Displaying publications 81 - 100 of 995 in total

Abstract:
Sort:
  1. Dugan PJ, Barlow C, Agostinho AA, Baran E, Cada GF, Chen D, et al.
    Ambio, 2010 Jun;39(4):344-8.
    PMID: 20799685
    The past decade has seen increased international recognition of the importance of the services provided by natural ecosystems. It is unclear however whether such international awareness will lead to improved environmental management in many regions. We explore this issue by examining the specific case of fish migration and dams on the Mekong river. We determine that dams on the Mekong mainstem and major tributaries will have a major impact on the basin's fisheries and the people who depend upon them for food and income. We find no evidence that current moves towards dam construction will stop, and consider two scenarios for the future of the fisheries and other ecosystems of the basin. We conclude that major investment is required in innovative technology to reduce the loss of ecosystem services, and alternative livelihood strategies to cope with the losses that do occur.
    Matched MeSH terms: Ecosystem*
  2. Ng PK, Riady R, Windarti W
    Zootaxa, 2016 Feb 29;4084(4):495-506.
    PMID: 27394277 DOI: 10.11646/zootaxa.4084.4.2
    A new species of gecarcinucid freshwater crab of the genus Parathelphusa H. Milne Edwards, 1853, is described from freshwater swamp habitats in Pekanbaru, Riau Province, in central-eastern Sumatra, Indonesia. Parathelphusa pardus sp. nov., has a very distinctive colour pattern, and in this respect, resembles P. maindroni (Rathbun, 1902) from Sumatra and Peninsular Malaysia; P. batamensis Ng, 1992, from Batam Island, Indonesia; P. reticulata Ng, 1990, from Singapore; and P. oxygona Nobili, 1901, from western Sarawak. It can be distinguished from these species and congeners by a suite of carapace, ambulatory leg, thoracic sternal and most importantly, male first gonopod characters.
    Matched MeSH terms: Ecosystem
  3. Ancrenaz M, Sollmann R, Meijaard E, Hearn AJ, Ross J, Samejima H, et al.
    Sci Rep, 2014;4:4024.
    PMID: 24526001 DOI: 10.1038/srep04024
    The orangutan is the world's largest arboreal mammal, and images of the red ape moving through the tropical forest canopy symbolise its typical arboreal behaviour. Records of terrestrial behaviour are scarce and often associated with habitat disturbance. We conducted a large-scale species-level analysis of ground-based camera-trapping data to evaluate the extent to which Bornean orangutans Pongo pygmaeus come down from the trees to travel terrestrially, and whether they are indeed forced to the ground primarily by anthropogenic forest disturbances. Although the degree of forest disturbance and canopy gap size influenced terrestriality, orangutans were recorded on the ground as frequently in heavily degraded habitats as in primary forests. Furthermore, all age-sex classes were recorded on the ground (flanged males more often). This suggests that terrestrial locomotion is part of the Bornean orangutan's natural behavioural repertoire to a much greater extent than previously thought, and is only modified by habitat disturbance. The capacity of orangutans to come down from the trees may increase their ability to cope with at least smaller-scale forest fragmentation, and to cross moderately open spaces in mosaic landscapes, although the extent of this versatility remains to be investigated.
    Matched MeSH terms: Ecosystem
  4. Tilker A, Abrams JF, Mohamed A, Nguyen A, Wong ST, Sollmann R, et al.
    Commun Biol, 2019;2:396.
