Displaying publications 81 - 100 of 995 in total

Abstract:
Sort:
  1. Whitmee S, Haines A, Beyrer C, Boltz F, Capon AG, de Souza Dias BF, et al.
    Lancet, 2015 Nov 14;386(10007):1973-2028.
    PMID: 26188744 DOI: 10.1016/S0140-6736(15)60901-1
    Matched MeSH terms: Ecosystem*
  2. Wetzel FT, Kissling WD, Beissmann H, Penn DJ
    Glob Chang Biol, 2012 Sep;18(9):2707-19.
    PMID: 24501050 DOI: 10.1111/j.1365-2486.2012.02736.x
    Sea-level rise (SLR) due to global warming will result in the loss of many coastal areas. The direct or primary effects due to inundation and erosion from SLR are currently being assessed; however, the indirect or secondary ecological effects, such as changes caused by the displacement of human populations, have not been previously evaluated. We examined the potential ecological consequences of future SLR on >1,200 islands in the Southeast Asian and the Pacific region. Using three SLR scenarios (1, 3, and 6 m elevation, where 1 m approximates most predictions by the end of this century), we assessed the consequences of primary and secondary SLR effects from human displacement on habitat availability and distributions of selected mammal species. We estimate that between 3-32% of the coastal zone of these islands could be lost from primary effects, and consequently 8-52 million people would become SLR refugees. Assuming that inundated urban and intensive agricultural areas will be relocated with an equal area of habitat loss in the hinterland, we project that secondary SLR effects can lead to an equal or even higher percent range loss than primary effects for at least 10-18% of the sample mammals in a moderate range loss scenario and for 22-46% in a maximum range loss scenario. In addition, we found some species to be more vulnerable to secondary than primary effects. Finally, we found high spatial variation in vulnerability: species on islands in Oceania are more vulnerable to primary SLR effects, whereas species on islands in Indo-Malaysia, with potentially 7-48 million SLR refugees, are more vulnerable to secondary effects. Our findings show that primary and secondary SLR effects can have enormous consequences for human inhabitants and island biodiversity, and that both need to be incorporated into ecological risk assessment, conservation, and regional planning.
    Matched MeSH terms: Ecosystem
  3. Wettewa E, Wallace LE
    Mol Phylogenet Evol, 2021 04;157:107070.
    PMID: 33421614 DOI: 10.1016/j.ympev.2021.107070
    Platanthera is one of the largest genera of temperate orchids in the Holarctic and exemplifies a lineage that has adaptively radiated into diverse habitats within North America, Asia, Europe, North Africa, Borneo, and Sarawak. Major centers of diversity in this genus are North America and eastern Asia. Despite its diversity, a thorough phylogenetic hypothesis for the genus is lacking because no studies have yet sampled taxa exhaustively or developed a robust molecular toolkit. While there is strong evidence that suggests monophyly of subgenus Limnorchis, most taxa in this group have not been included in a phylogenetic analysis. In this study, we developed a new toolkit for Platanthera consisting of genomic information from 617 low-copy nuclear loci. Using a targeted enrichment approach, we collected high-throughput sequence data in 23 accessions of nine of the 12 diploid species of subgenus Limnorchis and outgroup species across Platanthera. A maximum likelihood analysis resolved a strongly supported monophyletic clade for subgenus Limnorchis. Ancestral biogeographic reconstruction indicated that subgenus Limnorchis originated in western North America ca. 3-4.5 Mya from an ancestor that was widespread in western North America and eastern Asia and subsequently diversified in western North America, followed by dispersal of some species to eastern North America. Our results indicate complex biogeographic connections between Asia and North America, and therefore it suggests that Platanthera is a suitable system to test biogeographic hypotheses over time and space in the Holarctic. Our results are also expected to facilitate further study of diversification and biogeographic spread across Platanthera and lay the groundwork for understanding independent origins, biogeography, and morphological diversification of polyploid species within subgenus Limnorchis.
    Matched MeSH terms: Ecosystem
  4. Wernli D, Søgaard Jørgensen P, Parmley EJ, Majowicz SE, Lambraki I, Carson CA, et al.
    Lancet Planet Health, 2023 Jul;7(7):e630-e637.
