. These abnormal immune profiles were recapitulated by pharmacological inhibition of autophagy and verified in patient keratinocytes, where they were reversed by IL-36 blockade. These findings show that keratinocytes play a key role in skin autoinflammation and identify autophagy modulation of IL-36 signaling as a therapeutic target.
    Matched MeSH terms: DNA Mutational Analysis
  10. Tan LP, Ng BK, Balraj P, Lim PK, Peh SC
    Pathology, 2007 Apr;39(2):228-34.
    PMID: 17454753
    BACKGROUND AND AIMS: Colorectal cancers of different subtypes involve different pathogenic pathways like the Wnt and the mutator pathways. In this study, we screened 73 colorectal cancer cases from a multi-racial group for genetic and expression profile defects with the aim of correlating these with patients' clinicopathological characteristics.
    METHODS: Mutation screening of the entire coding region of APC and exon 3 of CTNNB1, loss of heterozygosity (LOH) of APC, and microsatellite instability (MSI) status were assessed for 44 patients with available paired frozen normal and tumour tissues. In addition, 29 cases with available paraffin embedded tumour blocks were screened for mutation in exon 3 of CTNNB1, the APC mutation cluster region (codon 1286-1513), and hMLH1, hMSH2, hMSH6 protein expressions by immunohistochemistry method.
    RESULTS: In our study, 15/73 cases showed APC mutations (20.5%), 1/73 cases had CTNNB1 mutation (1.4%), 5/32 cases had APC LOH (15.6%), and 16/70 (22.9%) cases revealed at least some form of mismatch repair (MMR) defect. Tumour grade (poor differentiation) was found to correlate significantly with right-sided tumour and mucinous histology (p = 0.01879 and 0.00320, respectively). Patients of younger age (below 45 years) more often had tumours of mucinous histology (p = 0.00014), while patients of older age (above 75 years) more often had tumours on the right side of the colon (p = 0.02448). Tumours of the mucinous histology subtype often had MMR defects (p = 0.02686). There was no difference in the occurrence of APC and CTNNB1 mutations and MMR defects found within our multi-racial colorectal cancer patient cohort.
    CONCLUSION: Our findings support the notion that racial factor may not be related to the occurrence of MMR defects and APC and CTNNB1 mutations in our multi-racial patient cohort.
    Matched MeSH terms: DNA Mutational Analysis
  11. Yuniati R, Sihombing NRB, Nauphar D, Tiawarman B, Kartikasari DS, Dewi M, et al.
    Intractable Rare Dis Res, 2021 May;10(2):114-121.
    PMID: 33996357 DOI: 10.5582/irdr.2020.03143
    Xeroderma pigmentosum (XP) is a rare autosomal recessive disease characterized by hypersensitivity of the skin to ultraviolet radiation and other carcinogenic agents. This ailment is characterized by increased photosensitivity, skin xerosis, early skin aging, actinic keratosis, erythematous lesions, and hyperpigmentation macules. In this serial case report, we presented four cases with XP from two families in Indonesia. Both families were referred from rural referral health centers, and each family has two affected siblings. They had freckle-like pigmentation on the face, trunk, and extremities, which progressed since childhood. One patient of family 2 died because of an infectious disease. Histopathological examination using cytokeratine (CK), CD10, and Ber-EP4 staining from available tissue biopsy of one affected case of family 1 identified basal cell carcinoma (BCC) on the cheek and melanoma on the right eye. Mutation analysis found ERCC2, c2047C>T and XPC, c1941T>A in the first and second families, respectively. We suppose that this is the first case report of XP in Indonesia that incorporates clinical examination, genetic analysis, and extensive histopathological examination, including immunohistochemistry staining, and a novel pathogenic variant of XPC was found in the second family.
    Matched MeSH terms: DNA Mutational Analysis
  12. Mohamed Yusoff AA, Mohd Khair SZN, Wan Abdullah WS, Abd Radzak SM, Abdullah JM
    J Cancer Res Ther, 2020 12 22;16(6):1517-1521.
    PMID: 33342822 DOI: 10.4103/jcrt.JCRT_1132_16
    Background and Objective: Meningiomas are among the most common intracranial tumors of the central nervous system. It is widely accepted that the initiation and progression of meningiomas involve the accumulation of nucleus genetic alterations, but little is known about the implication of mitochondrial genomic alterations during development of these tumors. The human mitochondrial DNA (mtDNA) contains a short hypervariable, noncoding displacement loop control region known as the D-Loop. Alterations in the mtDNA D-loop have been reported to occur in most types of human cancers. The purpose of this study was to assess the mtDNA D-loop mutations in Malaysian meningioma patients.