    PMID: 31701025 DOI: 10.1038/s42003-019-0640-y
    Habitat degradation and hunting have caused the widespread loss of larger vertebrate species (defaunation) from tropical biodiversity hotspots. However, these defaunation drivers impact vertebrate biodiversity in different ways and, therefore, require different conservation interventions. We conducted landscape-scale camera-trap surveys across six study sites in Southeast Asia to assess how moderate degradation and intensive, indiscriminate hunting differentially impact tropical terrestrial mammals and birds. We found that functional extinction rates were higher in hunted compared to degraded sites. Species found in both sites had lower occupancies in the hunted sites. Canopy closure was the main predictor of occurrence in the degraded sites, while village density primarily influenced occurrence in the hunted sites. Our findings suggest that intensive, indiscriminate hunting may be a more immediate threat than moderate habitat degradation for tropical faunal communities, and that conservation stakeholders should focus as much on overhunting as on habitat conservation to address the defaunation crisis.
    Matched MeSH terms: Ecosystem
  5. Runting RK, Meijaard E, Abram NK, Wells JA, Gaveau DL, Ancrenaz M, et al.
    Nat Commun, 2015 04 14;6:6819.
    PMID: 25871635 DOI: 10.1038/ncomms7819
    Balancing economic development with international commitments to protect biodiversity is a global challenge. Achieving this balance requires an understanding of the possible consequences of alternative future scenarios for a range of stakeholders. We employ an integrated economic and environmental planning approach to evaluate four alternative futures for the mega-diverse island of Borneo. We show what could be achieved if the three national jurisdictions of Borneo coordinate efforts to achieve their public policy targets and allow a partial reallocation of planned land uses. We reveal the potential for Borneo to simultaneously retain ∼50% of its land as forests, protect adequate habitat for the Bornean orangutan (Pongo pygmaeus) and Bornean elephant (Elephas maximus borneensis), and achieve an opportunity cost saving of over US$43 billion. Such coordination would depend on enhanced information sharing and reforms to land-use planning, which could be supported by the increasingly international nature of economies and conservation efforts.
    Matched MeSH terms: Ecosystem
  6. Sing KW, Dong H, Wang WZ, Wilson JJ
    Genome, 2016 Sep;59(9):751-61.
    PMID: 27314400 DOI: 10.1139/gen-2015-0192
    During 30 years of unprecedented urbanization, plant diversity in Shenzhen, a young megacity in southern China, has increased dramatically. Although strongly associated with plant diversity, butterfly diversity generally declines with urbanization, but this has not been investigated in Shenzhen. Considering the speed of urbanization in Shenzhen and the large number of city parks, we investigated butterfly diversity in Shenzhen parks. We measured butterfly species richness in four microhabitats (groves, hedges, flowerbeds, and unmanaged areas) across 10 parks and examined the relationship with three park variables: park age, park size, and distance from the central business district. Butterflies were identified based on wing morphology and DNA barcoding. We collected 1933 butterflies belonging to 74 species from six families; 20% of the species were considered rare. Butterfly species richness showed weak negative correlations with park age and distance from the central business district, but the positive correlation with park size was statistically significant (p = 0.001). Among microhabitat types, highest species richness was recorded in unmanaged areas. Our findings are consistent with others in suggesting that to promote urban butterfly diversity it is necessary to make parks as large as possible and to set aside areas for limited management. In comparison to neighbouring cities, Shenzhen parks have high butterfly diversity.
    Matched MeSH terms: Ecosystem
  7. Lim VC, Ramli R, Bhassu S, Wilson JJ
    PeerJ, 2018;6:e4572.
    PMID: 29607265 DOI: 10.7717/peerj.4572
    Background: Intense landscaping often alters the plant composition in urban areas. Knowing which plant species that pollinators are visiting in urban areas is necessary for understanding how landscaping impacts biodiversity and associated ecosystem services. The cave nectar bat,Eonycteris spelaea, is an important pollinator for many plants and is often recorded in human-dominated habitats. Previous studies of the diet ofE. spelaearelied on morphological identification of pollen grains found in faeces and on the body of bats and by necessity disregarded other forms of digested plant material present in the faeces (i.e., plant juice and remnants). The main objective of this study was to examine the diet of the nectarivorous bat,E. spelaea,roosting in an urban cave at Batu Caves, Peninsular Malaysia by identifying the plant material present in the faeces of bats using DNA metabarcoding.