    PMID: 37438004 DOI: 10.1016/S2542-5196(23)00128-6
    Social-ecological systems conceptualise how social human systems and ecological natural systems are intertwined. In this Personal View, we define the scope and applicability of social-ecological resilience to antimicrobial resistance. Resilience to antimicrobial resistance corresponds to the capacity to maintain the societal benefits of antimicrobial use and One Health systems' performance in the face of the evolutionary behaviour of microorganisms in response to antimicrobial use. Social-ecological resilience provides an appropriate framework to make sense of the disruptive impacts resulting from the emergence and spread of antimicrobial resistance; capture the diversity of strategies needed to tackle antimicrobial resistance and to live with it; understand the conditions that underpin the success or failure of interventions; and appreciate the need for adaptive and coevolutionary governance. Overall, resilience thinking is essential to improve understanding of how human societies dynamically can cope with, adapt, and transform to the growing global challenge of antimicrobial resistance.
    Matched MeSH terms: Ecosystem
  5. Wells K, Lakim MB, Beaucournu JC
    Med Vet Entomol, 2011 Sep;25(3):311-9.
    PMID: 21219372 DOI: 10.1111/j.1365-2915.2010.00940.x
    The diversity of ectoparasites in Southeast Asia and flea-host associations remain largely understudied. We explore specialization and interaction patterns of fleas infesting non-volant small mammals in Bornean rainforests, using material from a field survey carried out in two montane localities in northwestern Borneo (Sabah, Malaysia) and from a literature database of all available interactions in both lowland and montane forests. A total of 234 flea individuals collected during our field survey resulted in an interaction network of eight flea species on seven live-captured small mammal species. The interaction network from all compiled studies currently includes 15 flea species and 16 small mammal species. Host specificity and niche partitioning of fleas infesting diurnal treeshrews and squirrels were low, with little difference in specialization among taxa, but host specificity in lowland forests was found to be higher than in montane forests. By contrast, Sigmactenus alticola (Siphonaptera: Leptopsyllidae) exhibited low host specificity by infesting various montane and lowland nocturnal rats. However, this species exhibited low niche partitioning as it was the only commonly recorded flea from rats on Borneo. Overall complementary specialization was of intermediate intensity for both networks and differed significantly from random association; this has important implications for specific interactions that are also relevant to the potential spread of vector-borne diseases.
    Matched MeSH terms: Ecosystem*
  6. Wei, Kang Chor, Victor Charlie Andin, Chitra Devi Gopalakrishnan, Amierah Amer, Shaheera Mohamed, Hiroyoshi Matsumoto, et al.
    MyJurnal
    A 25-week feeding trial was conducted to assess the growth performance, organoleptic quality, and to estimate the viability of nourishing hybrid grouper (Epinephelus fuscoguttatus x Epinephelus lanceolatus) with low-cost fish (LCF) and commercially compound feed (CCF). A group of 3600 juvenile fish (182g) were released in four sea cages and fed with either LCF or CCF in duplicate. At the end of the trial, the hybrid grouper provided LCF attained a significantly higher (P0.05). Although technicalities of fish fed with LCF suggest that LCF is more efficient than CCF, feeding LCF to high-value fish is an unsustainable practice as LCF is usually obtained through trawling – a destructive fishing method for the marine ecosystem. Therefore, feeding with CCF without the use of LCF as the source of protein for its fishmeal will contribute to sustainable aquaculture. In order to convince the local farmers in Sabah to adopt the practice of feeding CCF, future research should focus on completing the species-specific diet formulation to promote optimum growth, and find ways to reduce the CCF local selling price.
    Matched MeSH terms: Ecosystem
  7. Wei Z, Van Le Q, Peng W, Yang Y, Yang H, Gu H, et al.
    J Hazard Mater, 2021 02 05;403:123658.
    PMID: 33264867 DOI: 10.1016/j.jhazmat.2020.123658
    There is a global need to use plants to restore the ecological environment. There is no systematic review of phytoremediation mechanisms and the parameters for environmental pollution. Here, we review this situation and describe the purification rate of different plants for different pollutants, as well as methods to improve the purification rate of plants. This is needed to promote the use of plants to restore the ecosystems and the environment. We found that plants mainly use their own metabolism including the interaction with microorganisms to repair their ecological environment. In the process of remediation, the purification factors of plants are affected by many conditions such as light intensity, stomatal conductance, temperature and microbial species. In addition the efficiency of phytoremediation is depending on the plants species-specific metabolism including air absorption and photosynthesis, diversity of soil microorganisms and heavy metal uptake. Although the use of nanomaterials and compost promote the restoration of plants to the environment, a high dose may have negative impacts on the plants. In order to improve the practicability of the phytoremediation on environmental restoration, further research is needed to study the effects of different kinds of catalysts on the efficiency of phytoremediation. Thus, the present review provides a recent update for development and applications of phytoremediation in different environments including air, water, and soil.