    Materials and Methods: Genomic DNA was extracted from 21 fresh-frozen tumor tissues and blood samples of the same meningioma patients. The entire mtDNA D-loop region (positions 16024-576) was polymerase chain reaction amplified using designed primers, and then amplification products were purified before the direct DNA sequencing proceeds.

    Results: Overall, 10 (47.6%) patients were detected to harbor a total of 27 somatic mtDNA D-loop mutations. Most of these mtDNA mutations were identified in the hypervariable segment II (40.7%), with 33.3% being located mainly in the conserved sequence block II of the D310 sequence. Furthermore, 58 different germline variations were observed at 21 nucleotide positions.

    Conclusion: Our results suggest that mtDNA alterations in the D-loop region may be an important and early event in developing meningioma. Further studies are needed, including validation in a larger patient cohort, to verify the clinicopathological outcomes of mtDNA mutation biomarkers in meningiomas.

    Matched MeSH terms: DNA Mutational Analysis
  13. Liam CK, Mallawathantri S, Fong KM
    Respirology, 2020 09;25(9):933-943.
    PMID: 32335992 DOI: 10.1111/resp.13823
    Molecular biomarker testing of advanced-stage NSCLC is now considered standard of care and part of the diagnostic algorithm to identify subsets of patients for molecular-targeted treatment. Tumour tissue biopsy is essential for an accurate initial diagnosis, determination of the histological subtype and for molecular testing. With the increasing use of small biopsies and cytological specimens for diagnosis and the need to identify an increasing number of predictive biomarkers, proper management of the limited amount of sampling materials available is important. Many patients with advanced NSCLC do not have enough tissue for molecular testing and/or do not have a biopsy-amenable lesion and/or do not want to go through a repeat biopsy given the potential risks. Molecular testing can be difficult or impossible if the sparse material from very small biopsy specimens has already been exhausted for routine diagnostic purposes. A limited diagnostic workup is recommended to preserve sufficient tissue for biomarker testing. In addition, tumour biopsies are limited by tumour heterogeneity, particularly in the setting of disease resistance, and thus may yield false-negative results. Hence, there have been considerable efforts to determine if liquid biopsy in which molecular alterations can be non-invasively identified in plasma cell-free ctDNA, a potential surrogate for the entire tumour genome, can overcome the issues with tissue biopsies and replace the need for the latter.
    Matched MeSH terms: DNA Mutational Analysis
  14. Mat Yusoff Y, Abu Seman Z, Othman N, Kamaluddin NR, Esa E, Zulkiply NA, et al.
    Asian Pac J Cancer Prev, 2019 06 01;20(6):1749-1755.
    PMID: 31244296 DOI: 10.31557/APJCP.2019.20.6.1749
    Objective: The most frequent acquired molecular abnormalities and important prognostic indicators in patients
    with Acute Myeloid Leukaemia (AML) are fms-like tyrosine kinase-3 gene (FLT3) and nucleophosmin-1 (NPM1)
    mutations. Our study aims to develop a cost effective and comprehensive in-house conventional PCR method for
    detection of FLT3-ITD, FLT3-D835 and NPM1 mutations and to evaluate the frequency of these mutations in patients
    with cytogenetically normal (CN) AML in our population. Methods: A total of 199 samples from AML patients (95
    women, 104 men) were included in the study. Mutation analyses were performed using polymerase chain reaction
    (PCR) and gene sequencing. Result: Sixty-eight patients were positive for the mutations. FLT3-ITD mutations were
    detected in 32 patients (16.1%), followed by FLT3-D835 in 5 (2.5%) and NPM1 in 54 (27.1%). Double mutations of
    NPM1 and FLT3-ITD were detected in 23 cases (11.6%). Assays validation were performed using Sanger sequencing
    and showed 100% concordance with in house method. Conclusion: The optimized in-house PCR assays for the
    detection of FLT3-ITD, FLT3-D835 and NPM1 mutations in AML patients were robust, less labour intensive and cost
    effective. These assays can be used as diagnostic tools for mutation detection in AML patients since identification of
    these mutations are important for prognostication and optimization of patient care.