    Methods: Faeces were collected under the roost ofE. spelaeaonce a week from December 2015 to March 2016. Plant DNA was extracted from the faeces, Polymerase chain reaction (PCR) amplified atITS2andrbcLregions and mass sequenced. The resultant plant operational taxonomic units were searched against NCBI GenBank for identification.

    Results: A total of 55 species of plants were detected from faeces ofE. spelaeaincludingArtocarpus heterophyllus, Duabanga grandifloraandMusaspp. which are likely to be important food resources for the cave nectar bat.

    Discussion: Many native plant species that had not been reported in previous dietary studies ofE. spelaeawere detected in this study includingBauhinia strychnoideaandUrophyllum leucophlaeum, suggesting thatE. spelaearemains a crucial pollinator for these plants even in highly disturbed habitats. The detection of many introduced plant species in the bat faeces indicates thatE. spelaeaare exploiting them, particularlyXanthostemon chrysanthus,as food resources in urban area. Commercial food crops were detected from all of the faecal samples, suggesting thatE. spelaeafeed predominantly on the crops particularly jackfruit and banana and play a significant role in pollination of economically important plants. Ferns and figs were also detected in the faeces ofE. spelaeasuggesting future research avenues to determine whether the 'specialised nectarivorous'E. spelaeafeed opportunistically on other parts of plants.

    Matched MeSH terms: Ecosystem
  8. Willott SJ
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1783-90.
    PMID: 11605621
    The effects of selective logging on the diversity and species composition of moths were investigated by sampling from multiple sites in primary forest, both understorey and canopy, and logged forest at Danum Valley, Sabah, Malaysia. The diversity of individual sites was similar, although rarefied species richness of logged forest was 17% lower than for primary forest (understorey and canopy combined). There was significant heterogeneity in faunal composition and measures of similarity (NESS index) among primary forest understorey sites which may be as great as those between primary understorey and logged forest. The lowest similarity values were between primary forest understorey and canopy, indicating a distinct canopy fauna. A number of species encountered in the logged forest were confined to, or more abundant in, the canopy of primary forest. Approximately 10% of species were confined to primary forest across a range of species' abundances, suggesting this is a minimum estimate for the number of species lost following logging. The importance of accounting for heterogeneity within primary forest and sampling in the canopy when measuring the effects of disturbance on tropical forest communities are emphasized.
    Matched MeSH terms: Ecosystem
  9. Williams N
    Curr Biol, 2007 Apr 17;17(8):R261.
    PMID: 17486700
    Matched MeSH terms: Ecosystem
  10. Williams MJ
    Ambio, 2002 Jun;31(4):337-9.
    PMID: 12174604
    Matched MeSH terms: Ecosystem*
  11. Tilley A, Dos Reis Lopes J, Wilkinson SP
    PLoS One, 2020;15(11):e0234760.
    PMID: 33186386 DOI: 10.1371/journal.pone.0234760
    Small-scale fisheries are responsible for landing half of the world's fish catch, yet there are very sparse data on these fishing activities and associated fisheries production in time and space. Fisheries-dependent data underpin scientific guidance of management and conservation of fisheries systems, but it is inherently difficult to generate robust and comprehensive data for small-scale fisheries, particularly given their dispersed and diverse nature. In tackling this challenge, we use open source software components including the Shiny R package to build PeskAAS; an adaptable and scalable digital application that enables the collation, classification, analysis and visualisation of small-scale fisheries catch and effort data. We piloted and refined this system in Timor-Leste; a small island developing nation. The features that make PeskAAS fit for purpose are that it is: (i) fully open-source and free to use (ii) component-based, flexible and able to integrate vessel tracking data with catch records; (iii) able to perform spatial and temporal filtering of fishing productivity by fishing method and habitat; (iv) integrated with species-specific length-weight parameters from FishBase; (v) controlled through a click-button dashboard, that was co-designed with fisheries scientists and government managers, that enables easy to read data summaries and interpretation of context-specific fisheries data. With limited training and code adaptation, the PeskAAS workflow has been used as a framework on which to build and adapt systematic, standardised data collection for small-scale fisheries in other contexts. Automated analytics of these data can provide fishers, managers and researchers with insights into a fisher's experience of fishing efforts, fisheries status, catch rates, economic efficiency and geographic preferences and limits that can potentially guide management and livelihood investments.