    Matched MeSH terms: Ecosystem
  8. Wei S, Sun B, Liu C, Sokolova I, Waiho K, Fang JKH, et al.
    Sci Total Environ, 2023 Oct 01;893:164836.
    PMID: 37321498 DOI: 10.1016/j.scitotenv.2023.164836
    Nano-TiO2 can act as a vector to organic compounds, such as pentachlorophenol (PCP) posing a potential threat to the marine ecosystems. Studies showed that nano pollutant toxicity can be modulated by abiotic factors, but little is known about the potential influence of biotic stressors (such as predators) on the physiological responses to pollutants in marine organisms. We explored the effects of n-TiO2 and PCP on the mussel Mytilus coruscus in the presence of its natural predator, the swimming crab Portunus trituberculatus. Exposure to n-TiO2, PCP, and predation risk showed interactive effects on antioxidant and immune parameters of the mussels. Elevated activities of catalase (CAT), glutathione peroxidase (GPX), acid phosphatase (ACP) and alkaline phosphatase (AKP), suppressed activity of superoxide dismutase (SOD), lower levels of glutathione (GSH) and increased malondialdehyde (MDA) levels indicated dysregulation of the antioxidant system and immune stress induced by single PCP or n-TiO2 exposure. Integrated biomarker (IBR) response values showed the effect of PCP was concentration dependent. Of the two used n-TiO2 sizes (25 and 100 nm), larger particles induced higher antioxidant and immune disturbances indicating higher toxicity possibly due to higher bioavailability. Compared to single PCP exposure, the combination of n-TiO2 and PCP enhanced the imbalance of SOD/CAT and GSH/GPX and led to elevated oxidative lesions and activation of immune-related enzymes. Overall, the combined impacts of pollutants and biotic stress exhibited a greater magnitude of adverse effects on antioxidant defense and immune parameters in mussels. The toxicological effects of PCP were exacerbated in the presence of n-TiO2, and the deleterious impact of these stressors was further amplified under predator-induced risk after prolonged (28 days) exposure. However, the underlying physiological regulatory mechanisms governing the interplay of these stressors and predatory cues on mussels remain elusive, warranting further investigation.
    Matched MeSH terms: Ecosystem
  9. Wei L, Bee MY, Poh SC, Garg A, Lin F, Gao J
    Environ Monit Assess, 2022 Dec 27;195(1):231.
    PMID: 36572829 DOI: 10.1007/s10661-022-10822-1
    The marine aquaculture industry has caused a suite of adverse environmental consequences, including offshore eutrophication. However, little is known about the extent to which aquaculture effluents affect nearby wetland ecosystems. We carried out a field experiment in a mangrove stand located between two effluent-receiving creeks to estimate the extent to which marine aquaculture affects the soil nutrient distribution and plant nutrient status of adjacent mangroves. Carbon (C), nitrogen (N), and phosphorus (P) contents and C isotopic signatures were determined seasonally in creeks, pore water, surface soils, and in the leaves of the dominant mangrove species Kandelia obovata. The creeks exhibited nutrient enrichment (2.44 mg N L-1 and 0.09 mg P L-1 on average). The soils had N (from 1.40 to 2.70 g kg-1) and P (from 0.58 to 2.76 g kg-1) much greater than those of pristine mangrove forests. Combined analyses of the N:P ratio, nutrient resorption efficiency, and proficiency indicated that soil P met plant demands, but plants in most plots showed N limitation, suggesting that soil nutrient accumulation did not fundamentally impact the plant nutrient status. Collectively, this case study shows that marine aquaculture farms can affect adjacent mangrove stands even though their effluents are not directly discharged into the mangrove stands, but mangrove forests may have substantial buffering capabilities for long-term nutrient loading.
    Matched MeSH terms: Ecosystem*
  10. Wee SY, Aris AZ
    Chemosphere, 2017 Dec;188:575-581.