    Matched MeSH terms: DNA Mutational Analysis
  15. Tan JA, George E, Tan KL, Chow T, Tan PC, Hassan J, et al.
    Clin Exp Med, 2004 Dec;4(3):142-7.
    PMID: 15599663 DOI: 10.1007/s10238-004-0048-x
    Beta-thalassemia is the most-common genetic disorder of hemoglobin synthesis in Malaysia, and about 4.5% of the population are heterozygous carriers of the disorder. Prenatal diagnosis was performed for 96 couples using the Amplification Refractory Mutation System and Gap-Polymerase Chain Reaction. We identified 17 beta-globin defects-initiation codon for translation (T-G), -29 (A-G), -28 (A-G), CAP +1 (A-C), CD 8/9 (+G), CD 15 (G-A), CD 17 (A-T), CD 19 (A-G), Hb E (G-A), IVS1-1 (G-T), IVS1-5 (G-C), CD 41/42 (-CTTT), CD 71-72 (+A), IVS2-654 (CT), poly A(A-G), 100-kb Ggamma(Agammadeltabeta) degrees and 45-kb Filipino deletions. The 192 beta-alleles studied comprised Chinese (151 patients), Malay (21), Orang Asli from East Malaysia (15), Filipino (1), Indian (1), Indonesian Chinese (2), and Thai (1). In the Chinese, 2 beta-globin defects at CD 41/42 and IVS2-654 were responsible for 74% of beta-thalassemia. beta-mutations at CD 19, IVS1-1 (G-T), IVS1-5, poly A, and hemoglobin E caused 76% of the hemoglobin disorders in the Malays. The Filipino 45-kb deletion caused 73.3% of bthalassemia in the Orang Asli. Using genomic sequencing, the rare Chinese beta-mutation at CD 43 (G-T) was confirmed in 2 Chinese, and the Mediterranean mutation IVS1-1 (G-A) was observed in a Malay beta-thalassemia carrier. The beta-globin mutations confirmed in this prenatal diagnosis study were heterogenous and 65 (68%) couples showed a different globin defect from each other. The use of specific molecular protocols has allowed rapid and successful prenatal diagnosis of beta-thalassemia in Malaysia.
    Matched MeSH terms: DNA Mutational Analysis
  16. Omasanggar R, Yu CY, Ang GY, Emran NA, Kitan N, Baghawi A, et al.
    PLoS One, 2020;15(5):e0233461.
    PMID: 32442190 DOI: 10.1371/journal.pone.0233461
    Cancer development has been ascribed with diverse genetic variations which are identified in both mitochondrial and nuclear genomes. Mitochondrial DNA (mtDNA) alterations have been detected in several tumours which include lung, colorectal, renal, pancreatic and breast cancer. Several studies have explored the breast tumour-specific mtDNA alteration mainly in Western population. This study aims to identify mtDNA alterations of 20 breast cancer patients in Malaysia by next generation sequencing analysis. Twenty matched tumours with corresponding normal breast tissues were obtained from female breast cancer patients who underwent mastectomy. Total DNA was extracted from all samples and the entire mtDNA (16.6kb) was amplified using long range PCR amplification. The amplified PCR products were sequenced using mtDNA next-generation sequencing (NGS) on an Illumina Miseq platform. Sequencing involves the entire mtDNA (16.6kb) from all pairs of samples with high-coverage (~ 9,544 reads per base). MtDNA variants were called and annotated using mtDNA-Server, a web server. A total of 18 of 20 patients had at least one somatic mtDNA mutation in their tumour samples. Overall, 65 somatic mutations were identified, with 30 novel mutations. The majority (59%) of the somatic mutations were in the coding region, whereas only 11% of the mutations occurred in the D-loop. Notably, somatic mutations in protein-coding regions were non-synonymous (49%) in which 15.4% of them are potentially deleterious. A total of 753 germline mutations were identified and four of which were novel mutations. Compared to somatic alterations, less than 1% of germline missense mutations are harmful. The findings of this study may enhance the current knowledge of mtDNA alterations in breast cancer. To date, the catalogue of mutations identified in this study is the first evidence of mtDNA alterations in Malaysian female breast cancer patients.
    Matched MeSH terms: DNA Mutational Analysis
  17. Brett M, McPherson J, Zang ZJ, Lai A, Tan ES, Ng I, et al.
    PLoS One, 2014;9(4):e93409.