    Matched MeSH terms: Ecosystem
  12. DeVantier L, Alcala A, Wilkinson C
    Ambio, 2004 Feb;33(1-2):88-97.
    PMID: 15083654
    The Sulu-Sulawesi Sea, with neighboring Indonesian Seas and South China Sea, lies at the center of the world's tropical marine biodiversity. Encircled by 3 populous, developing nations, the Philippines, Indonesia and Malaysia, the Sea and its adjacent coastal and terrestrial ecosystems, supports ca. 33 million people, most with subsistence livelihoods heavily reliant on its renewable natural resources. These resources are being impacted severely by rapid population growth (> 2% yr-1, with expected doubling by 2035) and widespread poverty, coupled with increasing international market demand and rapid technological changes, compounded by inefficiencies in governance and a lack of awareness and/or acceptance of some laws among local populations, particularly in parts of the Philippines and Indonesia. These key root causes all contribute to illegal practices and corruption, and are resulting in severe resource depletion and degradation of water catchments, river, lacustrine, estuarine, coastal, and marine ecosystems. The Sulu-Sulawesi Sea forms a major geopolitical focus, with porous borders, transmigration, separatist movements, piracy, and illegal fishing all contributing to environmental degradation, human suffering and political instability, and inhibiting strong trilateral support for interventions. This review analyzes these multifarious environmental and socioeconomic impacts and their root causes, provides a future prognosis of status by 2020, and recommends policy options aimed at amelioration through sustainable management and development.
    Matched MeSH terms: Ecosystem
  13. Edwards DP, Larsen TH, Docherty TD, Ansell FA, Hsu WW, Derhé MA, et al.
    Proc Biol Sci, 2011 Jan 7;278(1702):82-90.
    PMID: 20685713 DOI: 10.1098/rspb.2010.1062
    Southeast Asia is a hotspot of imperiled biodiversity, owing to extensive logging and forest conversion to oil palm agriculture. The degraded forests that remain after multiple rounds of intensive logging are often assumed to be of little conservation value; consequently, there has been no concerted effort to prevent them from being converted to oil palm. However, no study has quantified the biodiversity of repeatedly logged forests. We compare the species richness and composition of birds and dung beetles within unlogged (primary), once-logged and twice-logged forests in Sabah, Borneo. Logging had little effect on the overall richness of birds. Dung beetle richness declined following once-logging but did not decline further after twice-logging. The species composition of bird and dung beetle communities was altered, particularly after the second logging rotation, but globally imperiled bird species (IUCN Red List) did not decline further after twice-logging. Remarkably, over 75 per cent of bird and dung beetle species found in unlogged forest persisted within twice-logged forest. Although twice-logged forests have less biological value than primary and once-logged forests, they clearly provide important habitat for numerous bird and dung beetle species. Preventing these degraded forests from being converted to oil palm should be a priority of policy-makers and conservationists.
    Matched MeSH terms: Ecosystem*
  14. Holzner A, Mohd Rameli NIA, Ruppert N, Widdig A
    Curr Biol, 2024 Jan 22;34(2):410-416.e4.