    PMID: 28917209 DOI: 10.1016/j.chemosphere.2017.09.035
    Pesticides are of great concern because of their existence in ecosystems at trace concentrations. Worldwide pesticide use and its ecological impacts (i.e., altered environmental distribution and toxicity of pesticides) have increased over time. Exposure and toxicity studies are vital for reducing the extent of pesticide exposure and risk to the environment and humans. Regional regulatory actions may be less relevant in some regions because the contamination and distribution of pesticides vary across regions and countries. The risk quotient (RQ) method was applied to assess the potential risk of organophosphorus pesticides (OPPs), primarily focusing on riverine ecosystems. Using the available ecotoxicity data, aquatic risks from OPPs (diazinon and chlorpyrifos) in the surface water of the Langat River, Selangor, Malaysia were evaluated based on general (RQm) and worst-case (RQex) scenarios. Since the ecotoxicity of quinalphos has not been well established, quinalphos was excluded from the risk assessment. The calculated RQs indicate medium risk (RQm = 0.17 and RQex = 0.66; 0.1 ≤ RQ  1 (high risk) was observed for both the general and worst cases of chlorpyrifos, but only for the worst cases of diazinon at all sites from downstream to upstream regions. Thus, chlorpyrifos posed a higher risk than diazinon along the Langat River, suggesting that organisms and humans could be exposed to potentially high levels of OPPs.
    Matched MeSH terms: Ecosystem
  11. Wearn OR, Rowcliffe JM, Carbone C, Bernard H, Ewers RM
    PLoS One, 2013;8(11):e77598.
    PMID: 24223717 DOI: 10.1371/journal.pone.0077598
    The proliferation of camera-trapping studies has led to a spate of extensions in the known distributions of many wild cat species, not least in Borneo. However, we still do not have a clear picture of the spatial patterns of felid abundance in Southeast Asia, particularly with respect to the large areas of highly-disturbed habitat. An important obstacle to increasing the usefulness of camera trap data is the widespread practice of setting cameras at non-random locations. Non-random deployment interacts with non-random space-use by animals, causing biases in our inferences about relative abundance from detection frequencies alone. This may be a particular problem if surveys do not adequately sample the full range of habitat features present in a study region. Using camera-trapping records and incidental sightings from the Kalabakan Forest Reserve, Sabah, Malaysian Borneo, we aimed to assess the relative abundance of felid species in highly-disturbed forest, as well as investigate felid space-use and the potential for biases resulting from non-random sampling. Although the area has been intensively logged over three decades, it was found to still retain the full complement of Bornean felids, including the bay cat Pardofelis badia, a poorly known Bornean endemic. Camera-trapping using strictly random locations detected four of the five Bornean felid species and revealed inter- and intra-specific differences in space-use. We compare our results with an extensive dataset of >1,200 felid records from previous camera-trapping studies and show that the relative abundance of the bay cat, in particular, may have previously been underestimated due to the use of non-random survey locations. Further surveys for this species using random locations will be crucial in determining its conservation status. We advocate the more wide-spread use of random survey locations in future camera-trapping surveys in order to increase the robustness and generality of inferences that can be made.
    Matched MeSH terms: Ecosystem
  12. Wearn OR, Carbone C, Rowcliffe JM, Pfeifer M, Bernard H, Ewers RM
    J Anim Ecol, 2019 01;88(1):125-137.
    PMID: 30178485 DOI: 10.1111/1365-2656.12903
    The assembly of species communities at local scales is thought to be driven by environmental filtering, species interactions and spatial processes such as dispersal limitation. Little is known about how the relative balance of these drivers of community assembly changes along environmental gradients, especially man-made environmental gradients associated with land-use change. Using concurrent camera- and live-trapping, we investigated the local-scale assembly of mammal communities along a gradient of land-use intensity (old-growth forest, logged forest and oil palm plantations) in Borneo. We hypothesised that increasing land-use intensity would lead to an increasing dominance of environmental control over spatial processes in community assembly. Additionally, we hypothesised that competitive interactions among species might reduce in concert with declines in α-diversity (previously documented) along the land-use gradient. To test our first hypothesis, we partitioned community variance into the fractions explained by environmental and spatial variables. To test our second hypothesis, we used probabilistic models of expected species co-occurrence patterns, in particular focussing on the prevalence of spatial avoidance between species. Spatial avoidance might indicate competition, but might also be due to divergent habitat preferences. We found patterns that are consistent with a shift in the fundamental mechanics governing local community assembly. In support of our first hypothesis, the importance of spatial processes (dispersal limitation and fine-scale patterns of home-ranging) appeared to decrease from low to high intensity land-uses, whilst environmental control increased in importance (in particular due to fine-scale habitat structure). Support for our second hypothesis was weak: whilst we found that the prevalence of spatial avoidance decreased along the land-use gradient, in particular between congeneric species pairs most likely to be in competition, few instances of spatial avoidance were detected in any land-use, and most were likely due to divergent habitat preferences. The widespread changes in land-use occurring in the tropics might be altering not just the biodiversity found in landscapes, but also the fundamental mechanics governing the local assembly of communities. A better understanding of these mechanics, for a range of taxa, could underpin more effective conservation and management of threatened tropical landscapes.