    PMID: 24690944 DOI: 10.1371/journal.pone.0093409
    Developmental delay and/or intellectual disability (DD/ID) affects 1-3% of all children. At least half of these are thought to have a genetic etiology. Recent studies have shown that massively parallel sequencing (MPS) using a targeted gene panel is particularly suited for diagnostic testing for genetically heterogeneous conditions. We report on our experiences with using massively parallel sequencing of a targeted gene panel of 355 genes for investigating the genetic etiology of eight patients with a wide range of phenotypes including DD/ID, congenital anomalies and/or autism spectrum disorder. Targeted sequence enrichment was performed using the Agilent SureSelect Target Enrichment Kit and sequenced on the Illumina HiSeq2000 using paired-end reads. For all eight patients, 81-84% of the targeted regions achieved read depths of at least 20×, with average read depths overlapping targets ranging from 322× to 798×. Causative variants were successfully identified in two of the eight patients: a nonsense mutation in the ATRX gene and a canonical splice site mutation in the L1CAM gene. In a third patient, a canonical splice site variant in the USP9X gene could likely explain all or some of her clinical phenotypes. These results confirm the value of targeted MPS for investigating DD/ID in children for diagnostic purposes. However, targeted gene MPS was less likely to provide a genetic diagnosis for children whose phenotype includes autism.
    Matched MeSH terms: DNA Mutational Analysis
  18. Song YZ, Zhang ZH, Lin WX, Zhao XJ, Deng M, Ma YL, et al.
    PLoS One, 2013;8(9):e74544.
    PMID: 24069319 DOI: 10.1371/journal.pone.0074544
    The human SLC25A13 gene encodes citrin, the liver-type mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), and SLC25A13 mutations cause citrin deficiency (CD), a disease entity that encompasses different age-dependant clinical phenotypes such as Adult-onset Citrullinemia Type II (CTLN2) and Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD). The analyses of SLC25A13 gene and its protein/mRNA products remain reliable tools for the definitive diagnoses of CD patients, and so far, the SLC25A13 mutation spectrum in Chinese CD patients has not been well-characterized yet.
    Matched MeSH terms: DNA Mutational Analysis
  19. Dorajoo R, Blakemore AI, Sim X, Ong RT, Ng DP, Seielstad M, et al.
    Int J Obes (Lond), 2012 Jan;36(1):159-63.
    PMID: 21544081 DOI: 10.1038/ijo.2011.86
    Recent genome-wide association studies (GWAS) have identified 38 obesity-associated loci among European populations. However, their contribution to obesity in other ethnicities is largely unknown.
    Matched MeSH terms: DNA Mutational Analysis
  20. Bong PN, Zakaria Z, Muhammad R, Abdullah N, Ibrahim N, Emran NA, et al.
    Malays J Pathol, 2010 Dec;32(2):117-22.
    PMID: 21329183 MyJurnal
    The GATA3 gene is a potential tumour marker and putative tumour suppressor gene in breast cancer. Its expression is associated with better prognosis and disease free survival in breast cancer patients. We aimed to evaluate GATA3 transcriptome expression and mutation in breast carcinomas and correlate its expression with oestrogen receptor (ER), progesterone receptor (PR), lymph node (LN) status, tumour grade and c-erbB-2 expression. Twenty-two breast infiltrating ductal carcinomas and paired normal tissues were used in Branch DNA assay to detect GATA3 mRNA expression. Normalized data for GATA3 mRNA expression were grouped according to the ER, PR and LN status, tumour grade and c-erbB-2 expression of the tumours. Statistical significance was tested using t-test and ANOVA at 95% confidence interval level. Mutational analysis of GATA3 was performed by direct sequencing of the coding regions of GATA3 mRNA. Our findings showed that GATA3 gene were over-expressed and under-expressed by > 2 fold change in 12 and 4 tested samples, respectively. Eighty per cent of ER positive breast carcinomas were GATA3 positive. There was a statistically significant correlation between GATA3 expression and ER at 95% confidence interval level between the study groups. On the contrary, GATA3 expression was not statistically significant with PR, LN, tumour grade and c-erbB-2 expression in our study. In addition, we observed that there was no mutation in mRNA coding region in 16 breast carcinomas that showed GATA3 differential gene expression. Our preliminary results suggested that GATA3 is linked to the ER. This scenario suggests that GATA3 may play a crucial role in oestrogen receptor positive breast cancer patients. Whether GATA3 expression is involved in regulating tumour cell growth in oestrogen responsive breast cancer is a key question that remains to be answered.
    Matched MeSH terms: DNA Mutational Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links