    PMID: 38194972 DOI: 10.1016/j.cub.2023.12.002
    Infant survival is a major determinant of individual fitness and constitutes a crucial factor in shaping species' ability to maintain viable populations in changing environments.1 Early adverse conditions, such as maternal loss, social isolation, and ecological hazards, have been associated with reduced rates of infant survivorship in wild primates.2,3,4 Agricultural landscapes increasingly replacing natural forest habitats may additionally threaten the survival of infants through exposure to novel predators,5 human-wildlife conflicts,6,7 or the use of harmful chemicals.8,9 Here, we investigated potential links between agricultural habitat use and high infant mortality in wild southern pig-tailed macaques (Macaca nemestrina) inhabiting a mosaic landscape of rainforest and oil palm plantation in Peninsular Malaysia. Longitudinal data revealed that 57% of all infants born during the study period (2014-2023) died before the age of 1 year, far exceeding mortality rates reported for other wild primates.10,11,12,13,14 Importantly, prolonged time spent in the plantation during infancy decreased the likelihood of infant survival by 3-fold, likely caused by increased exposure to the threats inherent to this environment. Further, mortality risk was elevated for infants born to primiparous mothers and predicted by prolonged maternal interbirth intervals, suggesting potential long-term effects attributed to the uptake and/or accumulation of pesticides in mothers' bodies.15,16,17 Indeed, existing literature reports that pesticides may cross the placental barrier, thus impacting fetal development during pregnancy.18,19,20 Our findings emphasize the importance of minimizing anthropogenic threats to wildlife in agricultural landscapes by establishing environmentally friendly cultivation practices that can sustain wildlife populations in the long term.
    Matched MeSH terms: Ecosystem
  15. Dalu T, Wasserman RJ, Froneman PW, Weyl OLF
    Sci Rep, 2017 08 08;7(1):7572.
    PMID: 28790380 DOI: 10.1038/s41598-017-08026-6
    Trophic variation in food web structure occurs among and within ecosystems. The magnitude of variation, however, differs from system to system. In ephemeral pond ecosystems, temporal dynamics are relatively more important than in many systems given that hydroperiod is the ultimate factor determining the presence of an aquatic state. Here, using stable isotopes we tested for changes in trophic chain length and shape over time in these dynamic aquatic ecosystems. We found that lower and intermediate trophic level structure increased over time. We discuss these findings within the context of temporal environmental stability. The dynamic nature of these ephemeral systems seems to be conducive to greater levels of intermediate and lower trophic level diversity, with omnivorous traits likely being advantageous.
    Matched MeSH terms: Ecosystem
  16. Dalu T, Wasserman RJ, Vink TJ, Weyl OL
    Sci Rep, 2017 02 24;7:43229.
    PMID: 28233858 DOI: 10.1038/srep43229
    It is generally accepted that organisms that naturally exploit an ecosystem facilitate coexistence, at least partially, through resource partitioning. Resource availability is, however, highly variable in space and time and as such the extent of resource partitioning must be somewhat dependent on availability. Here we test aspects of resource partitioning at the inter- and intra-specific level, in relation to resource availability in an atypical aquatic environment using an isotope approach. Using closely related key organisms from an ephemeral pond, we test for differences in isotopic signatures between two species of copepod and between sexes within each species, in relation to heterogeneity of basal food resources over the course of the ponds hydroperiod. We show that basal food resource heterogeneity increases over time initially, and then decreases towards the end of the hydroperiod, reflective of the expected evolution of trophic complexity for these systems. Resource partitioning also varied between species and sexes, over the hydroperiod with intra- and inter-specific specialisation relating to resource availability. Intra-specific specialisation was particularly evident in the omnivorous copepod species. Our findings imply that trophic specialisation at both the intra- and inter-specific level is partly driven by basal food resource availability.
    Matched MeSH terms: Ecosystem*
  17. Suratman S, Hussein A, Latif M, Weston K
    Sains Malaysiana, 2014;43:1127-1131.