    Matched MeSH terms: Ecosystem
  13. Wardiatno Y, Mardiansyah, Prartono T, Tsuchiya M
    Trop Life Sci Res, 2015 Apr;26(1):53-65.
    PMID: 26019747
    Identifying potential food sources in mangrove ecosystems is complex because of the multifarious inputs from both land and sea. This study, which was conducted in the Manko mangrove ecosystem of Okinawa, Japan, determined the composition of the stable isotopes δ(13)C and δ(15)N in primary producers and macrozoobenthos to estimate the potential food sources assimilated and to elucidate the target trophic levels of the macrozoobenthos. We measured the two stable isotope signatures of three gastropods (Cerithidea sp., Cassidula mustelina, Peronia verruculata), two crabs (Grapsidae sp., Uca sp.), mangrove tree (Kandelia candel) leaves, and sediment from the mangrove ecosystem. The respective carbon and nitrogen isotope signature results were as follows: -22.4‰ and 8.6‰ for Cerithidea sp., -25.06‰ and 8‰ for C. mustelina, -22.58‰ and 8‰ for P. verruculata, -24.3‰ and 10.6‰ for unidentified Grapsidae, -21.87 ‰ and 11.5 ‰ for Uca sp., -29.81‰ and 11‰ for K. candel, and -24.23‰ and 7.2‰ for the sediment. The stable isotope assimilation signatures of the macrozoobenthos indicated sediment as their food source. Considering the trophic levels, the stable isotope values may also indicate that the five macrozoobenthos species were secondary or higher consumers.
    Matched MeSH terms: Ecosystem
  14. Waqar A
    Environ Sci Pollut Res Int, 2024 Feb;31(7):10853-10873.
    PMID: 38214856 DOI: 10.1007/s11356-024-31844-x
    Contamination of groundwater by harmful substances poses significant risks to both drinking water sources and aquatic ecosystems, making it a critical environmental concern. Most on-land spill events release organic molecules known as light non-aqueous phase liquids (LNAPLs), which then seep into the ground. Due to their low density and organic composition, they tend to float as they reach the water table. LNAPLs encompass a wide range of non-aqueous phase liquids, including various petroleum products, and can, over time, develop carcinogenic chemicals in water. However, due to frequent changes in hydraulic head, the confinement may fail to contain them, causing them to extend outward. When it contaminates water wells, people cannot reliably consume the water. The removal of dangerous contaminants from groundwater aquifers is made more challenging by LNAPLs. It is imperative to analyze the mechanisms governing LNAPL migration. As a response to this need and the associated dispersion of contaminants into adjacent aquifers, we have conducted a comprehensive qualitative literature review encompassing the years 2000-2022. Groundwater variability, soil structure, and precipitation have been identified as the three primary influential factors, ranked in the following order of significance. The rate of migration is shown to rise dramatically in response to changes in groundwater levels. Different saturation zones and confinement have a major effect on the lateral migration velocity. When the various saturation zones reach a balance, LNAPLs will stop moving. Although higher confinement slows the rate of lateral migration, it speeds up vertical migration. Beyond this, the lateral or vertical movement is also influenced by differences in the permeability of soil strata. Reduced mobility and tighter containment are the outcomes of migrating through fine-grained, low-porosity sand. The gaseous and liquid phases of LNAPLs move more quickly through coarse-grained soils. Due to the complexities and uncertainties associated with LNAPL behavior, accurately foreseeing the future spread of LNAPLs can be challenging. Although studies have utilized modeling techniques to simulate and predict LNAPL migration, the inherent complexities and uncertainties in the subsurface environment make it difficult to precisely predict the extent of LNAPL spread in the future. The granular soil structure considerably affects the porosity and pore pressure.
    Matched MeSH terms: Ecosystem
  15. Wang Z, Lechner AM, Yang Y, Baumgartl T, Wu J
    Sci Total Environ, 2020 May 15;717:137214.
    PMID: 32062237 DOI: 10.1016/j.scitotenv.2020.137214
    Open-cut coal mining can seriously disturb and reshape natural landscapes which results in a range of impacts on local ecosystems and the services they provide. To address the negative impacts of disturbance, progressive rehabilitation is commonly advocated. However, there is little research focusing on how these impacts affect ecosystem services within mine sites and changes over time. The aim of this study was to assess the cumulative impacts of mining disturbance and rehabilitation on ecosystem services through mapping and quantifying changes at multiple spatial and temporal scales. Four ecosystem services including carbon sequestration, air quality regulation, soil conservation and water yield were assessed in 1989, 1997, 2005 and 2013. Disturbance and rehabilitation was mapped using LandTrendr algorithm with Landsat. We mapped spatial patterns and pixel values for each ecosystem service with corresponding model and the landscape changes were analyzed with landscape metrics. In addition, we assessed synergies and trade-offs using Spearman's correlation coefficient for different landscape classes and scales. The results showed that carbon sequestration, air quality regulation and water yield services were both positively and negatively affected by vegetation cover changes due to mined land disturbance and rehabilitation, while soil conservation service were mainly influenced by topographic changes. There were strong interactions between carbon sequestration, air quality regulation and water yield, which were steady among different spatial scales and landscape types. Soil conservation correlations were weak and changed substantially due to differences of spatial scales and landscape types. Although there are limitations associated with data accessibility, this study provides a new research method for mapping impacts of mining on ecosystem services, which offer spatially explicit information for decision-makers and environmental regulators to carry out feasible policies, balancing mining development with ecosystem services provision.
    Matched MeSH terms: Ecosystem
  16. Wang XQ, Wang GH, Zhu ZR, Tang QY, Hu Y, Qiao F, et al.
    Pest Manag Sci, 2017 Jun;73(6):1277-1286.
    PMID: 27739189 DOI: 10.1002/ps.4459
    BACKGROUND: Spiders are effective biological control agents in rice ecosystems, but the comparative study of predations among main spider species under field conditions has not been fully explored owing to a lack of practical methodology. In this study, more than 6000 spiders of dominant species were collected from subtropical rice ecosystems to compare their predations on Sogatella furcifera (Horváth) (white-backed planthopper, WBPH) using DNA-based gut content analysis.

    RESULTS: The positive rates for all spider taxa were closely related to prey densities, as well as their behaviors and niches. The relationships of positive rates to prey planthopper densities for Pardosa pseudoannulata (Böes. et Str.), Coleosoma octomaculata (Böes. et Str.), Tetragnatha maxillosa Thorell and Ummeliata insecticeps (Böes. et Str.) under field conditions could be described using saturated response curves. Quantitative comparisons of predations among the four spider species confirmed that P. pseudoannulata and C. octomaculata were more rapacious than U. insecticeps and T. maxillosa under field conditions. A comparison of ratio of spiders to WBPH and positive rates between fields revealed that biological control by spiders could be effectively integrated with variety resistance.

    CONCLUSION: Generalist spiders could follow up WBPH population timely, and assemblages of spiders coupled with variety resistance could effectively suppress WBPH population. © 2016 Society of Chemical Industry.

    Matched MeSH terms: Ecosystem
  17. Wang X, Liu K, Zhu L, Li C, Song Z, Li D
    J Hazard Mater, 2021 07 15;414:125477.
    PMID: 33647626 DOI: 10.1016/j.jhazmat.2021.125477
    The presence of microplastics (MPs) in the atmosphere is a global concern because of its environmental and health impacts; however, the monsoonal transport of atmospheric MPs has not yet been investigated. To fully understand the effect of the monsoon on atmospheric MP transport, we conducted a study along the southeast coast of China during the East Asian summer monsoon (EASM). We found that the EASM transports atmospheric MPs back onto the continent at a flux of up to 212.977-213.433 kg/EASM/year. The backward trajectory and wind field results indicate that the EASM provides an effective MP transport pathway from Vietnam, the Philippines, and Malaysia to southeastern China. This suggests that only some of the airborne MPs over the ocean enter the marine ecosystem. The average abundance of atmospheric MPs over the sampling area was 0.39 items/100 m3 (0.39 ± 0.43 items/100 m3) during the EASM season, with high variability among the sampling sites. This study improves our understanding of the impact of the EASM on atmospheric MP transport, which can help quantify the contributions of atmospheric MPs to marine or terrestrial ecosystems.