    Setiu Wetland is located in the southern part of South China Sea, Malaysia. This wetland has diverse ecosystems that represent a vast array of biological diversity and abundance in utilizable natural resources. However, there are large scales of aquaculture activities within and nearby the wetland which could threaten the ecosystems of this area. Thus, the main goal of the study was to assess the impact of these activities through the measurement of physico-chemical water quality parameters and then compare this to a previous study carried out in the same study area. The parameters (salinity, temperature, pH, dissolved oxygen, biological oxygen demand and total suspended solids) were monitored monthly at the surface water from July to October 2008. The results showed that the impact of aquaculture activities on the water quality in the area with dissolved oxygen and total suspended solids concentrations were considerably lower than those observed previously. With respect to the Malaysian Marine Water Quality Criteria and Standard, most of the level of parameters measured remained Class 1, suggesting the physico-chemical environment were in line with sustainable conservation of the marine protected areas and marine parks of this wetland area.
    Matched MeSH terms: Ecosystem
  18. Mitchell CL, Yeager RD, Johnson ZJ, D'Annunzio SE, Vogel KR, Werner T
    PLoS One, 2015;10(5):e0127569.
    PMID: 25978397 DOI: 10.1371/journal.pone.0127569
    Insect resistance to toxins exerts not only a great impact on our economy, but also on the ecology of many species. Resistance to one toxin is often associated with cross-resistance to other, sometimes unrelated, chemicals. In this study, we investigated mushroom toxin resistance in the fruit fly Drosophila melanogaster (Meigen). This fruit fly species does not feed on mushrooms in nature and may thus have evolved cross-resistance to α-amanitin, the principal toxin of deadly poisonous mushrooms, due to previous pesticide exposure. The three Asian D. melanogaster stocks used in this study, Ama-KTT, Ama-MI, and Ama-KLM, acquired α-amanitin resistance at least five decades ago in their natural habitats in Taiwan, India, and Malaysia, respectively. Here we show that all three stocks have not lost the resistance phenotype despite the absence of selective pressure over the past half century. In response to α-amanitin in the larval food, several signs of developmental retardation become apparent in a concentration-dependent manner: higher pre-adult mortality, prolonged larva-to-adult developmental time, decreased adult body size, and reduced adult longevity. In contrast, female fecundity nearly doubles in response to higher α-amanitin concentrations. Our results suggest that α-amanitin resistance has no fitness cost, which could explain why the resistance has persisted in all three stocks over the past five decades. If pesticides caused α-amanitin resistance in D. melanogaster, their use may go far beyond their intended effects and have long-lasting effects on ecosystems.
    Matched MeSH terms: Ecosystem
  19. Beaucournu JC, Wells K
    Parasite, 2009 Dec;16(4):283-7.
    PMID: 20092059
    We report on fleas collected from small mammals in a lower mountane rainforest in the Crocker Range National Park, Sabah, Borneo. Macrostylophora durdeni n. sp., collected from Dremomys everetti and, of minor importance, Tupaia montana, is described. Further records include Gryphopsylla jacobsoni segragata and Lentistivalius vomerus from T. montana.
    Matched MeSH terms: Ecosystem
  20. Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P
    Ecohealth, 2019 12;16(4):594-610.
    PMID: 30675676 DOI: 10.1007/s10393-019-01395-6
    Defining the linkages between landscape change, disease ecology and human health is essential to explain and predict the emergence of Plasmodium knowlesi malaria, a zoonotic parasite residing in Southeast Asian macaques, and transmitted by species of Anopheles mosquitos. Changing patterns of land use throughout Southeast Asia, particularly deforestation, are suggested to be the primary drivers behind the recent spread of this zoonotic parasite in humans. Local ecological changes at the landscape scale appear to be increasing the risk of disease in humans by altering the dynamics of transmission between the parasite and its primary hosts. This paper will focus on the emergence of P. knowlesi in humans in Malaysian Borneo and the ecological linkage mechanisms suggested to be playing an important role.
    Matched MeSH terms: Ecosystem
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links