    Matched MeSH terms: Ecosystem
  18. Wang WY, Foster WA
    Ecol Evol, 2015 Aug;5(15):3159-70.
    PMID: 26356831 DOI: 10.1002/ece3.1592
    Beta diversity - the variation in species composition among spatially discrete communities - and sampling grain - the size of samples being compared - may alter our perspectives of diversity within and between landscapes before and after agricultural conversion. Such assumptions are usually based on point comparisons, which do not accurately capture actual differences in total diversity. Beta diversity is often not rigorously examined. We investigated the beta diversity of ground-foraging ant communities in fragmented oil palm and forest landscapes in Sabah, Malaysia, using diversity metrics transformed from Hill number equivalents to remove dependences on alpha diversity. We compared the beta diversities of oil palm and forest, across three hierarchically nested sampling grains. We found that oil palm and forest communities had a greater percentage of total shared species when larger samples were compared. Across all grains and disregarding relative abundances, there was higher beta diversity of all species among forest communities. However, there were higher beta diversities of common and very abundant (dominant) species in oil palm as compared to forests. Differences in beta diversities between oil palm and forest were greatest at the largest sampling grain. Larger sampling grains in oil palm may generate bigger species pools, increasing the probability of shared species with forest samples. Greater beta diversity of all species in forest may be attributed to rare species. Oil palm communities may be more heterogeneous in common and dominant species because of variable community assembly events. Rare and also common species are better captured at larger grains, boosting differences in beta diversity between larger samples of forest and oil palm communities. Although agricultural landscapes support a lower total diversity than natural forests, diversity especially of abundant species is still important for maintaining ecosystem stability. Diversity in agricultural landscapes may be greater than expected when beta diversity is accounted for at large spatial scales.
    Matched MeSH terms: Ecosystem
  19. Wang S, Loreau M, Arnoldi JF, Fang J, Rahman KA, Tao S, et al.
    Nat Commun, 2017 May 19;8:15211.
    PMID: 28524860 DOI: 10.1038/ncomms15211
    The spatial scaling of stability is key to understanding ecological sustainability across scales and the sensitivity of ecosystems to habitat destruction. Here we propose the invariability-area relationship (IAR) as a novel approach to investigate the spatial scaling of stability. The shape and slope of IAR are largely determined by patterns of spatial synchrony across scales. When synchrony decays exponentially with distance, IARs exhibit three phases, characterized by steeper increases in invariability at both small and large scales. Such triphasic IARs are observed for primary productivity from plot to continental scales. When synchrony decays as a power law with distance, IARs are quasilinear on a log-log scale. Such quasilinear IARs are observed for North American bird biomass at both species and community levels. The IAR provides a quantitative tool to predict the effects of habitat loss on population and ecosystem stability and to detect regime shifts in spatial ecological systems, which are goals of relevance to conservation and policy.
    Matched MeSH terms: Ecosystem*
  20. Wang J, Yi X, Cui J, Chang Y, Yao D, Zhou D, et al.
    Sci Total Environ, 2019 Jun 20;670:1060-1067.
    PMID: 31018421 DOI: 10.1016/j.scitotenv.2019.03.245
    With the population growth, urbanization and industrialization, China has become a hotspot of atmospheric deposition nitrogen (ADN), which is a threat to ecosystem and food safety. However, the impacts of increased ADN on rice growth and grain metal content are little studied. Based on previous long-term ADN studies, greenhouse experiment was conducted with four simulated ADN rates of 0, 30, 60 and 90 kg N ha-1 yr-1 (CK, N1, N2 and N3 as δ15N, respectively) to assess rice growth and metal uptake in a red soil ecosystem of southeast China during 2016-2017. Results showed that simulated ADN could promote rice growth and increase yields by 15.68-24.41% (except N2) and accumulations of cadmium (Cd) or copper (Cu) in organs. However, there was no linear relationship between ADN rate and rice growth or Cd or Cu uptake. The 15N-ADN was mainly accumulated in roots (21.31-67.86%) and grains (25.26-49.35%), while Cd and Cu were primarily accumulated in roots (78.86-93.44% and 90.00-96.24%, respectively). 15N-ADN and Cd accumulations in roots were significantly different between the two growing seasons (p 
    Matched MeSH terms: Ecosystem
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links